

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6668/01)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics FP2

edexcel 6668

June 2009 6668 Further Pure Mathematics FP2 (new) Mark Scheme

Ques Num		Scheme			Marks	S
Q1	(a)	$\frac{1}{r(r+2)} = \frac{1}{2r} - \frac{1}{2(r+2)}$	$\frac{1}{2r} - \frac{1}{2(r+2)}$	B1	aef	(1)
	(b)	$\sum_{r=1}^{n} \frac{4}{r(r+2)} = \sum_{r=1}^{n} \left(\frac{2}{r} - \frac{2}{r+2} \right)$				
		$= \left(\frac{2}{1} - \frac{2}{3}\right) + \left(\frac{2}{2} - \frac{2}{4}\right) + \dots$ $\dots + \left(\frac{2}{n-1} - \frac{2}{n+1}\right) + \left(\frac{2}{n} - \frac{2}{n+2}\right)$	List the first two terms and the last two terms	M1		
		$= \frac{2}{1} + \frac{2}{2}; -\frac{2}{n+1} - \frac{2}{n+2}$	Includes the first two underlined terms and includes the final two underlined terms. $\frac{2}{1} + \frac{2}{2} - \frac{2}{n+1} - \frac{2}{n+2}$	M1 A1		
		$= 3 - \frac{2}{n+1} - \frac{2}{n+2}$				
		$= \frac{3(n+1)(n+2) - 2(n+2) - 2(n+1)}{(n+1)(n+2)}$ $= \frac{3n^2 + 9n + 6 - 2n - 4 - 2n - 2}{(n+1)(n+2)}$	Attempt to combine to an at least 3 term fraction to a single fraction and an attempt to take out the brackets from their numerator.	M1		
		$= \frac{3n^2 + 5n}{(n+1)(n+2)}$				
		$= \frac{n(3n+5)}{(n+1)(n+2)}$	Correct Result	A1	CSO A	AG (5)
						[6]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
Q2 (a)	$z^3 = 4\sqrt{2} - 4\sqrt{2}i$, $-\pi < \theta$,, π		
	$ \begin{array}{c} 4\sqrt{2} \\ 0 \\ \text{arg } z \\ 4\sqrt{2} \\ (4\sqrt{2}, -4\sqrt{2}) \end{array} $		
	$r = \sqrt{\left(4\sqrt{2}\right)^2 + \left(-4\sqrt{2}\right)^2} = \sqrt{32 + 32} = \sqrt{64} = 8$ $\theta = -\tan^{-1}\left(\frac{4\sqrt{2}}{4\sqrt{2}}\right) = -\frac{\pi}{4}$	A valid attempt to find the modulus and argument of $4\sqrt{2} - 4\sqrt{2}i$.	M1
	$z^3 = 8\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right)$		
	So, $z = \left(8\right)^{\frac{1}{3}} \left(\cos\left(\frac{-\frac{\pi}{4}}{3}\right) + i\sin\left(\frac{-\frac{\pi}{4}}{3}\right)\right)$	Taking the cube root of the modulus and dividing the argument by 3.	M1
	$\Rightarrow z = 2\left(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right)$	$2\left(\cos\left(-\frac{\pi}{12}\right) + i\sin\left(-\frac{\pi}{12}\right)\right)$	A1
	11150, 2, 0(005(4), 15111(4))	ng or subtracting 2π to the ment for z^3 in order to find other roots.	M1
	$\Rightarrow z = 2\left(\cos\frac{7\pi}{12} + i\sin\frac{7\pi}{12}\right)$	y one of the final two roots	A1
	and $z = 2\left(\cos\left(\frac{-3\pi}{4}\right) + i\sin\left(\frac{-3\pi}{4}\right)\right)$	Both of the final two roots.	A1
	Special Case 1 : Award SC: M1M1A1M1A0A0 for ALL three of $2(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4})$ and $2(\cos(\frac{-7\pi}{12}) + i\sin(\frac{-7\pi}{12}))$. Special Case 2: If r is incorrect (and not equal to 8) and candidate	states the brackets	[6]
	() correctly then give the first accuracy mark ONLY where this is applicable.		

