Past Paper

This resource was created and owned by Pearson Edexcel

Vrite your name here Surname	Oth	er names
Pearson Edexcel nternational Advanced Level	Centre Number	Candidate Number
Chemistry		
Advanced Unit 5: General Principle Metals and Orga (including synop	es of Chemistry Inic Nitrogen Ch	emistry
Advanced Unit 5: General Principle Metals and Orga	es of Chemistry Inic Nitrogen Ch otic assessment	Paper Reference
Advanced Unit 5: General Principle Metals and Orga (including synop	es of Chemistry Inic Nitrogen Ch otic assessment	emistry

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

SECTION A

Answer ALL the questions in this section. You should aim to spend no more than 20 minutes on this section. For each question, select one answer from A to D and put a cross in the box \bowtie . If you change your mind, put a line through the box 🔀 and then mark your new answer with a

- Which of these elements is a transition metal?
 - A scandium
 - **B** tin

 - **D** zinc

(Total for Question 1 = 1 mark)

Thallium(III) ions oxidise iodide ions to iodine.

$$2I^- \rightarrow I_2 + 2e^-$$

0.0012 mol of Tl³⁺ ions oxidised 0.0024 mol iodide ions.

What is the oxidation number of the thallium ions produced in this reaction?

- **■ A** +1
- \mathbf{B} +2
- **C** +4
- **■ D** +5

(Total for Question 2 = 1 mark)

- The [Cu(H₂O)₆]²⁺ ion is blue because the water ligands split the 3d subshell and a 3d electron is promoted to a higher energy level
 - A absorbing all but blue light as it drops back to its ground state.
 - **B** emitting blue light as it drops back to its ground state.
 - C absorbing all but blue light.
 - **D** emitting all but blue light.

(Total for Question 3 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

WCH05

4 Ammonium vanadate(V), NH_4VO_3 , dissolves in aqueous sodium hydroxide solution releasing a colourless gas. The gas gives a pale blue precipitate with aqueous copper(II) sulfate.

What is the colourless gas?

- \square A H_2
- \square B N_2
- ☑ C NH₃
- \square **D** O_2

(Total for Question 4 = 1 mark)

5 25.0 cm³ of a 0.0100 mol dm⁻³ solution of vanadium(II) ions is titrated with an acidified solution containing 0.0200 mol dm⁻³ manganate(VII) ions, MnO₄.

$$3MnO_4^- + 5V^{2+} + 4H^+ \rightarrow 3Mn^{2+} + 5VO_2^+ + 2H_2O$$

What volume, in cm³, of this solution of manganate(VII) ions is needed for the reaction?

- **B** 15.0
- **■ D** 41.7

(Total for Question 5 = 1 mark)

6 Manganate(VII) ions, MnO_4^- , react with ethanedioate ions, $C_2O_4^{2-}$, in acid solution.

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

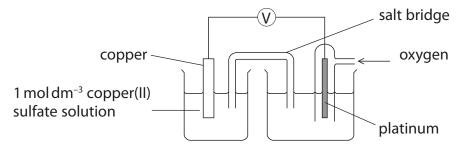
What is the **change** in oxidation number of each carbon atom in this reaction?

- \blacksquare **B** +3
- **◯ C** +4
- **■ D** +5

(Total for Question 6 = 1 mark)

7 The standard electrode potential for the $Ag^{+}(aq)|Ag(s)$ electrode is measured.

Which is the only suitable chemical for the solution in a salt bridge to connect the silver electrode to the standard hydrogen electrode?


- A potassium carbonate
- B potassium chloride
- C potassium iodide
- **D** potassium nitrate

(Total for Question 7 = 1 mark)

8 The cell below was set up. Copper is the negative electrode.

The solution in the right-hand beaker contained a suitable electrolyte and phenolphthalein.

After some time, the solution in the right-hand beaker turned pink.

Which ionic half-equation shows the reaction at the oxygen electrode that caused the phenolphthalein to turn pink?

