

Mark Scheme (Results)

January 2016

Pearson Edexcel International A Level in Further Pure Mathematics 1 (WFM01/01)

Winter 2016

Past Paper (Mark Scheme)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics F1
WFM01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code IA043231
All the material in this publication is copyright
© Pearson Education Ltd 2016

WFM01

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

Mathematics F1 www.mystudybro.com Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c) = (x+p)(x+q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
:
$$\left(x \pm \frac{b}{2} \right)^2 \pm q \pm c = 0, \quad q \neq 0$$
, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \to x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \to x^{n+1})$

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

WFM01

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WFM01

January 2016 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme				Notes	Marks		
1. (a)	(3+2i)	(3+2i)(1-i) = 3-3i+2i+2			At least 3 correct terms	M1		
		= 5 - i		(Correct	cao t answer only scores both marks)	A1	(2)	
(b)		$w^* = 1 + i$			Understanding that $w^* = 1 + i$	B1	(2)	
		$\left\{\frac{z}{w^*} = \right\} \frac{3+2i}{1+i} \times \frac{1-i}{1-i}$]	Multiplies top and bottom by the conjugate of the denominator	M1		
	$\left\{=\frac{3-}{}\right\}$	$\left. \frac{3i+2i+2}{1+1} \right\} = \frac{5}{2} - \frac{1}{2}i$			$\frac{5}{2} - \frac{1}{2}i$ or $2.5 - 0.5i$	A1		
	(.		C1	44.a.c. P.	and non-Dutherman d	M1	(3)	
(c)	$\left\{ \left 3+2i\right \right. \right.$	$+ k \Big = \sqrt{53} \Longrightarrow \Big\} \left(3+k\right)^2 + 4 = 53$	Substi	tutes for	z and uses Pythagoras correctly.	M1;		
					Correct equation in any form	AI		
	($(3+k)^2 + 4 = 53 \Rightarrow (3+k)^2 = 49 \Rightarrow k$; =		dependent on			
	(•			the previous M mark	dM1		
	($(3+k)^2 + 4 = 53 \Rightarrow k^2 + 6k - 40 = 0$	Attempt to solve for k					
		$\Rightarrow (k-4)(k+10) = 0 \Rightarrow k =$						
		$\{k=\}\ 4,\ -10$			Both $\{k = \}4, -10$	A1		
							(4)	
			0 "	1 37 4			9	
			Questio					
1. (b)	Note	Alternative acceptable method:	$\left(\frac{z}{w^*}\right)$	$\left \frac{w}{w}\right = \frac{zv}{w}$	$\frac{w}{1^2} = \frac{5-1}{2} = \frac{5}{2} - \frac{1}{2}i$			
(b)	Note	Give A0 for writing down $\frac{5-i}{2}$ w	vithout r	eference	e to $\frac{5}{2} - \frac{1}{2}i$ or $2.5 - 0.5i$			
	Note	Give B0M0A0 for writing down $\frac{5}{2}$	$\frac{5}{2} - \frac{1}{2}i$ for	rom no v	working in part (b).			
	Note	Give B0M1A0 for $\frac{3+2i}{1-i} \times \frac{1+i}{1+i}$	Give B0M1A0 for $\frac{3+2i}{1-i} \times \frac{1+i}{1+i}$					
	Note	Simplifying a correct $\frac{5}{2} - \frac{1}{2}i$ in 1	part (b)	to a final	l answer of $5-i$ is A0			
(c)	Note	Give final A0 if a candidate rejects	s one of	k = 4 or	k = -10		KAKKKO	
(b)	ALT	$\frac{3+2i}{1+i} = a + bi \mathbf{B1};$						
		$\Rightarrow 3 + 2i = (a + bi)(1 + i) \Rightarrow 3 = a$	-b, 2 =	$a+b \Rightarrow$	$a =, b =$ for M1 and $\frac{5}{2} - \frac{1}{2}$	i for A1		