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
Q3	$\sin x \frac{\mathrm{d}y}{\mathrm{d}x} - y \cos x = \sin 2x \sin x$	
	$\frac{dy}{dx} - \frac{y \cos x}{\sin x} = \frac{\sin 2x \sin x}{\sin x}$ An attempt to divide every term in the differential equation by $\sin x$ Can be implied	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y\cos x}{\sin x} = \sin 2x$	
	Integrating factor = $e^{\int -\frac{\cos x}{\sin x} dx}$ = $e^{-\ln \sin x}$ = $e^{-\ln \sin x}$ or $e^{\int \pm \frac{\cos x}{\sin x} (dx)}$ or $e^{\int \pm \frac{\cos x}{\sin x} (dx)}$ or $e^{-\ln \sin x}$ or $e^{\ln \csc x}$	
	$= \frac{1}{\sin x} \frac{1}{\sin x} \text{ or } (\sin x)^{-1} \text{ or } \csc x$	A1 aef
	$\left(\frac{1}{\sin x}\right)\frac{\mathrm{d}y}{\mathrm{d}x} - \frac{y\cos x}{\sin^2 x} = \frac{\sin 2x}{\sin x}$	
	$\frac{d}{dx}\left(\frac{y}{\sin x}\right) = \sin 2x \times \frac{1}{\sin x}$ $\frac{d}{dx}\left(y \times \text{their I.F.}\right) = \sin 2x \times \text{their I}$.F M1
	$\frac{d}{dx}\left(\frac{y}{\sin x}\right) = 2\cos x$ $\frac{d}{dx}\left(\frac{y}{\sin x}\right) = 2\cos x o$ $\frac{y}{\sin x} = \int 2\cos x (dx)^{2}$	IAI
	$\frac{y}{\sin x} = \int 2\cos x \mathrm{d}x$	
	$\frac{y}{\sin x} = 2\sin x + K$ A credible attempt to integrate the RHS with/without + K	dddM1
	$y = 2\sin^2 x + K\sin x$ $y = 2\sin^2 x + K\sin x$	A1 cao [8]

Mathematics FP2 www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Past Paper (Mark Scheme)

Question Number	Scheme		Marks
Q4	$A = \frac{1}{2} \int_{0}^{2\pi} \left(a + 3\cos\theta \right)^{2} d\theta$	Applies $\frac{1}{2} \int_{0}^{2\pi} r^{2} (d\theta)$ with correct limits. Ignore $d\theta$.	B1
	$(a+3\cos\theta)^2 = a^2 + 6a\cos\theta + 9\cos^2\theta$		
	$= a^2 + 6a\cos\theta + 9\left(\frac{1+\cos 2\theta}{2}\right)$	$\cos^2 \theta = \frac{\pm 1 \pm \cos 2\theta}{2}$ Correct underlined expression.	M1 A1
	$A = \frac{1}{2} \int_{0}^{2\pi} \left(a^{2} + 6a \cos \theta + \frac{9}{2} + \frac{9}{2} \cos 2\theta \right) d\theta$		
	$= \left(\frac{1}{2}\right) \left[a^2\theta + 6a\sin\theta + \frac{9}{2}\theta + \frac{9}{4}\sin 2\theta\right]_0^{2\pi}$	Integrated expression with at least 3 out of 4 terms of the form $\pm A\theta \pm B\sin\theta \pm C\theta \pm D\sin2\theta$. Ignore the $\frac{1}{2}$. Ignore limits. $a^2\theta + 6a\sin\theta + \text{correct ft}$ integration. Ignore the $\frac{1}{2}$. Ignore limits.	M1* A1 ft
	$= \frac{1}{2} \left[\left(2\pi a^2 + 0 + 9\pi + 0 \right) - \left(0 \right) \right]$		
	$=\pi a^2 + \frac{9\pi}{2}$	$\pi a^2 + \frac{9\pi}{2}$	A1
	Hence, $\pi a^2 + \frac{9\pi}{2} = \frac{107}{2}\pi$	Integrated expression equal to $\frac{107}{2}\pi$.	dM1*
	$a^2 + \frac{9}{2} = \frac{107}{2}$		
	$a^2 = 49$		
	As $a > 0$, $a = 7$	a = 7	A1 cso [8]
	Some candidates may achieve $a = 7$ from incorrect working. Such candidates will not get full marks		