- \square **A** $\frac{1}{2}O_2 + 2H^+ + 2e^- \rightarrow H_2O$
- \blacksquare **B** H₂O \rightarrow ½O₂ + 2H⁺ + 2e⁻
- \square **C** $\frac{1}{2}O_2 + H_2O + 2e^- \rightarrow 2OH^-$
- \square **D** 20H⁻ $\rightarrow \frac{1}{2}O_2 + H_2O + 2e^-$

(Total for Question 8 = 1 mark)

DO NOT WRITE IN THIS AREA

Use these electrode potentials to answer the following questions.

Electrode reaction	E [⊕] /V
$Cr^{3+}(aq) + e^- \rightleftharpoons Cr^{2+}(aq)$	-0.41
$1/2I_2(aq) + e^- \rightleftharpoons I^-(aq)$	+0.54
$1/2Br_2(aq) + e^- \rightleftharpoons Br^-(aq)$	+1.09
$1/2 \text{Cr}_2 \text{O}_7^{2-}(\text{aq}) + 7 \text{H}^+(\text{aq}) + 3 \text{e}^- \rightleftharpoons \text{Cr}^{3+}(\text{aq}) + 3 1/2 \text{H}_2 \text{O}(\text{l})$	+1.33
$\frac{1}{2}Cl_{2}(aq) + e^{-} \rightleftharpoons Cl^{-}(aq)$	+1.36

(a) Which of these species is the strongest reducing agent?

(1)

- \triangle A $Cr^{2+}(aq)$
- \square **B** $Cr^{3+}(aq)$
- \square **D** $Cl_2(aq)$
- (b) Which halogen(s) would oxidise chromium(II) to chromium(III) but **not** to chromium(VI) under standard conditions?

(1)

- \square **A** Br₂(aq) only
- \square **B** $I_2(aq)$ only
- \square **C** Br₂(aq) and Cl₂(aq) only
- \square **D** $I_2(aq)$ and $Br_2(aq)$ only

(Total for Question 9 = 2 marks)

- 10 The information about benzene **not** provided by X-ray diffraction is that
 - ☑ A all C—C—C bond angles are the same.
 - ☑ B all C—C bond lengths are the same.
 - ☑ C all C—C bond energies are the same.
 - **D** the molecule is planar.

(Total for Question 10 = 1 mark)

- 11 The formula of the organic product of the reaction between benzene and fuming sulfuric acid is

 SO_2

- SO₃
- SO₂H
- SO₃H

(Total for Question 11 = 1 mark)

12 Benzene is nitrated using a mixture of concentrated nitric and sulfuric acids.

In this reaction, the concentrated sulfuric acid acts as

- A an acid and catalyst.
- an acid and nucleophile.
- a base and catalyst.
- **D** a base and electrophile.

(Total for Question 12 = 1 mark)

Use this space for any rough working. Anything you write in this space will gain no credit.

DO NOT WRITE IN THIS AREA

13 How many chiral carbon atoms are there in the following structure?

- **B** 3
- **■ D** 5

(Total for Question 13 = 1 mark)

14 A sample of phenylamine was prepared from 2.46 g of nitrobenzene. The yield of phenylamine was 70.0% by mass.

nitrobenzene

 $M_{\rm r} = 123$

phenylamine $M_{\rm r} = 93$

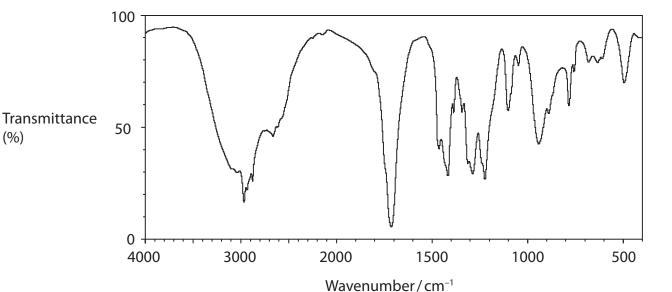
The mass of phenylamine produced is

- \blacksquare B 1.302 g
- ☑ **D** 2.277 g

(Total for Question 14 = 1 mark)

15 Which reagent can be used to distinguish between these two compounds?

- Bromine water
- Copper(II) sulfate solution
- lodine in alkali
- **D** Tollens' reagent


(Total for Question 15 = 1 mark)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