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number		Scheme		Notes	Marks			
2.		$f(x) = x^2 - \frac{3}{\sqrt{x}} - \frac{4}{3x^2}$						
(a)		f(1.6) = -0.3325 f(1.7) = 0.1277		Attempts to evaluate both $f(1.6)$ and $f(1.7)$ and either $f(1.6) = awrt -0.3$ or $f(1.7) = awrt 0.1$	M1			
	•	ange (positive, negative) (as auous) therefore (a root) α is x = 1.6 and $x = 1.7$	` '	Both $f(1.6) = awrt -0.3$ and $f(1.7) = awrt 0.1$, sign change and conclusion.	A1 cso			
					(2)			
(b)	f'(<i>x</i>	$(x) = 2x + \frac{3}{2}x^{-\frac{3}{2}} + \frac{8}{3}x^{-3}$	$x^2 \to \pm A$	At least one of either x or $-\frac{3}{\sqrt{x}} \to \pm Bx^{-\frac{3}{2}}$ or $-\frac{4}{3x^2} \to \pm Cx^{-3}$	M1			
` /	`	2 3		where <i>A</i> , <i>B</i> and <i>C</i> are non-zero constants.				
				At least 2 differentiated terms are correct	A1			
				Correct differentiation	A1			
	$\left\{\alpha \simeq 1.6 - \frac{f(1.6)}{f'(1.6)}\right\} \Rightarrow \alpha \simeq 1.6 - \frac{-0.332541}{4.592200}$ dependent on the previous M mark Valid attempt at Newton-Rapshon using their values of f(1.6) and f'(1.6)				dM1			
		,		dependent on all 4 previous marks				
		$\{\alpha = 1.672414 \Rightarrow\} \alpha =$	1.672	1.672 on their first iteration	A1 cso cao			
	(Ignore any subsequent applications) Correct derivative followed by correct answer scores full marks in (b)							
			•	answer scores full marks in (b) g scores no marks in (b)				
		Correct answer wi	tti <u>iio</u> workiii	g scores no marks m (b)	(5)			
					7			
			Onest	ion 2 Notes				
2 (a)	A 1	a a mus at a a lution and u	Quest	1011 2 110tes				
2. (a)	A1	conclusion. Reference to	change of sig	wrt -0.3 and $f(1.7) = awrt 0.1$ along with a $f(1.6) \times f(1.7) < 0$ or a diagram or < 0	0 and > 0 or			
_		one positive, one negative are sufficient reasons. There must be a (minimal, not incorrect) conclusion, eg. root is in between 1.6 and 1.7, hence root is in interval, QED and a square are all acceptable. Ignore the presence or absence of any reference to continuity. A minimal acceptable reason and conclusion is "change of sign, hence root".						
(b)	Note		•	eir estimate of α with no evidence of apply	ing			
-	the NR formula is final dM0A0. Note If the answer is incorrect it must be clear that we must see evidence of both f(1.6) a							
	being used in the Newton-Raphson process. So that just $1.6 - \frac{f(1.6)}{f'(1.6)}$ with an incorrect							
	and no other evidence scores M0.							