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

			1		
Question Number	Scheme			Mark	S
Q5	$y = \sec^2 x = (\sec x)^2$				
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(\sec x)^{1}(\sec x \tan x) = 2\sec^{2} x \tan x$	Either $2(\sec x)^{1}(\sec x \tan x)$ or $2\sec^{2} x \tan x$	B1	aef	
	Apply product rule: $\begin{cases} u = 2\sec^2 x & v = \tan x \\ \frac{du}{dx} = 4\sec^2 x \tan x & \frac{dv}{dx} = \sec^2 x \end{cases}$	Two tames added with an act			
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 4\sec^2 x \tan^2 x + 2\sec^4 x$	Two terms added with one of either $A \sec^2 x \tan^2 x$ or $B \sec^4 x$ in the correct form. Correct differentiation	M1 A1		
	$= 4\sec^2 x(\sec^2 x - 1) + 2\sec^4 x$				
	Hence, $\frac{d^2y}{dx^2} = 6\sec^4 x - 4\sec^2 x$	Applies $\tan^2 x = \sec^2 x - 1$ leading to the correct result.	A 1	AG	(4)
(b)	$y_{\frac{\pi}{4}} = (\sqrt{2})^2 = \underline{2}, \ \left(\frac{dy}{dx}\right)_{\frac{\pi}{4}} = 2(\sqrt{2})^2 (1) = \underline{4}$	Both $y_{\frac{\pi}{4}} = \underline{2}$ and $\left(\frac{dy}{dx}\right)_{\frac{\pi}{4}} = \underline{4}$	B1		• •
	$\left(\frac{d^2y}{dx^2}\right)_{\frac{\pi}{4}} = 6\left(\sqrt{2}\right)^4 - 4\left(\sqrt{2}\right)^2 = 24 - 8 = 16$	Attempts to substitute $x = \frac{\pi}{4}$ into both terms in the expression for $\frac{d^2y}{dx^2}.$	M1		
	$\frac{d^3y}{dx^3} = 24\sec^3x(\sec x \tan x) - 8\sec x(\sec x \tan x)$	Two terms differentiated with either $24\sec^4 x \tan x$ or $-8\sec^2 x \tan x$ being correct	M1		
	$= 24\sec^4 x \tan x - 8\sec^2 x \tan x$				
	$\left(\frac{d^2y}{dx^2}\right)_{\frac{\pi}{4}} = 24\left(\sqrt{2}\right)^4(1) - 8\left(\sqrt{2}\right)^2(1) = 96 - 16 = 80$	$\left(\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}\right)_{\frac{\pi}{4}} = \underline{80}$	B1		
	$\sec x \approx 2 + 4\left(x - \frac{\pi}{4}\right) + \frac{16}{2}\left(x - \frac{\pi}{4}\right)^2 + \frac{80}{6}\left(x - \frac{\pi}{4}\right)^3 + \dots$	Applies a Taylor expansion with at least 3 out of 4 terms ft correctly.	M1		
	$\left\{\sec x \approx 2 + 4\left(x - \frac{\pi}{4}\right) + 8\left(x - \frac{\pi}{4}\right)^2 + \frac{40}{3}\left(x - \frac{\pi}{4}\right)^3 + \ldots\right\}$	Correct Taylor series expansion.	A1		(6)
					[10]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question			
Number	Scheme		Marks
Q6	$w = \frac{z}{z+i} \; , z = -i$		
(a)	$w(z+i) = z \implies wz + iw = z \implies iw = z - wz$ $\implies iw = z(1-w) \implies z = \frac{iw}{(1-w)}$	Complete method of rearranging to make z the subject.	M1