WCH05

16 Which compound would give the infrared spectrum shown?

- \mathbf{X} A
- \square B

- HO.
- \times D

(Total for Question 16 = 1 mark)

DO NOT WRITE IN THIS AREA

17 Which isomer reacts with propanedicyl dichloride to form the polymer shown?

P

 \times B

$$H_2N$$
 NH_2

 \boxtimes D

(Total for Question 17 = 1 mark)

DO NOT WRITE IN THIS AREA

WCH05

- **18** Benzaldehyde, C₆H₅CHO, reacts with an aqueous solution of potassium hydroxide. During this reaction, the benzaldehyde is both oxidised and reduced.
 - The organic products of this reaction are
 - \square **A** C_6H_5COOH and $C_6H_5CH_2OH$
 - \square **B** C_6H_5COOH and $C_6H_5CH_2O^-K^+$
 - \square **C** $C_6H_5COO^-K^+$ and $C_6H_5CH_2OH$
 - \square **D** $C_6H_5COO^-K^+$ and $C_6H_5CH_2O^-K^+$

(Total for Question 18 = 1 mark)

19 Fibroin is one of the proteins in silk. Part of the structure of fibroin is shown.

How many **different** amino acids have combined to form this part of the structure?

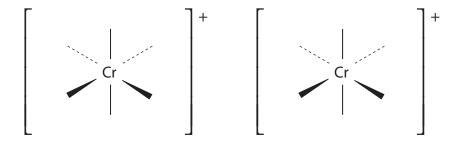
- \square B 3
- D 6

(Total for Question 19 = 1 mark)

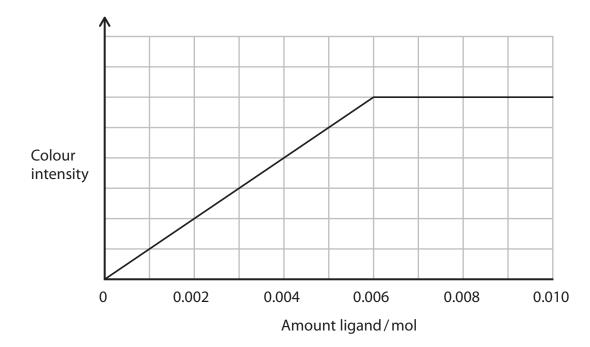
TOTAL FOR SECTION A = 20 MARKS

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

SECTION B	
Answer ALL the questions. Write your answers in the spaces provide	d.
20 Chromium forms many different complex ions.	
(a) State and explain the shape of the $[CrCl_4]^-$ complex ion.	(2)
Shape	
Explanation	
(b) When a small amount of aqueous sodium hydroxide is added to a solution of chromium(III) ions, $[Cr(H_2O)_6]^{3+}(aq)$, a green precipitate forms.	
This precipitate dissolves in excess aqueous sodium hydroxide.	
White the invitation of the boundary of the state of the	


Write the ionic equations for these two reactions. Include state symbols.

(2)


(c) The complex ion $[Cr(NH_3)_4Cl_2]^+$ is octahedral and exists as two isomers.

Complete the diagrams to show these two isomers.

(2)

(d) The diagram shows how the colour intensity of an aqueous solution containing 0.001 mol of chromium(III) ions varies with increasing amounts of cyanide ions, CN⁻.

Chromium(III) ions form a complex ion with EDTA with a greater colour intensity than the complex ion formed with cyanide ions.

Sketch on the above axes the result you would expect to obtain if increasing amounts of EDTA were used instead of CN⁻.

(2)

DO NOT WRITE IN THIS AREA

(e) Chromium(III) ions form a neutral complex with the bidentate ligand commonly known as 'acac'.

The structure of the chromium(III) complex Cr(acac)₃ is

Draw the structure of the bidentate ligand 'acac'.

(1)

(Total for Question 20 = 9 marks)

 21 The –OH group is present in alcohols and phenols. (a) Phenol, C₆H₅OH, is used as a starting material to make polymers, explosives and dru (i) State what is seen when phenol reacts with excess bromine water. 	ugs. (1)
(ii) Write the equation for the reaction between phenol and excess bromine water. State symbols are not required.	(2)
*(iii) Benzene only reacts with bromine in the presence of a Friedel-Crafts catalyst. Explain why bromine reacts much more readily with phenol than with benzene	(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(iv) Compound P is a powerful antiseptic.