ybro.com Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

W	F١	νO,	1
Vν	ГΒ	viu	

Question Number		Scheme Notes			Marks		
3.		$x^2 - 2x + 3$	3 = 0				
(a) (i)		$\alpha + \beta = 2$, $\alpha\beta = 3$ Both $\alpha + \beta = 2$, $\alpha\beta = 3$					
(ii)	α^2	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$ Use of a correct identity for $\alpha^2 + \beta^2$ (May be implied by their work)				M1	
		$=2^2-6=-2$ *		-2	2 from a correct solution only	A1 *	
(iii)	\	$(\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = \dots$ $(\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha\beta) = \dots$ $(3 - 3(3)(2) = -10$	U		f a correct identity for $\alpha^3 + \beta^3$ (May be implied by their work)	M1	
		3 - 3(3)(2) = -10 $3(-2 - 3) = -10$		-10) from a correct solution only	A1	
		,				(5)	
(b)(i)	$\left(\alpha^2 + \beta^2\right)^2$	$-2(\alpha\beta)^{2} = \alpha^{4} + 2(\alpha\beta)^{2} + \beta^{4} - 2(\alpha\beta)^{2}$	$\beta^4 - 2(\alpha\beta)^2 = \alpha^4 + \beta^4$ Correct algebraic proof				
(ii)	Sum = α^3	$+\beta^3 - (\alpha + \beta) = -10 - 2 = -12$ Correct working without using explicit roots leading to a correct sum.				B1	
	Product =	$(\alpha^3 - \beta)(\beta^3 - \alpha) = (\alpha\beta)^3 - (\alpha^4 + \beta^4) +$	- αβ		Attempts to expand giving at least one term	M1	
		$= (\alpha \beta)^3 - ((\alpha^2 + \beta^2)^2 - 2(\alpha \beta)^2) +$	- αβ				
		=27-(4-18)+3=44			Correct product	A1	
	$\left\{x^2 - \operatorname{sum}\right\}$	$x + \text{product} = 0 \Longrightarrow \begin{cases} x^2 + 12x + 44 = 0 \end{cases}$)	1	Applying $x^2 - (\text{sum})x + \text{product}$ $x^2 + 12x + 44 = 0$	M1 A1	
						(6)	
		Oue	estion 3 I	Note	S	11	
(a) (i)	1st A1	$\alpha + \beta = -2$, $\alpha\beta = 3 \Rightarrow \alpha^2 + \beta^2 =$					
(b) (ii)	1st A1	$\alpha + \beta = -2, \alpha\beta = 3 \Rightarrow (\alpha\beta)^3 - (\alpha\beta)^3$					
(a)	Note	Applying $1+\sqrt{2}i$, $1-\sqrt{2}i$ explicitly in part (a) will score B0M0A0M0A0					
(b)	Note	Applying $1+\sqrt{2}i$, $1-\sqrt{2}i$ explicitly in part (b) will score a maximum of B1B0M0A0M1A0					
(a)	Note	Finding $\alpha + \beta = 2$, $\alpha\beta = 3$ by writing down or applying $1 + \sqrt{2}i$, $1 - \sqrt{2}i$ but then writing					
		$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 2^2 - 6 = -6$	-2 and α	$e^3 + \mu$	$\beta^{3} = (\alpha + \beta)^{3} - 3\alpha\beta(\alpha + \beta) = 8 -$	3(3)(2) = -10	
		scores B0M1A0M1A0 in part (a). So they use the method as detailed on the	uch candi e scheme	idate	es will be able to score all marks	in part (b) if	
(b)(ii)	Note	A correct method leading to a candid	ate statin	ig p	= 1, $q = 12$, $r = 44$ without writing	ing a final	
		answer of $x^2 + 12x + 44 = 0$ is final 1	M1A0				