		$z = \frac{1w}{(1-w)}$	A1 aef
	$ z = 3 \implies \left \frac{\mathrm{i} w}{1 - w} \right = 3$	Putting $ z $ in terms of their $ z = 3$	dM1
	$\begin{cases} i w = 3 1 - w \implies w = 3 w - 1 \implies w ^2 = 9 w - 1 ^2 \\ \implies u + iv ^2 = 9 u + iv - 1 ^2 \end{cases}$		
	$\Rightarrow u^2 + v^2 = 9\left[(u-1)^2 + v^2\right]$	Applies $w = u + iv$, and uses Pythagoras correctly to get an equation in terms of u and v without any i's.	ddM1
	$\begin{cases} \Rightarrow u^2 + v^2 = 9u^2 - 18u + 9 + 9v^2 \\ \Rightarrow 0 = 8u^2 - 18u + 8v^2 + 9 \end{cases}$	Correct equation.	A1
	$\Rightarrow 0 = u^2 - \frac{9}{4}u + v^2 + \frac{9}{8}$	Simplifies down to $u^2 + v^2 \pm \alpha u \pm \beta v \pm \delta = 0.$	dddM1
	$\Rightarrow \left(u - \frac{9}{8}\right)^2 - \frac{81}{64} + v^2 + \frac{9}{8} = 0$		
	$\Rightarrow \left(u - \frac{9}{8}\right)^2 + v^2 = \frac{9}{64}$		
	{Circle} centre $\left(\frac{9}{8}, 0\right)$, radius $\frac{3}{8}$	One of centre or radius correct. Both centre and radius correct.	A1 A1 (8)
(b)		Circle indicated on the Argand diagram in the correct position in follow through quadrants. Ignore plotted coordinates.	B1ft
		Region outside a circle indicated only.	B1
			(2)
			[10]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Mark	.S
Q7 (a)	$y = x^2 - a^2 , a > 1$ Correct Shape. Ignore cusp Correct coordinate			
(b)	$ x^{2} - a^{2} = a^{2} - x, \ a > 1$ $\{ x > a\}, x^{2} - a^{2} = a^{2} - x$ $\Rightarrow x^{2} + x - 2a^{2} = 0$ $x^{2} - a^{2} = a^{2} - x$: M1	aef	(2)
	$\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4(1)(-2a^2)}}{2}$ Applies the quadratic formula of completes the square in order to find the root	o M1		
	$\Rightarrow x = \frac{-1 \pm \sqrt{1 + 8a^2}}{2}$ Both correct "simplified down" solution	Ι ΔΙ		
	$\{ x < a\}, \qquad -x^2 + a^2 = a^2 - x$ $-x^2 + a^2 = a^2 - x$ $x^2 - a^2 = x - a$	r M1	aef	
	$\left\{ \Rightarrow x^2 - x = 0 \Rightarrow x(x - 1) = 0 \right\}$			
	$\Rightarrow x = 0, 1$ $x = 0$ $x = 0$			(6)
(c)	$ x^2 - a^2 > a^2 - x$, $a > 1$			
	$\left x^{2} - a^{2} \right > a^{2} - x , \ a > 1$ $x < \frac{-1 - \sqrt{1 + 8a^{2}}}{2} \text{{or}} x > \frac{-1 + \sqrt{1 + 8a^{2}}}{2} \qquad x \text{ is less than their least value}$ $x = x \text{ is greater than their maximum value}$	n B1		
	$\{\text{or}\} 0 < x < 1$ $\text{For}\{ x < a\}, \text{Lowest} < x < \text{Highest} $ $0 < x < 1$			(4)
				[12]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Mark	S