Give the systematic name of compound P.

(1)

- *(b) Phenol is more acidic than aliphatic alcohols, such as ethanol, but less acidic than carboxylic acids. It reacts with sodium hydroxide but not with sodium carbonate.
 - 2.5 g of a mixture of phenol and benzoic acid, C₆H₅COOH, was added to excess sodium carbonate solution, Na₂CO₃. 185 cm³ of carbon dioxide was produced.

$$2C_6H_5COOH + Na_2CO_3 \rightarrow 2C_6H_5COONa + H_2O + CO_2$$

Calculate the percentage by mass of phenol in the mixture.

(The volume of 1 mol of gas under the conditions of the experiment is 24000 cm³)

(4)

WCH05

(c) Lactic acid (2-hydroxypropanoic acid) is used as a flavouring. It may be prepared from ethanal.

ethanal

lactic acid

(i) Devise a two-step synthesis to produce lactic acid from ethanal. Include the reagents and conditions for each step, and the structure of the intermediate compound.

(3)

(ii) State the number of peaks in the **low** resolution proton nmr spectrum of lactic acid.

(1)

(iii) The hydrogen of the alcohol group in lactic acid produces a single peak in the proton nmr spectrum.

Give the chemical shift you would expect for this peak.

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

■ Past Paper

(iv) Two molecules of lactic acid react to form one molecule of a cyclic di-ester.

The structure of lactic acid is shown below

Draw the structure of the cyclic di-ester.

(1)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

WCH05

(d) 2-hydroxy-2-phenylethanoic acid is more commonly known as mandelic acid. It has antibacterial properties.

(i) Mandelic acid is made when 2-chloro-2-phenylethanoic acid reacts with hydroxide ions.

Draw the $S_N 1$ mechanism for this reaction.

(3)

*(ii) Explain why the mandelic acid, produced by the S_N1 mechanism from a single optical isomer of 2-chloro-2-phenylethanoic acid, is **not** optically active.

(3)

www.mystudybro.com

Past Paper

This resource was created and owned by Pearson Edexcel

WCH05

DO NOT WRITE IN THIS AREA

(iii) An impure sample of mandelic acid can be recrystallised using methanol as the solvent.

The steps of the recrystallisation are summarised below. In the spaces provided, explain the purpose of each step, referring particularly to any words in **bold** type.

(5)

Step 1	The sample was dissolved in the minimum amount of hot methanol.
Stan 2	The hot solution was filtered .
жер <u>г</u>	The not solution was intered .
Step 3	The filtrate was cooled in an ice bath .
Step 4	The mixture was filtered using suction filtration.
	(Total for Question 21 = 27 marks)

DO NOT WRITE IN THIS AREA

- **22** This question is about some metals and their compounds.
 - (a) Potassium and copper form ions with a single positive charge. Some information about these metals is given in the table.

	Potassium	Copper
Electronic configuration	[Ar]4s ¹	[Ar]3d ¹⁰ 4s ¹
Metallic radius / nm	0.235	0.128

(i)	Most transition metals in Period 4 have two electrons in the 4s orbital of their a State why copper atoms have one electron in their 4s orbitals.	atoms
		(1)

(ii) Copper atoms have more electrons than potassium atoms. Explain why the metallic radius of copper is smaller than that of potassium. (1)

WCH05

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) The standard electrode potential of the copper(II) / copper half-cell is $E^{\oplus} = +0.34 \,\text{V}$.

$$Cu^{2+}(aq) + 2e^- \rightleftharpoons Cu(s)$$

The effect of changing the concentration of the ions is calculated using the equation

$$E = E^{\oplus} + \frac{RT}{96500 \times n} \ln [Cu^{2+}(aq)]$$

where n is the number of electrons in the half-equation, T is the temperature in kelvin and *R* is the gas constant.

Calculate the electrode potential of the half-cell at 298 K when the concentration of copper(II) ions is 0.100 mol dm⁻³.