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number		Scheme		Notes	Marks	
4. (a)	Rotation			Rotation	B1	
	225 degree	s (anticlockwise)		225 degrees or $\frac{5\pi}{4}$ (anticlockwise) or 135 degrees clockwise	B1 o.e.	
			This ma	ark is dependent on at least one of the		
	about (0, 0))		previous B marks being awarded. Dut (0, 0) or about O or about the origin	dB1	
	Note: Give	e 2 nd B0 for 225 degrees clock				(3)
(b)		$\{n=\}$ 8		8	B1 cao	
		()				(1)
(c) Way 1	$\mathbf{A}^{-1} =$	$ \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \text{ or } \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix} $	$\begin{pmatrix} -\frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{pmatrix}$	Correct matrix	B1	
	$\Big\{ \mathbf{B} = \mathbf{C}\mathbf{A}$	$\begin{pmatrix} -1 \\ -3 \\ -5 \end{pmatrix} = \begin{pmatrix} 2 \\ -3 \\ -5 \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix}$	$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \dots$	Attempts CA ⁻¹ and finds at least one element of the matrix B	M1	
		$= \begin{pmatrix} \sqrt{2} & -3\sqrt{2} \\ -\sqrt{2} & 4\sqrt{2} \end{pmatrix}$	dep	pendent on the previous B1M1 marks At least 2 correct elements	A1	
	$\begin{pmatrix} -\sqrt{2} & 4\sqrt{2} \end{pmatrix}$			All elements are correct	A1	
			l			(4)
(c) Way 2	${\mathbf B}{\mathbf A} =$	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} $	$ \begin{pmatrix} 2 & 4 \\ -3 & -5 \end{pmatrix} $	Correct statement using 2×2 matrices. All 3 matrices must contain four elements. (Can be implied). (Allow one slip in copying down C)	B1	
	_	$\frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} = 2, \frac{a}{\sqrt{2}} - \frac{b}{\sqrt{2}} = 4$ $-\frac{c}{\sqrt{2}} - \frac{d}{\sqrt{2}} = -3, \frac{c}{\sqrt{2}} - \frac{d}{\sqrt{2}} = -4$ Is at least one of either a or b .	-5	Applies $\mathbf{BA} = \mathbf{C}$ and attempts simultaneous equations in a and b or c and d and finds at least one of either a or b or c or d	M1	
		$= \begin{pmatrix} \sqrt{2} & -3\sqrt{2} \\ -\sqrt{2} & 4\sqrt{2} \end{pmatrix}$	dep	endent on the previous B1M1 marks At least 2 correct elements	A1	
	or $a = \sqrt{a}$	$\sqrt{2}, b = -3\sqrt{2}, c = -\sqrt{2}, d = 4\sqrt{2}$	$\sqrt{2}$	All elements are correct	A1	
						(4)
			Onastia	n 4 Notes]	8
4. (a)	Note	Condone "Turn" for the 1 st		n 4 110162		
(c)	Note Condone "Turn" for the 1" B1 mark. Note You can ignore previous working prior to a candidate finding CA ⁻¹					
		(i.e. you can ignore the state				
	A1 A1	You can allow equivalent m	natrices/value	es, e.g. $\begin{pmatrix} \frac{2}{\sqrt{2}} & -\frac{6}{\sqrt{2}} \\ -\frac{2}{\sqrt{2}} & \frac{8}{\sqrt{2}} \end{pmatrix}$		