Q8 (a)	$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 2e^{-t}, x = 0, \frac{dx}{dt} = 2 \text{ at } t = 0.$ $AE, m^2 + 5m + 6 = 0 \implies (m+3)(m+2) = 0$			
	$\Rightarrow m = -3, -2.$ $Ae^{m_1 t} + Be^{m_2 t}, W$	where $m \neq m$.	M1	
	So, $x_{CF} = Ae^{-x} + Be^{-x}$	$Ae^{-3t} + Be^{-2t}$	A1	
	$\left\{ x = k e^{-t} \implies \frac{dx}{dt} = -k e^{-t} \implies \frac{d^2 x}{dt^2} = k e^{-t} \right\}$			
	Substitute $\Rightarrow k e^{-t} + 5(-k e^{-t}) + 6k e^{-t} = 2e^{-t} \Rightarrow 2k e^{-t} = 2e^{-t}$ differential equation $\Rightarrow k = 1$	question.	M1	
	$\left\{ \text{So, } x_{\text{PI}} = e^{-t} \right\}$	Finds $k = 1$.	A1	
	So, $x = Ae^{-3t} + Be^{-2t} + e^{-t}$ their	$x_{\rm CF}$ + their $x_{\rm PI}$	M1*	
	dt == She 2Be e	differentiating $x_{\rm PI}$ and their $x_{\rm PI}$	dM1*	
	$ t-0, x-0 \Rightarrow t-0+D+1 $	$\frac{dx}{dt} = 0, x = 0 \text{ to } x$ $\frac{dx}{dt} = 2 \text{ to } \frac{dx}{dt} \text{ to eous equations.}$	ddM1*	
	$\begin{cases} 2A + 2B = -2 \\ -3A - 2B = 3 \end{cases}$			
	$\Rightarrow A = -1, B = 0$			
	So, $x = -e^{-3t} + e^{-t}$	$x = -e^{-3t} + e^{-t}$	A1 cao	(8)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Ousstian			T
Question Number	Scheme		Marks
(b)	$x = -e^{-3t} + e^{-t}$ $\frac{dx}{dt} = 3e^{-3t} - e^{-t} = 0$	Differentiates their x to give $\frac{dx}{dt}$ and puts $\frac{dx}{dt}$ equal to 0.	M1
	$3 - e^{2t} = 0$ $\Rightarrow t = \frac{1}{2} \ln 3$	A credible attempt to solve. $t = \frac{1}{2} \ln 3$ or $t = \ln \sqrt{3}$ or awrt 0.55	dM1* A1
	So, $x = -e^{-\frac{3}{2}\ln 3} + e^{-\frac{1}{2}\ln 3} = -e^{\ln 3^{-\frac{3}{2}}} + e^{\ln 3^{-\frac{1}{2}}}$ $x = -3^{-\frac{3}{2}} + 3^{-\frac{1}{2}}$	Substitutes their <i>t</i> back into <i>x</i> and an attempt to eliminate out the ln's.	ddM1
	$= -\frac{1}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{2}{3\sqrt{3}} = \frac{2\sqrt{3}}{9}$	uses exact values to give $\frac{2\sqrt{3}}{9}$	A1 AG
	$\frac{d^2x}{dt^2} = -9e^{-3t} + e^{-t}$	Finds $\frac{d^2x}{dt^2}$	
	At $t = \frac{1}{2} \ln 3$, $\frac{d^2 x}{dt^2} = -9 e^{-\frac{3}{2} \ln 3} + e^{-\frac{1}{2} \ln 3}$	and substitutes their t into $\frac{d^2x}{dt^2}$	dM1*
	$= -9(3)^{-\frac{3}{2}} + 3^{-\frac{1}{2}} = -\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = -\frac{3}{\sqrt{3}} + \frac{1}{\sqrt{3}}$		
	As $\frac{d^2x}{dt^2} = -\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} = \left\{-\frac{2}{\sqrt{3}}\right\} < 0$ then x is maximum.	$-\frac{9}{3\sqrt{3}} + \frac{1}{\sqrt{3}} < 0 \text{ and maximum}$ conclusion.	A1
	uicii x is maximum.	Concrusion.	(7)
			[15]