[Gas constant, $R = 8.31 \,\mathrm{J}\,\mathrm{mol}^{-1}\,\mathrm{K}^{-1}$]

(2)

DO NOT WRITE IN THIS AREA

WCH05

(c) An aqueous solution of copper(II) ions reacts with excess iodide ions to form a white precipitate of copper(I) iodide.

$$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq)$$

(i) The relevant standard electrode potentials are given.

$$Cu^{2+}(aq) + e^{-} \rightleftharpoons Cu^{+}(aq) \quad E^{\ominus} = +0.15V$$

$$I_2(aq) + 2e^- \rightleftharpoons 2I^-(aq)$$
 $E^{\ominus} = +0.54V$

Calculate the value for E_{cell}^{\oplus} for the reaction between copper(II) ions and iodide ions and suggest why the reaction takes place.

(3)

Past Paper

(ii) Many coins are made of alloys containing copper and other metals.

A coin was treated with concentrated nitric acid to convert all the copper atoms into copper(II) ions. The solution was neutralised, made up to 1.00 dm³ and mixed thoroughly. Excess potassium iodide was added to 25.0 cm³ portions of this solution and the liberated iodine was titrated with sodium thiosulfate solution of concentration 0.150 mol dm⁻³.

The mean titre was 10.90 cm³.

The equations for the reactions are

$$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_2(aq)$$

$$2S_2O_3^{2-}(aq) + I_2(aq) \rightarrow S_4O_6^{2-}(aq) + 2I^{-}(aq)$$

Calculate the mass of copper in the coin. Give your answer to **three** significant figures.

(4)

DO NOT WRITE IN THIS AREA

- (d) Silver and gold are below copper in the Periodic Table.
 - (i) The standard electrode potential values involving silver ions are given.

$$Ag^{+}(aq) + e^{-} \rightleftharpoons Ag(s)$$

$$E^{\oplus} = +0.80 \,\text{V}$$

$$Ag^{2+}(aq) + e^{-} \rightleftharpoons Ag^{+}(aq)$$

$$E^{\oplus} = +1.98 \text{ V}$$

Write the equation for the reaction involving these species that is thermodynamically feasible under standard conditions. Explain whether or not this reaction is a disproportionation.

(2)

(ii) Chloroauric acid, HAuCl₄, is used in the production of gold nanoparticles. It is formed when gold reacts with agua regia, a mixture of concentrated nitric and hydrochloric acids.

$$Au + HNO_3 + 4HCl \implies HAuCl_4 + NO + 2H_2O$$

Explain, in terms of oxidation numbers, why this is a redox reaction.

(2)

(Total for Question 22 = 15 marks)

TOTAL FOR SECTION B = 51 MARKS

SECTION C

Answer ALL the questions. Write your answers in the spaces provided.

23

Organic Nitrogen Compounds

Nitrogen is present in many organic compounds, including amines, amides and nitriles. Many useful products are made from these compounds.

Amines are used to make dyes, drugs and polymers. Phenylamine and other aromatic amines are used to manufacture azo dyes such as azo violet.

The drug phenylephrine is used as a decongestant.

Urea is a white crystalline solid which is soluble in water. It is used as a fertiliser as well as in the manufacture of biuret (used to test for compounds containing a peptide linkage) and of drugs such as barbiturates.

$$H_2N$$
 $C=O$ urea H_3N

Methyl 2-cyanopropenoate is the main component of superglue.

$$CH_2$$
 O methyl 2-cyanopropenoate CN O— CH_3

It polymerises rapidly in the presence of water.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

WCH05

(a) Azo violet is synthesised from nitrobenzene in four steps.

1-chloro-4-nitrobenzene

1-amino-4-nitrobenzene

(i) Give the mechanism for the formation of 1-chloro-4-nitrobenzene from nitrobenzene. Include an equation to show the formation of the electrophile.

(4)

DO NOT WRITE IN THIS AREA

(ii) Draw the structure of the organic species needed for Step 4.

(1)

(iii) Give the molecular formula for azo violet.

(1)

(b) Draw the structure of the product formed when phenylephrine reacts with excess ethanoyl chloride.