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number		Scheme		Notes	S	Marks	
5. (a)	$\left\{ \sum_{n=1}^{n} 8r^{3} - 3r \right\} = 8\left(\frac{1}{4}n^{2}(n+1)^{2}\right) - 3\left(\frac{1}{2}n(n+1)\right)$			Attempt to substitute at least one of the standard formulae correctly into the given expression		M1	
	(r=1			(Correct expression	A1	
		$=\frac{1}{2}n(n+1)\left[4n(n+1)-3\right]$	Atte	dependent on the part to factorise at lease used both standard to	ast $n(n+1)$ having	dM1	
		$= \frac{1}{2}n(n+1)[4n^2+4n-3]$		{this step does not h	ave to be written}		
		$= \frac{1}{2} n(n+1)(2n+3)(2n-1)$		Correct complet	tion with no errors	A1 cso	
		1				(4)	
(b)	Let $f(n)$	$= \frac{1}{2}n(n+1)(2n+3)(2n-1), g(n) = \frac{8}{4}$	$n^2(n+1)$	$(n)^2 \& h(n) = \pm \frac{3}{2} n(n + \frac{3}{2} n)$	1)		
	10	1 1			mpts to find either		
	$\left\{\sum_{i=1}^{n} 8r^3 \right\}$	$-3r = \frac{1}{2}(10)(11)(23)(19) - \frac{1}{2}(4)(5)(1$	1)(7)		and f(4) or f(5)	M1	
	(r=3	$ \left\{ = 24035 - 770 = 23265 \right\} $		O \	and g(4) or g(5) and h(4) or h(5)		
	10	,		. , ,			
	$\sum k^{2}$	$r^2 = k \left(\frac{1}{6} (10)(11)(21) - \frac{1}{6} (4)(5)(9) \right) \left\{ = \frac{1}{6} (4)(5)(9) - \frac{1}{6} (4)(5)(9) \right\}$	= k(385)	-30) = 355k	Correct attempt	M1	
	r=5	$r = k(5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2) = 35$			at $\sum_{r=5}^{10} kr^2$	M1	
				ependent on both pr			
	23265+3	$55k = 22768 \implies k = -\frac{497}{355} \text{ or } -\frac{7}{5}$		es both previous meth n a linear equation in	<i>k</i> using 22768 and	ddM1	
		355 5	solves to give $k =$ $k = -\frac{497}{355} \text{ or } -\frac{7}{5} \text{ or } -1.4 \text{ or equivalent}$				
						A1 o.e.	
						(4)	
		C	Duestion	1 5 Notes		8	
5. (a)	Note	Applying eg. $n = 1$, $n = 2$ to the prin			g the standard form	ula	
		to give $a = 2$, $b = -1$ is M0A0M0A0					
	Alt	Alternative Method: Using $2n^4 + 4n^3 + \frac{1}{2}n^2 - \frac{3}{2}n = an^4 + (b + \frac{5}{2}a)n^3 + (\frac{5}{2}b + \frac{3}{2}a)n^2 + \frac{3}{2}bn$ o.e.					
	dM1						
	A1 cso	******************	*****	*****************	· · · · · · · · · · · · · · · · · · ·		
(b)	Note $f(10) - f(5) = \frac{1}{2}(10)(11)(23)(19) - \frac{1}{2}(5)(6)(13)(9) = 24035 - 1755 = 22280$						
	Note	Applying $\sum_{r=5}^{10} 8r^3 - \sum_{r=5}^{10} 3r + k \sum_{r=5}^{10} r^2$	gives 6	either			
		• (24200 – 165 + 385k) – (80	00-30	+30k) = 22768			
		23400 - 135 + 355k = 2276	8		******	*****	
	Note	985 + 25k + 1710 + 36k + 2723 + 49	k + 407			265 + 355k	
		is fine for the first two M1M1 marks	s with the	ne final ddM1A1 lead	ling to k = -1.4		

www.mystudybro.comThis resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics F1

Question Number	Scheme		Notes	Marks			
6. (a)	$y = \frac{c^2}{x} = c^2 x^{-1} \Rightarrow \frac{dy}{dx} = -c^2 x^{-2} = -\frac{c^2}{x^2}$ $xy = c^2 \Rightarrow x \frac{dy}{dx} + y = 0$	Correc	$\frac{dy}{dx} = k x^{-2}$ t use of product rule. The sum of yo terms, one of which is correct.	M1			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}p} \cdot \frac{\mathrm{d}p}{\mathrm{d}x} = -\frac{c}{p^2} \cdot \frac{1}{c}$	TW.	their $\frac{dy}{dp} \times \frac{1}{\text{their}} \frac{dx}{dp}$				
	$\frac{dy}{dx} = -c^2 x^{-2} \text{ or } x \frac{dy}{dx} + y = 0 \text{ or } \frac{dy}{dx} = -\frac{c}{p^2}$	$-\frac{1}{c}$	Correct differentiation	A1			
	$So, m_N = p^2$		erpendicular gradient rule where n_T) is found from using calculus.	M1			
	$y - \frac{c}{p} = p^2 (x - cp)$ or $y = p^2 x + \frac{c}{p} - cp^3$ $py - p^3 x = c(1 - p^4)^*$	where	Correct line method m_N is found from using calculus.	M1			
	$py - p^3x = c\left(1 - p^4\right) *$			A1*			
4.5				(5)			
(b)	$y = \frac{c^2}{x} \Rightarrow p \frac{c^2}{x} - p^3 x = c \left(1 - p^4 \right) \text{ or } x = \frac{c^2}{y} \Rightarrow py - p^3 \frac{c^2}{y} = c \left(1 - p^4 \right)$ Substitutes $y = \frac{c^2}{p}$ or $x = \frac{c^2}{y}$ into the printed equation						
	to obtain an equation in either.	x, c and p only or	in y , c and p only.				
	$p^{3}x^{2} + c(1-p^{4})x - c^{2}p = 0$	or $py^2 - c(1 - \frac{1}{2})$	$(p^4)y - c^2p^3 = 0$				
	$(x-cp)(p^3x+c)=0 \Rightarrow x=$	or $\left(y - \frac{c}{p}\right)\left(yp\right)$	$+cp^4$)=0 \Rightarrow y=	M1			
	Correct attempt of solving a 37						
	$Q\left(-\frac{c}{p^3}, -cp^3\right)$ Can		At least one correct coordinate.	A1			
	l l	un-simplified.	Both correct coordinates	A1			
	Note: If Q is stated as coordinates then the	ey must be correc	t for the final A1 mark.	(4)			
(b) ALT	Let Q be $\left(cq, \frac{c}{q}\right)$ so	4		M1			
	Substitutes $x = cq$ or $y = \frac{c}{q}$ into the printed equation to obtain an equation in only p , c and q .						
	$cp - p^{3}cq^{2} = cq - cqp^{4} \Rightarrow p - q - p^{3}q^{2} + qp^{4} = 0$						
	$(p-q)(1+p^3q)=0 \Rightarrow q=\dots$						
	Correct attempt to find q in terms of p						
	$Q\left(-\frac{c}{r^3}, -cp^3\right)$ Can	be simplified or	At least one correct coordinate	A1			
	p ³ ,)	un-simplified.	Both correct coordinates	A1			
				(4)			
				9			

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme			Notes	Marks	
7.	$f(x) = x^4 - 3x^3 - 15x^2 + 99x - 130$					
(a)	3 – 2i is also a root			3 – 2i	B1	
	Atter			expand $(x-(3+2i))(x-(3-2i))$		
		or any v	valid met	hod to establish the quadratic factor	M1	
	$x^2 - 6x + 13$	6	e.g. $x = 3$	$\pm 2i \Rightarrow x - 3 = \pm 2i \Rightarrow x^2 - 6x + 9 = -4$	IVII	
			01	r sum of roots 6, product of roots 13		
				$x^2 - 6x + 13$	A1	
			Note:	Attempt other quadratic factor. Using long division to get as far as	M1	
	$f(x) = (x^2 - 6x + 13)(x^2 + 3x - 6x + 13)$	-10)	140tc.	$x^2 \pm kx$ is fine for this mark.	IVII	
				$x^2 + 3x - 10$	A1	
	${x^2 + 3x - 10} = (x+5)(x-2) =$	$\Rightarrow x = \dots$		Correct method for solving a 3TQ	M1	
				on their 2 nd quadratic factor	A1	
	x = -5, $x = 2$ Both values correct					
	Note: Writing down 2, -5, 3+	-2i 3-2i wi	ith no wo	orking is B1M0A0M0A0M0A0	(7)	
(a)	-	tive using F				
(4)	3 – 2i	torre using 1	3 – 2i	B1		
	$\left\{f(2) = \right\} 2^4 - 3 \times 2^3 - 15 \times 2^2 + 99 \times 2 - 130 = 0$ $\left\{f(-5) = \right\} \left(-5\right)^4 - 3\left(-5\right)^3 - 15\left(-5\right)^2 + 99 \times \left(-5\right) - 130 = 0$			Attempts to find $f(2)$	M1	
				Shows that $f(2) = 0$	A1	
				Attempts to find $f(-5)$	M1	
		()		Shows that $f(-5) = 0$	A1	
		E		ows that $f(2) = 0$ and states $x = 2$	M1	
	$x = 2, \ x = -5$ or s			or shows that $f(-5) = 0$ and states $x = -5$		
			Shows both $f(2) = 0 \& f(-5) = 0$			
				and states both $x = -5$, $x = 2$	A1 (7)	
					(7)	
(b)				• 3±2i plotted correctly in		
, ,	Im			quadrants 1 and 4 with some		
	*			evidence of symmetry		
				• dependent on the final M mark being awarded in part		
	2	×		(a). Their other two roots		
				plotted correctly.		
				Satisfies at least one		
	-5	2 3	Re	of the criteria.	B1ft	
		\				
	-2	*		Satisfies both criteria with some indication of scale or coordinates		
				stated. All points (arrows) must	B1ft	
				be in the correct positions relative		
	1111			to each other.		
					(2)	
					9	