(2)

phenylephrine

WCH05

(c) (i)	Suggest, with the aid of a diagram, why urea, $(H_2N)_2CO$, is soluble in water.	(3)
 (ii)	Urea is made by reacting ammonia and carbon dioxide at 200°C and 200 atm Write the equation for this reaction. State symbols are not required.	pressure.
(iii)	Biuret is formed when urea is heated above its melting temperature. A molec biuret is made when two molecules of urea react together with the loss of am	
	Suggest the displayed formula of a molecule of biuret.	(1)

(iv) Barbiturate drugs are derivatives of barbituric acid.

Barbituric acid is formed from urea and a dicarboxylic acid in a condensation reaction.

Draw the **skeletal** formula of the dicarboxylic acid.

(1)

This resource was created and owned by Pearson Edexcel

(d) (i) Name the functional groups present in methyl 2-cyanopropenoate.

$$CH_2$$
 O $C-C$ CN $O-CH_3$

(2)

(ii) Methyl 2-cyanopropenoate polymerises.

Name the type of polymerisation and draw two repeat units of the polymer.

(3)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 23 = 19 marks)

TOTAL FOR SECTION C = 19 MARKS TOTAL FOR PAPER = 90 MARKS 0 (8)

DO NOT WRITE IN THIS AREA

The Periodic Table of Elements

He helium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8 Kr krypton 36	Xe xenon 54	[222] Rn radon 86	ted
(77)	19.0 F fluorine 9	35.5 CI chlorine 17	79.9 Br bromine 35	126.9 I fodine 53	[210] At astatine 85	seen repor
(16)	16.0 Oxygen 8	32.1 S sulfur 16	Se selenium 34	Te Te tellurium 52	Po polonium 84	116 have b
(15)	14.0 N nitrogen 7	31.0 P	As As arsenic 33	Sb antimony 51	209.0 Bi bismuth 83	tomic numbers 112-116 hav but not fully authenticated
(14)	12.0 C carbon 6	Si silicon 14	72.6 Ge germanium 32	5n tin 50	207.2 Pb tead 82	atomic nur but not fi
(13)	10.8 B boron 5	27.0 Al atuminium 13	69.7 Ga galtium 31	In In Indiam 49	204.4 TI thallium 81	Elements with atomic numbers 112-116 have been reported but not fully authenticated
		(12)	65.4 Zn zinc 30	Cd Cadmium 48	Hg mercury 80	
		(11)	Cu copper	Ag silver 47	197.0 Au gold 79	Rg roentgenium
		(01)	S8.7 Ni nicket	Pd palladium 46	Pt platinum 78	Ds damstachtum 110
		(6)	S8.9 Co cobalt	Rh rhodium 45	192.2 Ir iridium 77	[268] [271] Mt Ds methoenlum damstadtum 109 110
1.0 hydrogen		(8)	55.8 Fe Iron 26	Ru ruthenium 44	Os osmium 76	HS hasslum 108
		0	54.9 Mn manganese 25	[98] Tc technetium 43	Re rhenium 75	[264] Bh bohrium 107
	mass bol umber	(9)	52.0 54.9 Cr Mn chromium manganese	95.9 [98] Mo Tc molybdenum technetium 42 43	183.8 W tungsten 74	Sg seaborgium 104
Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	- E	Ta tantalum 73	[262] Db dubnium
	atoric atomic	(4)	47.9 Ti titanium	91.2 Zr zirconium 40	178.5 Hf hafnium 72	[261] Rf nutherfordum 104
		(3)	Sc scandium	o E	La* La* Lanthanum 57	AC*
(2)	9.0 Be berytlium 4	Mg magnesium 12	Calcium	Sr strontium 38	137.3 Ba barlum 56	Ra radium 88
ε	6.9 Li lithium 3	23.0 Na sodium 11	39.1 K potassium	Rb Rb rubidium 37	CS Caeslum 55	[223] Fr francium 87

321	
series	ries
anide	ide se
Lanth	Actin
•	•

67

157 **Gd** gadotinium

4

europium 63

samarium Sm 62

9

59

Pa 9

8

[147] Pm

₹ 8

P-P

Certum 28 94

DO NOT WRITE IN THIS AREA