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1

Question Number	Scheme			1	Notes	Marks	
8.	S(a,0),	$B(q,r), C\left(-a, -\frac{2ar}{q-a}\right)$ or	C(-a, -	-3ar)			
(a)		$m = \frac{r - 0}{q - a}$ Correct gradient using $(a, 0)$ and (q, r) (Can be implied)					
	• $y = \frac{r}{q-a}(x-a)$ or • $y-r = \frac{r}{q-a}(x-q)$ Correct straight line method						M1
	$0 = \frac{ra}{q-a} + "c" \Rightarrow "c" = -\frac{ra}{q-a} \text{ and } y = \frac{r}{q-a}x - \frac{ra}{q-a}$ leading to $(q-a)y = r(x-a)^*$						A1*
							(3)
(b)	$C(\{-a\},$	$\left(-\frac{2ar}{q-a} \right)$ or height $OCS =$	$=\frac{2ar}{q-a}$			$-\frac{2ar}{q-a} \text{ or } \frac{2ar}{q-a}$	B1
	$\frac{2ar}{q-a} = 3r \text{or} \frac{1}{2}(a)\left(\frac{2ar}{q-a}\right) = 3\left(\frac{1}{2}\right)(a)(r) \implies \dots$ Applies height OCS = $3r$ or applies $Area(OSC) = 3Area(OSB)$ and rearranges to give $\lambda a = \mu q$ where λ, μ are numerical values.						M1
		$\Rightarrow 5a = 3q$				$5a = 3q \text{ or } a = \frac{3}{5}q$	A1
		(1)(3q)			dependent on	the previous M mark	
		$C) = 4\left(\frac{1}{2}\right)\left(\frac{3q}{5}\right)r$	、		Uses their $a = \frac{3}{5}$	q and applies a correct	dM1
	0	$\operatorname{rr} = \left(\frac{1}{2}\right) \left(\frac{3q}{5}\right) r + \left(\frac{3}{2}\right) \left(\frac{3q}{5}\right) r$	r			and to find Area (OBC) n terms of only q and r	
		$=\frac{6}{5}qr(*)$				$\frac{6}{5}qr$	A1* cso
							(5)
	A 14	N/(-4131/G) 13 / TD 1	-1\				8
		ve Method (Similar Triang	<u>gies)</u>		2	·	
(b)	$\frac{3r}{2a} = \frac{r}{q}$	<u>a</u>			_	$\frac{1}{a} = \frac{r}{q - a}$ or equivalent	B1
	$\frac{3r}{2a} = \frac{r}{q-a} \implies \dots$ $\frac{3r}{2a} = \frac{r}{q-a} \text{ or equivalent and rearranges}$ to give $\lambda a = \mu q$ where λ, μ are numerical values.					M1	
	then apply the original mark scheme.						
		T	C	Question	8 Notes		
8. (a)	Note	The first two marks B1M1	can be ga	ained to	gether by applying	the formula $\frac{y - y_1}{y_2 - y_1} = \frac{x}{x}$	$\frac{x - x_1}{2 - x_1}$
		to give $\frac{y-0}{r-0} = \frac{x-a}{q-a}$					
(b)	Note	If a candidate uses either _	$-\frac{2ar}{q-a}$ o	or $-3r$ t	hey can get 1st M1	but not 2 nd M1 in (b).	

Mathematics F1 WFM01

Winter 2016 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks			
9.	$f(n) = 4^{n+1} + 5^{2n-1}$					
	$f(1) = 4^2 + 5 = 21$		f(1) = 21 is the minimum	B1		
	$f(k+1) - f(k) = 4^{k+2} + 5^{2(k+1)-1} - (4^{k+1} + 5^{2k-1})$		Attempts $f(k+1) - f(k)$	M1		
	$f(k+1) - f(k) = 3(4^{k+1}) + 24(5^{2k-1})$					
	$= 3(4^{k+1} + 5^{2k-1}) + 21(5^{2k-1})$	Eidh	$3(4^{k+1}+5^{2k-1})$ or $3f(k); 21(5^{2k-1})$	A 1. A 1		
	or = $24(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$	Either	$24(4^{k+1}+5^{2k-1}) \text{ or } 24f(k); -21(4^{k+1})$	A1; A1		
	$f(k+1) = 3f(k) + 21(5^{2k-1}) + f(k)$	de	pendent on at least one of the previous	JN/1		
	or $f(k+1) = 24f(k) - 21(4^{k+1}) + f(k)$		accuracy marks being awarded. Makes $f(k+1)$ the subject	dM1		
	If the result is true for $n = k$, then it is true	for $n = k + 1$, As the result has been shown to be	A 1 aga		
	true for $n = 1$, then the 1	result is is t	rue for all $n \in \square^+$.	A1 cso		
				(6)		
WAY 2	General Method:	Using f(k	(x+1)-mf(k)	0		
	$f(1) = 4^2 + 5 = 21$		f(1) = 21 is the minimum	B1		
	$f(k+1) - mf(k) = 4^{k+2} + 5^{2(k+1)-1} - m(4^{k+1} + 5^2)$	^{k-1})	Attempts $f(k+1) - f(k)$	M1		
	$f(k+1) - mf(k) = (4-m)(4^{k+1}) + (25-m)(5^2)$	(k-1)				
	$= (4-m)(4^{k+1}+5^{2k-1})+21(5^{2k-1})$	(4-	$m)(4^{k+1}+5^{2k-1})$ or $(4-m)f(k)$; $21(5^{2k-1})$	A 1. A 1		
	or = $(25-m)(4^{k+1}+5^{2k-1})-21(4^{k+1})$	(25-n)	$n)(4^{k+1}+5^{2k-1})$ or $(25-m)$ f (k) ; $-21(4^{k+1})$	A1; A1		
	$f(k+1) = (4-m)f(k) + 21(5^{2k-1}) + mf(k)$	de	pendent on at least one of the previous accuracy marks being awarded.	13.71		
	or $f(k+1) = (25-m)f(k) - 21(4^{k+1}) + mf(k)$		Makes $f(k+1)$ the subject	dM1		
	If the result is true for $n = k$, then it is true	for $n = k + 1$, As the result has been shown to be	A 1		
	true for $n = 1$, then the n	result is is t	rue for all $n \in \square^+$.	A1 cso		
WAY 3	$f(1) = 4^2 + 5 = 21$		f(1) = 21 is the minimum	B1		
	$f(k+1) = 4^{k+2} + 5^{2(k+1)-1}$		Attempts $f(k+1)$	M1		
	$f(k+1) = 4(4^{k+1}) + 25(5^{2k-1})$					
	$=4(4^{k+1}+5^{2k-1})+21(5^{2k-1})$	TT*.1	$4(4^{k+1}+5^{2k-1})$ or $4f(k)$; $21(5^{2k-1})$	A.1. A.1		
	or = $25(4^{k+1} + 5^{2k-1}) - 21(4^{k+1})$	Either	$25(4^{k+1}+5^{2k-1})$ or $25f(k)$; $-21(4^{k+1})$	A1; A1		
	$f(k+1) = 4f(k) + 21(5^{2k-1})$ or $f(k+1) = 25f(k) - 21(4^{k+1})$	de	pendent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject	dM1		
	If the result is true for $n = k$, then it is true	e for n = k+1				
	true for $n = 1$, then the i		-	A1 cso		
			o may prove the following general results	L		

Winter 2016

www.mystudybro.com

Mathematics F1

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

•
$$\{f(k+1) = 4f(k) + 21(5^{2k-1})\} \Rightarrow f(k+1) = 84M + 21(5^{2k-1})$$

•
$$\{f(k+1) = 25f(k) - 21(4^{k+1})\} \Rightarrow f(k+1) = 525M - 21(4^{k+1})$$

Winter 2016

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel