

Mark Scheme (Results)

January 2019

Pearson Edexcel International Advanced Level In Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2019 Publications Code WFM01_01_1901_MS All the material in this publication is copyright © Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{1}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to $x = \dots$

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2019 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme		Notes	Marks	5
1.	$A(12, 12)$ lies on $y^2 = 12x$. <i>l</i> passes throug	gh A and S			
	<i>l</i> meets the directrix of the parabola at <i>B</i>				
(a)	$\{a=3 \Rightarrow S \text{ has coordinates}\}\ (3,0)$		Either states or uses $(3, 0)$	B1	
(u)			Can be implied by later work	DI	
	Way 1 Both $m_l = \frac{12}{12 - "3"}$ and either • $y = \frac{12}{12 - "3"}(x - "3")$ or • $0 = \frac{12}{12 - "3"}("3") + c \Rightarrow y = \frac{12}{12 - "3"} x$ • $12 = \frac{12}{12 - "3"}(12) + c \Rightarrow y = \frac{12}{12 - "3"} x$		Way 1 Correct method for finding the gradient between their <i>S</i> and (12, 12) and a correct method for finding the equation of <i>l</i>	M1	
	$\frac{\mathbf{Way 2}}{\begin{cases} 3m+c=0\\ 12m+c=12 \end{cases}} \implies m = \dots, c = \dots \text{ and } y = 0$	(their m) x + their c	Way 2Uses $y = mx + c$, their Sand (12, 12) to write twolinear equations.Finds $m = \dots, c = \dots$ and writes $y = (\text{their } m)x + \text{their } c$		
	e.g. <i>l</i> : $y = \frac{12}{9}(x-3), y = \frac{4}{3}x - 4, y - 12$ 4x - 3y - 12 = 0 or $3y = 4x - 1$	<i>,</i>	Any correct form for the equation of <i>l</i> which can be simplified or un-simplified Note: ignore subsequent working following on from a correct answer seen	A1	
	Note: At least one of either x_s	or v_s must be corr			(3)
		- 0	Either states or uses $x = -3$		、 /
(b)	{directrix has equation} $x = -3$		ates or uses $x = -(\text{their } a)$, $a > 0$ ere <i>a</i> is the <i>x</i> -coordinate of their <i>S</i>	M1	
	$y = \frac{12}{9}(-3-3) \{=-8\}$	deper Substitu or substitu x-coordinate (and not a c	ndent on the previous M1 mark tes $x = -3$ into their equation of <i>l</i> utes $x = -a$, $a > 0$ where <i>a</i> is the of their <i>S</i> into their equation of <i>l</i> . Note: <i>l</i> must represent a line urve) for this mark to be awarded Note: This mark may be implied by their <i>y</i> -coordinate	dM1	
	{coordinates of <i>B</i> are} $(-3, -8)$		(-3, -8)	A1	
					(3)
					6

		Question 1 Notes
1. (a)	Note	Give B0 for $a = 3$ by itself without reference to $(3, 0)$
	Note	Give B1 in part (a) for $S(3, 0)$ (and not $(3, 0)$) stated in part (b)
(b)	Note	Give 1 st M1 for stating the <i>x</i> -coordinate of <i>B</i> as -3 or the <i>x</i> -coordinate of <i>B</i> as $-(\text{their } a)$, $a > 0$
		where <i>a</i> is the <i>x</i> -coordinate of their <i>S</i>
		E.g. Give 1^{st} M1 for $B(-3,)$
	Note	Give A0 for $x = -3$, $y = -8$ without reference to $(-3, -8)$
	Note	Give A0 for $x = -3$, $y = -8$ followed by $(-8, -3)$
	Note	Give A0 if more than one set of coordinates are given for <i>B</i>
(a), (b)	Note	Give B1 for a sketch with either 3 or (3, 0) marked on the <i>x</i> -axis
	Note	Give 1 st M1 in part (b) for a sketch with a vertical line drawn at $x = -3$ with -3 indicated
	Note	Give 1 st M1 in part (b) a statement "directrix is $x = -3$ " seen anywhere

Question		~ .						
Number		Scheme		Notes	Marks			
2.	$f(z) = z^3$	$-2z^{2}+16z-32$						
(a)	• {f(2) =	$= \} 8 - 8 + 32 - 32 = 0$	or	Uses working to show that $f(2) = 0$	B1			
	• {f(2) =	$= \left\{ (2)^{3} - 2(2)^{2} + 16(2) \right\}$	-32 = 0	1(2) = 0				
(b)			I	Uses only $(z-2)$ to find a quadratic factor.	(1			
(0)				division with $(z-2)$ to get as far as $z^2 +$				
	$\{f(z) = \}$	$(z-2)(z^2+16)$	e.g. using long (or factorising to give $(z-2)(z^2 +)$	M1			
			Note: 1 st M1 c	an be given for sight of a correct $(z^2 + 16)$				
-	$\{(z^2+16)\}$	$0 = 0 \Longrightarrow z = \} \pm 4i$		ect method of solving their quadratic factor	M1			
		$\Rightarrow z = \} 2, 4i, -4i$		2, 4i and -4i				
		, , ,		,	(.			
(c)	In	n 🛦	<u>Criteria</u>					
			• The nur real axis	nber 2 plotted correctly on the positive				
	(0,4	4)		ent on a correct method for solving				
				adratic factor or dependent on				
				ng correct roots of 2, 4i, - 4i nal two roots of the form $\pm \mu i$, $\mu \neq 0$ or				
		(2,0)		$\mu \lambda \pm \mu i, \mu \neq 0$, are plotted correctly				
		O Re		Satisfies at least one of the criteria	B1ft			
			Only 3	3 roots plotted, satisfying both criteria with				
				ne indication of scale or coordinates stated.				
	(0,	4)		Note: The pair of complex roots should be roximately symmetrical about the real axis				
			app	Note: Condone the labels $4i, -4i$				
				marked on the y-axis				
					(
			Questie	n 2 Notes				
2. (b)	Note	You can assume $x \equiv$	-					
(-)	Note			4i, -4i is M0 M0 A0				
	Note			$4i) \{=0\} \Rightarrow z = 2, 4i, -4i$				
	Note	Allow M1 M0 A0 for $(z-2)(z+4i)(z-4i) = 0$ by itself, but please note that you c						
		recover the final M1	A1 marks for work	seen in part (c)				
	Note	Give M1 M0 A0 for $(z-2)(z^2+16) \{=0\} \Rightarrow (z-2)(z+4i)(z-4i) \{=0\}$ by itself, but						
		note that you cannot recover the final M1 A1 marks for work seen in part (c)						
	Note	$z = \pm \sqrt{16i}$ unless recovered is 2 nd M0 1 st A0						
	Note	Give 2^{nd} M1 for $z^2 + k = 0$, $k > 0 \Rightarrow$ at least one of either $z = \sqrt{k}$ i or $z = -\sqrt{k}$ i						
		So, e.g. give 2^{nd} M1 for $z^2 + 16 = 0 \implies z = 4i$						
	Note	Give 2^{nd} M0 for $z^2 + k = 0$, $k > 0 \Longrightarrow z = \pm ki$						
	Note	Give 2^{nd} M0 for $z^2 + k = 0$, $k > 0 \Rightarrow z = \pm k$ or $z = \pm \sqrt{k}$						
	Note	Give 2^{nd} M1 for z^2 –	$k = 0, k > 0 \Rightarrow$ bot	h $z = \sqrt{k}$ and $z = -\sqrt{k}$				
	Note	Give 2^{nd} M1 for $z^2 - k = 0$, $k > 0 \Rightarrow$ both $z = \sqrt{k}$ and $z = -\sqrt{k}$ Special Case: If <i>their quadratic</i> factor $z^2 + a^2z + b^2$ can be factorised then						
	Note	Special Case: If <i>their quadratic</i> factor $z^2 + "a"z + "b"$ can be factorised then give Special Case 2^{nd} M1 for correct factorisation leading to $z =$						

		Question 2 Notes Continued
2. (b)	Note	<u>Reminder</u> : Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "
		Formula: Attempt to use the correct formula (with values for a , b and c)
		Completing the square: $\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0$, leading to $z =$
	Note	Send to review solutions involving α , β , γ roots. E.g. $-2 = -(\alpha + \beta + \gamma)$
(c)	Note	Drawing the lines $z = 2$, $z = 4i$, $z = -4i$ instead of plotting the points $(2, 0)$, $(0, 4)$ and
		(0, -4) is B0 B0
	Note	Indication of coordinates includes stating e.g. $z_1 = 2$, $z_2 = 4i$, $z_3 = -4i$ and plotting z_1 , z_2 and
		z_3 in their relevant positions on an Argand diagram
(b), (c)	Note	You cannot recover work for part (b) in part (c)

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel Mathematics F1 WFM01

Question Number		Scheme		Notes	Marks			
3. (a)	$\sum_{r=1}^{n} (2r+5)^2 = 4\sum_{r=1}^{n} r^2 + 20\sum_{r=1}^{n} r + \sum_{r=1}^{n} 25$							
				Attempts to expand $(2r+5)^2$ and attempts to substitute at least one formula for either $\sum_{r=1}^{n} r^2$ or $\sum_{r=1}^{n} r$ into their resulting expression	M1 (B1 on ePEN)			
	$=4\left(\frac{1}{6}n(n)\right)$	$(n+1)(2n+1) + 20\left(\frac{1}{2}n(n+1)\right)$	+ 25n	$4\left(\frac{1}{6}n(n+1)(2n+1)\right) + 20\left(\frac{1}{2}n(n+1)\right)$ which can be simplified or un-simplified	A1 (M1 on ePEN)			
				Use of $\sum_{r=1}^{n} 1 = n$	B1			
	$=\frac{1}{3}n(2(n$	(n+1)(2n+1) + 30(n+1) + 75)		Obtains an expression of the form $\alpha n(n+1)(2n+1) + \beta n(n+1) + \lambda n; \alpha, \beta, \lambda \neq 0$ and attempts to factorise out at least <i>n</i>	M1			
	$=\frac{1}{3}n(4n^2)$	$2^{2} + 6n + 2 + 30n + 30 + 75)$						
	$=\frac{n}{3}(4n^2+$	+ 36 <i>n</i> + 107)						
	$= \frac{n}{3} \left[(2n+9)^2 + 26 \right] \left\{ \text{or} \frac{n}{3} \left[(-2n-9)^2 + 26 \right] \right\}$			Correct completion Note: $a = 2, b = 9$ and $c = 26$ or $a = -2, b = -9$ and $c = 26$	A1			
				· ·	(5)			
(b)	$\left\{\sum_{r=0}^{100} (2r +$	$(+5)^2 = $		Substitutes $n = 100$ into their expression for $\sum_{n=1}^{n} (2r+5)^{2}$ which is in terms of n ,	M1			
	$=\frac{100}{3}\Big[(2$	$(100) + 9)^2 + 26] + (5)^2$	and a					
	$\left\{=\frac{100}{3}(4)\right\}$	43707) + 25 = 1456925		A1				
					(2)			
			Q	uestion 3 Notes				
3. (a)	Note	Applying e.g. $n = 1$, $n = 2$ are formulae to give $a = 2$, $b = 9$	to the printed equation without applying the sta 26 is M0 A0 B0 M0 A0	undard				
	Alt 1	Alt Method 1 (Award the f	first thr	ee marks using the main scheme)				
		Using $\frac{4}{3}n^3 + 12n^2 + \frac{107}{3}n \equiv$						
	M1	Equating coefficients to find at least two of $a =, b =$ or $c =$ and at least one of either $a = 2, b = 9$ or $c = 26$ or $a = -2, b = -9$ and $c = 26$						
	A1	either $a = 2, b = 9$ or $c = 26$ or $a = -2, b = -9$ and $c = 26$ Finds $a = 2, b = 9$ and $c = 26$ or $a = -2, b = -9$ and $c = 26$						
	Note	Allow final M1A1 for $\frac{4}{3}n^3$	$+12n^{2}$ +	$-\frac{107}{3}n \rightarrow \frac{n}{3} \left[(2n+9)^2 + 26 \right]$ with no incorrect v	working.			
	Note			$\left[(2n+9)^2+26\right]$ followed by stating an incorrect				
		e.g. $a = 9, b = 2$ and $c = 26$	is M1 /	e.g. $a = 9, b = 2$ and $c = 26$ is M1 A1 B1 M1 A1 (ignore subsequent working)				

		Question 3 Notes Continued
3. (b)	Note	Allow M1 for $\frac{100}{3}(4(100)^2 + 36(100) + 107) + (5)^2$ and A1 for obtaining 1456925
	Note	Allow M1 for $4\left(\frac{1}{6}(100)(101)(201)\right) + 20\left(\frac{1}{2}(100)(101)\right) + 25(100) + (5)^2$
		$\{=1353400 + 101000 + 2500 + 25\}$ and A1 for obtaining 1456925
	Note	dependent on obtaining 1 st M1, 1 st A1 and B1 in part (a)
		Allow M1 A1 for 1456900 + 25 = 1456925
	Note	Give M0 A0 for writing down 1456925 by itself with no supporting working
	Note	Give M0 A0 for listing individual terms
		i.e $\sum_{r=0}^{100} (2r+5)^2 = 5^2 + 7^2 + 9^2 + 11^2 + + 205^2 = 1456925$, by itself is M0 A0
	Note	Give M0 A0 for applying
		$\frac{100}{3} \Big[(2(100) + 9)^2 + 26 \Big] + \frac{(-1)}{3} \Big[(2((-1)) + 9)^2 + 26 \Big] = 1456900 - 25 = 1456925$

www.mystudybro.com

Question Number		Scheme					Notes		Marks
4.	Given f()	$x) = 2x^3 - \frac{7}{x^2} + 16$, $x \neq 0$; Root	ts α, β : –	$-2 \le \alpha$	≤-1 ar	ad $0.6 \le \beta \le 0.7$		
(a)	f(-1.5) =						Attempts to	evaluate $f(-1.5)$	M1
Way 1	f(-1.75) =					-		revious M mark nd not $f(-1.25)$)	dM1
(a) Way 2	f(-1.5) = f(-1.75)	-1.75 or $f(-1) =$ -6.1388 or $\frac{221}{36}$ = 2.9955 or $\frac{671}{224}$ 1 is [-2, -1.75] Note that some In this case the Common appro f(a)	7 Both • f(or and • f(to Allow candidates of M marks can	f(-1) = 7 -1.5) and $1 \text{ sf and th}}$ $0.2 \le \alpha$ (-2, -1.7) w a mixture such as (-2, -1.7) magnetic score (-2, -1.7) such as (-2, -1.7) such as (-2, -1.7) (-2, -1.7) (-2, -1.7) (-2, -1.7) (-2, -1.7) (-2, -1.7) (-2, -1.7) (-2, -1.7) (-2, -1.7) (-3, -1.7)	t or co f(-1.7) e corrections (-1.7) f(-1.7)	rrect av (5) corr ect inter w $-2 \le$ 5 or $-$ ivalent nds". I $< \alpha < -$ re the s sign of efined b se the n	ect or correct avert (or truncated ect or correct avert avert (or truncated example to a stated $x \le -1.75$ or $-2 < \alpha < -1.75$ or in words. Concount of a state to a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state o	wrt (or truncated) 2 < x < -1.75 or [-2, -1.75] or done -21.75 orrect statements 2) or -1.752 ey are recovered. ion of f(-1.875) alue. mark.	· A1
	-2 -2	-1.75	$-\frac{-1}{-1}$.5	7 6.138 1 score		-1.5 -1.75 arks in part (a)	6.1388 2.9955	
(b)	f'(x) = 6x	$x^2 + 14x^{-3}$	At least	At least one of either $2x^3 \rightarrow \pm Ax^2$ or $-\frac{7}{x^2} \rightarrow \pm Bx^{-3}$; $A, B \neq 0$				M1	
	Correct differentiation which can be simplified or un-simplified $\left\{ \beta \approx 0.65 - \frac{f(0.65)}{f'(0.65)} \right\} \Rightarrow \beta \approx 0.65 - \frac{-0.01879733728}{53.51360719}$ dependent on the previous M mark Valid attempt at Newton-Raphson using their values of f(0.65) and f'(0.65)						A1 dM1		
	$\{\beta = 0.6503512623\} \Rightarrow \beta = 0.6504 \text{ (4 dp)}$ dependent on all 3 previous marks 0.6504 on their first iteration (Ignore any subsequent iterations)						A1 cso cao		
	Correct differentiation followed by a correct answer of 0.6504 scores full marks in part (b) Correct answer with <u>no</u> working scores no marks in part (b)						(
				Questi	on 4 N	lotes			I
4. (a)	Note	Give 2 nd M0 and	A0 for evalua	-			f(-1.75)		
. *	Note	Do not allow "int	erval = f(-2)	to f(-1.75)" unl	ess reco	overed.		
	Note	A method of eval at least one of eit	• (-	-		with <i>no eviden</i>	ace of evaluating	
	at least one of either $f(-2)$ or $f(-1)$ is M1 dM1 A0.NoteDo not confuse the -1.75 in $f(-2) = -1.75$ with the -1.75 in $(-2, -1.75)$								

		Question 4 Notes Continued
4. (b)	dM1	This mark can be implied by applying at least one correct <i>value</i> of either $f(0.65)$ or their
		f'(0.65) (where f'(0.65) is found using their f'(x)) to 1 significant figure in $0.65 - \frac{f(0.65)}{f'(0.65)}$.
		So just $0.65 - \frac{f(0.65)}{f'(0.65)}$ with an incorrect answer and no other evidence scores final dM0A0.
	Note	If you see $0.65 - \frac{f(0.65)}{f'(0.65)} = 0.6504$ with no algebraic differentiation, then send the response to
		review.
	Note	You can imply the M1 A1 marks for algebraic differentiation for either
		• $f'(0.65) = 6(0.65)^2 + 14(0.65)^{-3}$
		• f'(0.65) applied correctly in $\beta \approx 0.65 - \frac{2(0.65)^3 - \frac{7}{(0.65)^2} + 16}{6(0.65)^2 + 14(0.65)^{-3}}$
	Note	Differentiating INCORRECTLY to give $f'(x) = 6x^2 - 14x^{-3}$ leads to
		$\beta \approx 0.65 - \frac{-0.01879733728}{-48.44360719} = 0.6496119749 = 0.6496 \ (4 \ dp)$
		This response should be awarded M1 A0 dM1 A0
	Note	Differentiating INCORRECTLY to give $6x^2 - 14x^{-3}$ and
		$\beta \approx 0.65 - \frac{f(0.65)}{f'(0.65)} = 0.6496$ is M1 A0 dM1 A0

Question Number	Scheme			Notes	Marks		
5.	H: xy = 16;	$P\left(4p, -\frac{4}{3}\right)$	$\left(\frac{4}{p}\right), p \neq 0$, lies	on <i>H</i> .			
	Tangent to H at P passes through the point $(7, 1)$						
(-)	$y = \frac{16}{r} = 16x^{-1} \Rightarrow \frac{dy}{dr} = -16x^{-2}$ or						
(a)	$y = \frac{1}{x} = 10x \implies \frac{1}{x} = -10x = 0$	$\frac{1}{x^2}$		$\frac{dy}{dx} = \pm k x^{-2}; k \neq 0$	-		
	$xy = 16 \implies x \frac{dy}{dx} + y = 0$			Uses implicit differentiation dv	N/1		
	dx			to give $\pm x \frac{dy}{dx} \pm y$	IVI I		
	$x = 4t, y = \frac{4}{t} \implies \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -\left(\frac{4}{t}\right)$	$\left(\frac{4}{4}\right)\left(\frac{1}{4}\right)$	the	ir $\frac{dy}{dt} \times \frac{1}{\text{their } \frac{dy}{dt}}$; Condone $t \equiv p$			
	So at <i>P</i> , $m_T = -\frac{1}{p^2}$	Correct calc	ulus work leading to $m_T = -\frac{1}{p^2}$	A1			
	• $y - \frac{4}{p} = -\frac{1}{p^2}(x - 4p)$ or • $\frac{4}{p} = -\frac{1}{p^2}(4p) + c \implies y = -\frac{1}{p^2}x + th$	eir c		Correct straight line method for an equation of the tangent where $m_T \left(\neq \frac{-1}{\text{their } m_T} \text{ or } \neq \frac{1}{\text{their } m_T} \right)$ is found by using calculus.	M1		
			N	Note: m_T must be a function of p Note: Condone (slip) of using $m_T = -$ (their m_T)			
	Correct algebra leading to $x + p^2 y = 8p$	p *		Correct solution only	A1 *	(4	
		Su	bstitutes $x = 7$, $y = 1$ into the given equation or		(-	
(b)	$\{(7,1) \Longrightarrow\} 7+p^2 = 8p$		their answer to part (a). e substituting $x = 1$, $y = 7$ into the or their answer to part (a) for M1	M1			
	$\{ \Rightarrow p^2 - 8p + 7 = 0 \}$	0		1 ()			
	$(p-7)(p-1) = 0 \Longrightarrow p = \dots$		Correct meth	and end on the previous M mark and (e.g. factorising, applying the nula or completing the square) of solving a 3TQ to find $p =$	dM1		
	$\{p=1 \Rightarrow \} x = 4, y = 4$ $\{p=7 \Rightarrow \} x = 28, y = \frac{4}{7} \text{ or awrt } 0.57$		given equa	substituing $x = 7$, $y = 1$ into the tion or their answer to part (a) one correct set of corresponding values for $x =$ and $y =$	A1		
	{So <i>P</i> can be} (4, 4), $(28, \frac{4}{7})$	Both		h correct sets of coordinates of B	A1		
						(4	

		Question 5 Notes
5. (a)	Note	Allow $yp^2 + x = 8p$ or $8p = x + p^2y$ or $8p = p^2y + x$ for the final Al
(b)	Note	Do not confuse $(7, 1)$ or $x = 7$, $y = 1$ with $p = 7, 1$
	Note	A decimal answer of e.g. (4, 4), (28, 0.57) (without a correct exact answer) is 2 nd A0
	Note	Imply the dM1 mark for <i>writing down the correct</i> roots for <i>their</i> quadratic equation.
		E.g. $7 + p^2 = 8p$ or $p^2 - 8p + 7 = 0 \rightarrow p = 7, 1$
	Note	E.g. give dM0 for $7 + p^2 = 8p$ or $p^2 - 8p + 7 = 0 \rightarrow p = -7, -1$ [incorrect solution]
		with NO INTERMEDIATE working.
	Note	Give M1 dM1 A1 for either
		• $7 + p^2 = 8p \rightarrow x = 4, y = 4 \text{ or } (4, 4)$
		• $7 + p^2 = 8p \rightarrow x = 28, y = \frac{4}{7}$ or awrt 0.57 or $\left(28, \frac{4}{7}\right)$ or $\left(28, \text{awrt } 0.57\right)$
		with NO INTERMEDIATE working.
	Note	Give M1 dM1 A1 A1 for
		• $7 + p^2 = 8p \rightarrow (4, 4), \left(28, \frac{4}{7}\right)$
		with NO INTERMEDIATE working.
	Note	Give M0 dM0 A0 A0 for writing down (4, 4), $\left(28, \frac{4}{7}\right)$ with no prior working.
	Note	Only a maximum of M1 dM1 A0 A0 can be scored for
		substituting for $x = 1$, $y = 7$ (and not $x = 7$, $y = 1$) into $x + p^2 y = 8p$
		Note: $x = 1, y = 7 \Rightarrow 1 + 7p^2 = 8p \Rightarrow (7p-1)(p-1) \Rightarrow p = \frac{1}{7}, 1 \Rightarrow (\frac{4}{7}, 28), (4, 4)$
	Note	Alt 1 Method
		• $x = 7, y = 1 \Rightarrow 7 + p^2 = 8p \Rightarrow (p-1)(p-7) \Rightarrow p = 1, 7$
		• $p=1 \Rightarrow x+(1)y=8(1)$ and $x+\frac{16}{x}=8 \Rightarrow x^2-8x+16=0 \Rightarrow (x-4)(x-4)=0$
		$\Rightarrow x = 4, y = 4 \Rightarrow (4, 4)$
		• $p = 7 \implies x + 49y = 56$ and $x + 49\left(\frac{16}{x}\right) = 56 \implies x^2 - 56x + 784 = 0 \implies (x - 28)(x - 28) = 0$
		$\Rightarrow x = 28, y = \frac{4}{7} \Rightarrow (28, \frac{4}{7})$
	Note	Incorrect method of substituting $xy = 16$ and (7, 1) into $x + p^2y = 8p$
		Give M0 dM0 A0 A0 for
		• $x + p^2 \left(\frac{16}{x}\right) = 8p$ and $x = 7 \Rightarrow 7 + \frac{16}{7}p^2 = 8p \Rightarrow 16p^2 - 56p + 49 = 0 \Rightarrow (4p - 7)(4p - 7) = 0$
		$\Rightarrow p = \frac{7}{4} \Rightarrow x = 7, \ y = \frac{16}{7} \Rightarrow \left(7, \frac{16}{7}\right)$
		• $\frac{16}{y} + p^2 y = 8p$ and $y = 1 \Rightarrow 16 + p^2 = 8p \Rightarrow p^2 - 8p + 16 = 0 \Rightarrow (p-4)(p-4) = 0$
		$\Rightarrow p = 4 \Rightarrow x = 16, y = 1 \Rightarrow (16, 1)$
	Note	Give M1 dM0 A0 A0 for
		• $x = 7, y = 1$ into $x + p^2 y = 8p \Rightarrow 7 + p^2 = 8 \Rightarrow (p+1)(p-1) \Rightarrow p = 1, -1 \Rightarrow (4, 4), (-4, -4)$

www.mystudybro.com This resource was created and owned by Pearson Edexcel Winter 2019 Past Paper (Mark Scheme)

Question Number		Scheme	Notes	Marks		
6.		12x	$a^2 - 3x + 4 = 0$ has roots α , β			
(a)	$\alpha + \beta = \frac{1}{1}$	$\frac{3}{12}$ or $\frac{1}{4}$, $\alpha\beta = \frac{4}{12}$ or $\frac{1}{3}$	Both $\alpha + \beta = \frac{3}{12}$ or $\frac{1}{4}$ and $\alpha\beta = \frac{4}{12}$ or $\frac{1}{3}$, seen or implied	B1		
	$\frac{2}{\alpha} + \frac{2}{\beta} =$	$=\frac{2\beta+2\alpha}{\alpha\beta}$	States or uses $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2\beta + 2\alpha}{\alpha\beta}$ or $\frac{2(\alpha + \beta)}{\alpha\beta}$	M1		
	=	$\frac{2\left(\frac{3}{12}\right)}{\left(\frac{4}{12}\right)} = \frac{3}{2}$	dependent on BOTH previous marks being awarded $\frac{3}{2}$ or $\frac{6}{4}$ or 1.5 from correct working	A1 cso cao		
				(
(b)	Sum = -	$\frac{2}{\alpha} - \beta + \frac{2}{\beta} - \alpha$	Uses at least one of their $\frac{2}{\alpha} + \frac{2}{\beta}$ or their $(\alpha + \beta)$ in an	Ň		
	$=\frac{2}{\alpha}$	$\frac{1}{\beta} + \frac{2}{\beta} - (\alpha + \beta)$	attempt to find a numerical value for the sum of $\left(\frac{2}{\alpha} - \beta\right) \text{ and } \left(\frac{2}{\beta} - \alpha\right)$	M1		
	$=\frac{3}{2}$	$-\frac{1}{4} = \frac{5}{4}$	Correct sum of $\frac{5}{4}$ or $\frac{15}{12}$ or 1.25 which can be implied	Al		
		$= \left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$	Expands $\left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$ to give $\frac{P}{\alpha\beta} + Q + R\alpha\beta$; $P, Q, R \neq 0$ and uses their $\alpha\beta$ at least once in an attempt to find a numerical value for the product of	M1		
		$= \frac{4}{\alpha\beta} - 2 - 2 + \alpha\beta$ $= \frac{4}{(\frac{1}{2})} - 2 - 2 + \frac{1}{3} = \frac{25}{3}$	$\left(\frac{2}{\alpha}-\beta\right)$ and $\left(\frac{2}{\beta}-\alpha\right)$			
		$(\frac{1}{3})$ 3 3	Correct product of $\frac{25}{3}$ or $8\frac{1}{3}$ or 8.3 or $\frac{100}{12}$	A1		
	$x^2 - \frac{5}{4}x$	$+\frac{25}{3}=0$	Applies $x^2 - (sum)x + product$ (can be implied), where sum and product are numerical values. Note: "=0" is not required for this mark	M1		
	$12x^2 - 15$	5x + 100 = 0	Any integer multiple of $12x^2 - 15x + 100 = 0$, including the "=0"	A1 cso		
				(
			Question 6 Notes	<u> </u>		
6. (a)	Note	Writing down α , $\beta = \frac{3 + \sqrt{183}i}{24}$, $\frac{3 - \sqrt{183}i}{24}$ and then stating $\alpha + \beta = \frac{1}{4}$, $\alpha\beta = \frac{1}{3}$ or				
		$\frac{-\sqrt{183}i}{24} = \frac{1}{4} \text{ and } \alpha\beta = \left(\frac{3+\sqrt{183}i}{24}\right)\left(\frac{3-\sqrt{183}i}{24}\right) = \frac{1}{3} \text{ scores B}$	D U			
	Note		hen apply $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$, having written down/applied $\frac{\sqrt{183}}{24}$, can only score the M mark in part (a) for $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2}{3}$	$\frac{\beta + 2\alpha}{\alpha\beta}$		
	Note Give B0 M0 A0 for $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2}{\left(\frac{3+\sqrt{183}i}{24}\right)} + \frac{2}{\left(\frac{3-\sqrt{183}i}{24}\right)} = \frac{3}{2}$					

	Question 6 Notes Continued				
6. (a)	Note	Give B0 M1 A0 for $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{2\beta + 2\alpha}{\alpha\beta} = \frac{2\left(\frac{3-\sqrt{183}i}{24}\right) + 2\left(\frac{3+\sqrt{183}i}{24}\right)}{\left(\frac{3+\sqrt{183}i}{24}\right)\left(\frac{3-\sqrt{183}i}{24}\right)} = \frac{3}{2}$			
	Note	Allow B1 for both $S = \frac{1}{4}$ and $P = \frac{1}{3}$ or for both $\sum = \frac{1}{4}$ and $\prod = \frac{1}{3}$			
(b)	Note	A correct method leading to $a = 12$, $b = -15$, $c = 100$ without writing a final answer of $12x^2 - 15x + 100 = 0$ is final M1A0			
	Note	Using $\frac{3+\sqrt{183}i}{24}$, $\frac{3-\sqrt{183}i}{24}$ explicitly to find the sum and product of $\left(\frac{2}{\alpha}-\beta\right)$ and $\left(\frac{2}{\beta}-\alpha\right)$			
		to give $x^2 - \frac{5}{4}x + \frac{25}{3} = 0 \implies 12x^2 - 15x + 100 = 0$ scores M0 A0 M0 A0 M1A0 in part (b)			
	Note	Using $\frac{3+\sqrt{183}i}{24}$, $\frac{3-\sqrt{183}i}{24}$ to find $\alpha + \beta = \frac{1}{4}$, $\alpha\beta = \frac{1}{3}$, $\frac{2}{\alpha} + \frac{2}{\beta} = \frac{3}{2}$ and applying			
		$\left\{\alpha + \beta = \frac{1}{4}, \right\} \alpha \beta = \frac{1}{3}, \frac{2}{\alpha} + \frac{2}{\beta} = \frac{3}{2} \text{ can potentially score full marks in part (b).}$			
		E.g. Score M1 A1 M1 A1 M1 A1 for			
		• Sum = $=\frac{2}{\alpha} - \beta + \frac{2}{\beta} - \alpha = \frac{2}{\alpha} + \frac{2}{\beta} - (\alpha + \beta) = \frac{3}{2} - \frac{1}{4} = \frac{5}{4}$			
		• Product = $\left(\frac{2}{\alpha} - \beta\right)\left(\frac{2}{\beta} - \alpha\right) = \frac{4}{\alpha\beta} - 2 - 2 + \alpha\beta = \frac{4}{\left(\frac{1}{3}\right)} - 2 - 2 + \frac{1}{3} = \frac{25}{3}$			
		• $x^2 - \frac{5}{4}x + \frac{25}{3} = 0 \implies 12x^2 - 15x + 100 = 0$			
	Note <u>Alternative method for finding the sum</u>				
	Sum = $\frac{2}{\alpha} - \beta + \frac{2}{\beta} - \alpha = \frac{2\beta - \alpha\beta^2 + 2\alpha - \alpha^2\beta}{\alpha\beta} = \frac{2(\alpha + \beta) - \alpha\beta(\beta + \alpha)}{\alpha\beta}$				
		$= \frac{2(\frac{1}{4}) - (\frac{1}{3})(\frac{1}{4})}{(\frac{1}{3})} = \frac{\frac{1}{2} - \frac{1}{12}}{\frac{1}{3}} = \frac{\frac{5}{12}}{\frac{1}{3}} = \frac{15}{12} = \frac{5}{4}$			
	Note Alternative method for finding the product				
		Expands $\left(\frac{2}{\alpha} - \beta\right) \left(\frac{2}{\beta} - \alpha\right)$ to give			
		Product = $\left(\frac{2}{\alpha} - \beta\right)\left(\frac{2}{\beta} - \alpha\right)$ $\left(\frac{(\alpha\beta - 2)^2}{\alpha\beta}\right)$ and uses their $\alpha\beta$ at least once in M1			
		$= \frac{(\alpha\beta - 2)^2}{\alpha\beta} = \frac{((\frac{1}{3}) - 2)^2}{(\frac{1}{3})}$ an attempt to find a numerical value for the product of $(\frac{2}{\alpha} - \beta)$ and $(\frac{2}{\beta} - \alpha)$			
		$-\frac{1}{(\frac{1}{2})} - \frac{1}{3}$			
		Correct product of $\frac{25}{3}$ or $8\frac{1}{3}$ or 8.3 A1			

st Paper (Ma	,	and owned by P		WFM01	
Question Number	Scheme	Notes		Marks	
7.	$\mathbf{P} = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}; \text{ (a) } \mathbf{P}^3 = 8\mathbf{I}; \text{ (c) } \mathbf{P}^{35} =$				
(a)	$\{\mathbf{P}^{2} = \} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$		Finds \mathbf{P}^2 (which can be un-simplified) with at least 3 correct elements for \mathbf{P}^2	M1	
	$\{\mathbf{P}^{3} = \} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} =$ or $\{\mathbf{P}^{3} = \} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} =$		dependent on the previous M markMultiplies P^2 by P or multiplies P by P^2 to give a 2×2 matrix of 4 elements for P^3 with at least 2 correct elements	dM1	
	$(\sqrt{3} -1)(-2\sqrt{3} -2)$	(0 8)	Correct proof with no errors	A1 *	
(b)	Enlargement		Enlargement or enlarge or dilation	(. M1	
	Centre $(0, 0)$ with scale factor 2	about ((0, 0) or about <i>O</i> or about the origin and scale or factor or times and 2	A1	
	Rotation		Rotation or rotate (condone turn)	M1	
	120 degrees (anticlockwise) about (0, 0)		Both 120 degrees or $\frac{2\pi}{3}$ degrees clockwise or $\frac{4\pi}{3}$ clockwise (0, 0) or about <i>O</i> or about the origin	A1	
			(,,)	(*	
(c)	${\bf P}^{35} = ({\bf P}^3)^{11} \times {\bf P}^2$ or ${\bf P}^{35} = {\bf P}^{33} \times {\bf P}^2$				
Way 1	$= (8\mathbf{I})^{11} \times \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = (2\mathbf{I})^{11} \times \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$	$ \begin{array}{c c} \hline & & ((8\mathbf{I})^{11} \text{ or } (8)^{11}) \times (\text{their } \mathbf{P}^2) \\ \hline & & \text{or} \\ & & ((2\mathbf{I})^{33} \text{ or } (2)^{33}) \times (\text{their } \mathbf{P}^2) \end{array} $	M1		
	$=2^{34}\begin{pmatrix}-1&\sqrt{3}\\-\sqrt{3}&-1\end{pmatrix}$	Correct answer Note: $k = 34, a = \sqrt{3}, b = -\sqrt{3}$	A1		
				(2	
(c)	$\mathbf{P}^{35} = (\mathbf{P}^3)^{12} \times \mathbf{P}^{-1}$ or $\mathbf{P}^{35} = \mathbf{P}^{36} \times \mathbf{P}^{-1}$		· · · · · · · · · · · · · · · · · · ·		
Way 2	$= (8\mathbf{I})^{12} \times \frac{1}{(-1)(-1) - (-\sqrt{3})(\sqrt{3})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix} \qquad ((8\mathbf{I})^{12} \text{ or } (8)^{12}) \times \frac{1}{\text{their det}(\mathbf{P})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$				
	or = $(2\mathbf{I})^{36} \times \frac{1}{(-1)(-1) - (-\sqrt{3})(\sqrt{3})} \begin{pmatrix} -1 \\ -\sqrt{3} \end{pmatrix}$	$ \begin{array}{c c} \sqrt{3} \\ -1 \end{array} $ ((2I)	$\int_{-\sqrt{3}}^{36} \operatorname{or} (2)^{36} \times \frac{1}{\operatorname{their} \operatorname{det}(\mathbf{P})} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$ where their det(P) > 1	M1	
	$\left\{ = \left(2^{36}\right) \left(\frac{1}{4}\right) \left(\begin{array}{cc} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{array}\right) \right\} = 2^{34} \left(\begin{array}{cc} -1 \\ -\sqrt{3} \end{array}\right)$		Example 1 Correct answer Note: $k = 34, a = \sqrt{3}, b = -\sqrt{3}$	A1	
				(2	

www.mystudybro.com

Winter 2019

nter 201	9 ark Scheme)	www.mystudybro.comMathematicsThis resource was created and owned by Pearson EdexcelWF	5 F1 ™01		
		Question 7 Notes			
7. (a)	Note	Proof must contain the final steps of $= \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$ and $= 8I$ or $= \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}$ and $= RHS$			
	Note	Other acceptable proofs for M1 dM1 A1 include			
		• $\mathbf{P}^{3} = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ or $\begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^{3}$			
		$= \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$			
		• $\mathbf{P}^{3} = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ or $\begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^{2}$			
		$= \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$			
		• $\mathbf{P}^3 = \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$			
		• $\mathbf{P}^3 = \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8\mathbf{I} *$			
(b)	Note	"original point" is not acceptable in place of the word "origin".			
	Note	"expand" is 1 st M0			
	Note	"enlarge x by 2 and no change in y" is 1^{st} M0 1^{st} A0			
	Note	 Writing "120 degrees" by itself implies by convention "120 degrees anti-clockwise". So "Rotation 120 degrees about O" is 2nd M1 2nd A1 "Rotation 120 degrees clockwise about O" is 2nd M1 2nd A0 			
	Note	Writing down "centre $(0, 0)$ with scale factor 2" with no reference to "enlargement" or "enlarge" or "dilation" is 1 st M0 1 st A0			
	Note	Writing down "120 degrees anti-clockwise about O " with no reference to "rotation" or "t is 2^{nd} M0 2^{nd} A0	urn"		
	Note	Give 1 st M1 1 st A0 for writing "stretch parallel to <i>x</i> -axis and <i>y</i> -axis"			
	Note	Give 1^{st} M1 1^{st} A0 for writing "stretch scale factor 2 parallel to <i>x</i> -axis and stretch scale factor 2 parallel to <i>y</i> -axis {with centre $(0, 0)$ }"			
	Note	If a candidate would score M1 A1 M1 A1 in part (b) and there is an error in their solution (e.g. a third transformation given) then give M1 A1 M1 A0	1		
(c)	Note	$8^{11} = 2^{33} = 8589934592$			
	Note	$8^{12} = 2^{36} = 68719476736$			
	Note	(their \mathbf{P}^2) must be a genuine attempt at \mathbf{P}^2 or must be for (their \mathbf{P}^2) seen in part (a)			
	Note	Allow M1 A1 for writing $\mathbf{P}^{35} = 2^{34} \begin{pmatrix} -1 & \sqrt{3} \\ -\sqrt{3} & -1 \end{pmatrix}$ Stating $k = 34$, $a = \sqrt{3}$, $b = -\sqrt{3}$ from no working is M1 A1			
	Note	Stating $k = 34$, $a = \sqrt{3}$, $b = -\sqrt{3}$ from no working is M1 A1	_		
	Note	Give M0 A0 for $\mathbf{P}^4 = 2^3 \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \Rightarrow \mathbf{P}^{35} = 2^{34} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$			

inter 2019		www.mystudybro.com	Mathematics F1
st Paper (Marl	(Scheme)	This resource was created and owned by Pearson Edexcel Question 7 Notes Continued	WFM01
			$\overline{(5)}(1, \overline{(5)})$
7. (c)	Note	Writing down $(8\mathbf{I})^{11} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ or $(2\mathbf{I})^{33} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$	$ \begin{pmatrix} \sqrt{3} \\ -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} $
		or $(8\mathbf{I})^{11} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^2$ or $(2\mathbf{I})^{33} \times \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}^2$	
		with no attempt to evaluate $\begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix} \begin{pmatrix} -1 & -\sqrt{3} \\ \sqrt{3} & -1 \end{pmatrix}$ is M0	
	Note	Allow M1 for applying $\mathbf{P}^{35} = (\mathbf{P}^3)^{11} \times \mathbf{P}^2$ or $\mathbf{P}^{35} = \mathbf{P}^{33} \times \mathbf{P}^2$	
		E.g. Allow M1 for $\begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix}^{11} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ or $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}^{33} \begin{pmatrix} -2 \\ -2\sqrt{3} \end{pmatrix}$	$\begin{pmatrix} 2\sqrt{3} \\ -2 \end{pmatrix}$
		or $\binom{8^{11}}{0} \binom{-2}{-2\sqrt{3}} \binom{2\sqrt{3}}{-2\sqrt{3}} = 2^{-2}$ or $\binom{2^{33}}{0} \binom{-2}{-2\sqrt{3}} \binom{-2}{-2\sqrt{3}} = 2^{-2}$	
		or $(8)^{11} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$ or $(2)^{33} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -2 & 2\sqrt{3} \\ -2\sqrt{3} & -2 \end{pmatrix}$	
	Note	Allow M1 for $(2)^{35} \begin{pmatrix} \cos 240 & -\sin 240 \\ \sin 240 & \cos 240 \end{pmatrix}$ or $(2)^{35} \begin{pmatrix} \cos 4200 & -\sin 240 \\ \sin 4200 & \cos 240 \end{pmatrix}$	4200 (4200)
		or $(2)^{35} \begin{pmatrix} -0.5 & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -0.5 \end{pmatrix}$ or equivalent in radians	
	Note	Give M0 for $\mathbf{P}^{35} = (\mathbf{P}^3)^{11} \times \mathbf{P}^2$ by itself	
	Note	Give M0 for $\mathbf{P}^{35} = \mathbf{P}^{33} \times \mathbf{P}^2$ by itself	

www.mystudybro.com

	ark Scheme) This resource was o	created and owned	by Pearson Ec	dexcel V	VFM01
Question Number	Scheme Notes			Mark	
8.	(i) $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 1+4n & -8n \\ 2n & 1-4n \end{pmatrix}$ (ii) $u_1 = 8, u_2 = 40, u_{n+2} = 8u_{n+1} - 12u_n \Rightarrow u_n = 6^n + 2^n$				
(i)	$n = 1, \text{ LHS} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix},$ $\text{RHS} = \begin{pmatrix} 1+4(1) & -8(1) \\ 2(1) & 1-4(1) \end{pmatrix} =$	$= \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$		Shows or states that er LHS = RHS = $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$ $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$, RHS = $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$	
	(Assume the result is true for $n = k$)				
	$ \begin{pmatrix} 5 & -8\\ 2 & -3 \end{pmatrix}^{k+1} = \begin{pmatrix} 1+4k & -8k\\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5\\ 2\\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{pmatrix} -8 \\ -3 \end{pmatrix}$ $\begin{pmatrix} 8 \\ 2 \end{pmatrix} \begin{pmatrix} 1+4k & -8k \end{pmatrix}$	$\begin{pmatrix} 1+4k\\ 2k & 1 \end{pmatrix}$	States intention to multiply $ \begin{array}{c} -8k \\ -4k \end{array} by \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} $ (either way round)	M1
				dependent on the	
	$= \begin{pmatrix} 5+20k-16k & -8-32k+24k \\ 10k+2-8k & -16k-3+12k \end{pmatrix}$ or $= \begin{pmatrix} 5+20k-16k & -40k-8+ \\ 2+8k-6k & -16k-3+ \end{pmatrix}$		$\begin{pmatrix} -k & -8 - 8k \\ 2k & -4k - 3 \end{pmatrix}$	previous M mark Multiplies out to give a	dM1
	$= \begin{pmatrix} 1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1) \end{pmatrix}$		Uses a	<i>lgebra</i> to achieve this result with no errors	A1
	If the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to be				
	true for $n = 1$,	, then the result is	true for all n ($(\in \mathbb{Z}^+)$	cso
(ii)		C1 0.1	·,· · ,	1:	(
(11)	{n=1,} $u_1 = 6^1 + 2^1 = 8;$ {n=2,} $u_2 = 6^2 + 2^2 = 40$			rmediate step of e.g. $6^1 + 2^1$ writing an intermediate step of e.g. $6^2 + 2^2$ or $36 + 4$	B1
	(Assume the result is true for $n = k$	and $n = k + 1$)		$01 \text{ e.g. } 0 + 2 \ 01 \ 30 + 4$	
	$\{u_{k+2} = 8u_{k+1} - 12u_k \Longrightarrow \}$ $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k)$	· · · · · · · · · · · · · · · · · · ·		substitute $u_{k+1} = 6^{k+1} + 2^{k+1}$ 2^k into $u_{k+2} = 8u_{k+1} - 12u_k$ Condone one slip	M1
	either $\{u_{k+2}\} = 48(6^k) + 16(2^k) - 12$ = $36(6^k) + 4(2^k)$ = $6^2(6^k) + 2^2(2^k)$ or $\{u_{k+2}\} = 8(6^{k+1} + 2^{k+1}) - 2(6^k)$		Express	es u_{k+2} correctly in terms of only 6^k and 2^k	A1
	or $\{u_{k+2}\} = 8(6^{k+1}) + 2(2^{k+1})$ or $\{u_{k+2}\} = 8(6^{k+1}) - 2(6^{k+1}) + 4$ or $\{u_{k+2}\} = 48(6^k) - 12(6^k) + 4(6^k) + 4(6^$		or only 6^{k+1} and 2^{k+1} - $2(6^{k+1}) + 4(2^{k+2}) - 3(2^{k+2})$ - $12(6^k) + 4(2^{k+2}) - 3(2^{k+2})$	(M1 or ePEN)	
	$= 6^{k+2} + 2^{k+2}$	(2) 5(2)	dependent on the previous A mark Uses algebra in a complete method to achieve this result with no errors		A1
	If the result is true for $n = k$ and for $n = k + 1$, then it is true for $n = k + 2$.				Δ 1
	As the result has been shown to be true for $n = 1$ and $n = 2$,				A1 cso
	then the	he result <u>is true for</u>	$\underline{all n} \ (\in \mathbb{Z}^+)$		(

Winter 2019 Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Paper (Ma	ark Scheme)	This resource was created and owned by Pearson Edexcel WFM01
		Question 8 Notes
8. (i)	Note	Final A1 is dependent on all previous marks being scored.
		It is gained by candidates conveying the ideas of all four underlined points in part (i)
		either at the end of their solution or as a narrative in their solution.
	Note	"Assume for $n = k$, $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^k = \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix}$ " satisfies the requirement "true for $n = k$
	Note	"For $n \in \mathbb{Z}^+$, $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 1+4n & -8n \\ 2n & 1-4n \end{pmatrix}$ " satisfies the requirement "true for all n"
	Note	Give B0 for stating LHS = RHS by itself with no reference to LHS = RHS = $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$
	Note	Allow for B1 for stating either, $n = 1$, $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}$ or $\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 1+4 & -8 \\ 2 & 1-4 \end{pmatrix}$
	Note	E.g. $\binom{1+4k}{2k} \binom{5}{2k-1-4k} \binom{5}{2} \binom{-8}{2} = \binom{1+4(k+1)}{2(k+1)} \binom{-8(k+1)}{1-4(k+1)}$ with no intermediate working
		is M1 dM0 A0 A0
	Note	E.g. Writing any of
		$ \bullet \begin{pmatrix} 1+4k & -8k \\ 2k & 1-4k \end{pmatrix} \begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 5+20k-16k & -8-32k+24k \\ 10k+2-8k & -16k-3+12k \end{pmatrix} = \begin{pmatrix} 1+4(k+1) & -8(k+1) \\ 2(k+1) & 1-4(k+1) \end{pmatrix} $
		• $\binom{1+4k}{2k} \binom{5}{2k-3} = \binom{5+4k}{2+2k} \binom{-8-8k}{-4k-3} = \binom{1+4(k+1)}{2(k+1)} \binom{-8(k+1)}{2(k+1)}$
		is M1 dM1 A1
(ii)	Note	Ignore $u_3 = 8u_2 - 12u_1 = 8(40) - 12(8) = 224$ as part of their solution to (i)
	Note	Ignore $\{n = 3,\}$ $u_2 = 6^3 + 2^3 = 224$ as part of their solution to (i)
	Note	Full marks in (i) can be obtained for an equivalent proof where $n = k \rightarrow n = k - 1$; i.e. $k \equiv k - 1$
	Note	Final A1 is dependent on all previous marks being scored.
		It is gained by candidates conveying the ideas of all four underlined points in part (ii)
		either at the end of their solution or as a narrative in their solution.
	Note	"Assume for $n = k$, $u_k = 6^k + 2^k$ and for $n = k + 1$, $u_{k+1} = 6^{k+1} + 2^{k+1}$ " satisfies the requirement "true for $n = k$ and $n = k + 1$ "
	Note	"For $n \in \mathbb{Z}^+$, $u_n = 6^n + 2^n$ " satisfies the requirement "true for all n"
	Note	Writing $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 6^{k+2} + 2^{k+2}$ with no intermediate working
		is M1 A0 A0 A0
	Note	E.g. Writing either
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 48(6^k) + 16(2^k) - 12(6^k + 2^k) = 6^{k+2} + 2^{k+2}$
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 36(6^k) + 4(2^k) = 6^{k+2} + 2^{k+2}$
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 6^2(6^k) + 2^2(2^k) = 6^{k+2} + 2^{k+2}$
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 8(6^{k+1} + 2^{k+1}) - 2(6^{k+1}) - 6(2^{k+1}) = 6^{k+2} + 2^{k+2}$
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 6(6^{k+1}) + 2(2^{k+1}) = 6^{k+2} + 2^{k+2}$
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = 8(6^{k+1}) - 2(6^{k+1}) + 4(2^{k+2}) - 3(2^{k+2}) = 6^{k+2} + 2^{k+2}$
		• $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = (6)(6^{k+1}) + 4(2^{k+2}) - 3(2^{k+2}) = 6^{k+2} + 2^{k+2}$
		is M1 A1 A1
	Note	Writing $u_{k+2} = 8(6^{k+1} + 2^{k+1}) - 12(6^k + 2^k) = (6)6^{k+1} + 2^{k+2} = 6^{k+2} + 2^{k+2}$
	11010	
		with no intermediate working is M1 A0 A0 A0

	Question 8 Notes Continued		
8. (ii)	Note Full marks in (i) can be obtained for an equivalent proof where e.g.		
		• $n = k, n = k + 1, \rightarrow n = k - 2, n = k - 1;$ i.e. $k \equiv k - 2$	
8. (i), (ii)	Note	Note Referring to <i>n</i> as a real number their conclusion is final A0	
	Note	Referring to <i>n</i> as any integer in their conclusion is final A0	
	Note	Condone $n \in \mathbb{Z}^*$ as part of their conclusion for the final A1	

Question	Scheme	resource was created and owned by Pearson Edexcel me Notes			
Number				Marks	
9.	$z_1 = -1 - i$, $z_2 = 3 - 4i$; (d) $\frac{p + iq - 8z_1}{p - iq - 8z_2} = 3i$				
(a)	$z_1 - z_2 = -4 + 3i$	1 1 2	$z_2 = -4 + 3i$, seen or implied	B1	
	$\{z_1 - z_2 = -4 + 3i \Longrightarrow\}$		$z_1 - z_2 = \alpha + \beta \mathbf{i}; \ \alpha < 0, \ \beta > 0$		
	$\arg(z_1 - z_2) = \pi - \tan^{-1}\left(\frac{3}{4}\right)$	$\arg(z_1 - z_2)$ so the (netry to find an expression for nat $\arg(z_1 - z_2)$ is in the range 1.58, 3.14) or (90°, 180°) -4.71) or (-180° - 270°)	M1	
	$\{\arg(z_1 - z_2) = \pi - 0.6435011 \Rightarrow \}$ $\arg(z_1 - z_2) = 2.4980915 \{= 2.498 (3 \text{ dp})\}$,	or (-3.15, -4.71) or (-180°, -270°) awrt 2.498		
	$arg(z_1 - z_2) = 2.4760715 \{-2.476(5)dp\}$		uwit 2.190	Al	
(b) Way 1	$\left\{\frac{z_1}{z_2}\right\} = \left\{\frac{(-1-i)(3+4i)}{(3-4i)(3+4i)}\right\}$		es numerator and denominator conjugate of the denominator	M1	
	$= \frac{-3 - 4i - 3i + 4}{9 + 16} \left\{ = \frac{1 - 7i}{25} \right\}$		correct (with $i^2 = -1$ applied) correct (with $i^2 = -1$ applied)	A1	
	$=\frac{1}{25}-\frac{7}{25}i$ or $0.04-0.28i$		$\frac{1}{25} - \frac{7}{25}$ i or $0.04 - 0.28i$	A1	
				(
(b) Way 2	$\frac{-1-i}{3-4i} = a + ib \implies -1-i = (a+ib)(3-4i)$ $\{\text{Real} \implies\} -1 = 3a+4b$ $\{\text{Imaginary} \implies\} -1 = -4a+3b$	z_2 attempts to equ	Sets $\frac{z_1}{z_2} = a + ib$, multiplies both sides by z_2 , attempts to equate both the real part and the imaginary part of the resulting equation and		
	$\Rightarrow a = \dots \text{ or } b = \dots$ $a = \frac{1}{25} \text{ or } 0.04 , b = -\frac{7}{25} \text{ or } -0.28$		solves to give at least one of $a =$ or $b =$ At least one of either <i>a</i> or <i>b</i> is correct		
	So, $\frac{z_1}{z_2} = \frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$		$\frac{1}{25} - \frac{7}{25}i \text{or} 0.04 - 0.28i$		
	22 20 20		25 25	(
(c)	$\left\{ \left \frac{z_1}{z_2} \right = \right\} \sqrt{\left(\frac{1}{25}\right)^2 + \left(\frac{-7}{25}\right)^2} \left\{ \text{or} \frac{ z_1 }{ z_2 } = \right\}$	$\frac{\sqrt{(-1)^2 + (-1)^2}}{\sqrt{(3)^2 + (-4)^2}}$	Finds $\left \frac{z_1}{z_2}\right $ by applying a full Pythagoras method	M1	
	$\left\{=\frac{\sqrt{50}}{25}\right\} = \frac{\sqrt{2}}{5}$		$\frac{\sqrt{2}}{5} \text{ or } \frac{1}{5}\sqrt{2}$	A1 cao	
(d)	n + i a + 2 - 2i(n + i a + 2 - 2)	Multiplies both	sides by only (n ig 8z)	(
(u)	$p + iq - 8z_1 = 3i(p - iq - 8z_2)$ $\Rightarrow p + iq - 8(-1 - i) = 3i(p - iq - 8(3 - 4i))$	and substitutes t	Multiplies both sides by only $(p - iq - 8z_2)$, and substitutes the given values for z_1 and z_2		
	$\Rightarrow p + iq + 8 + 8i = 3pi + 3q - 72i - 96$ {Real $\Rightarrow p + 8 = 3q - 96$	attempts to	ent on the previous M mark equate both the real part and part of the resulting equation	dM1	
	{Imaginary \Rightarrow } $q+8=3p-72$		Both correct equations be simplified or un-simplified	A1	
	$\begin{cases} p-3q=-104\\ 3p-q=80 \end{cases} \Rightarrow \begin{array}{c} p-3q=-104\\ 9p-3q=240 \end{cases}$	Obtains two equa and solve	ent on the previous M mark ations both in terms of p and q is them simultaneously to give east one of $p = \dots$ or $q = \dots$	ddM1	
	$\Rightarrow p = 43, q = 49$		p = 43, q = 49	A1	
_				(

Mathematics F1

	Question 9 Notes			
9. (a)	Note	Allow M1 (implied) for awrt 2.5, truncated 2.4, awrt -3.8 , truncated -3.7 , awrt 143° , awrt -217° or truncated -216°		
	Note	Give B1 M1 A1 for writing $\arg(z_1 - z_2) = \text{ awrt } 2.498$ from no working.		
(b)	Note	Give 2 nd A0 for writing down $\frac{1-7i}{25}$ with no reference to $\frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$		
	Note	Give M1 1 st A1 for writing down $\frac{1-7i}{25}$ from no working in (b)		
	Note	Give M1 A1 A1 for writing down $\frac{1-7i}{25} = \frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$ from no working in (b)		
	Note	Give M1 A1 A1 for writing down $\frac{1}{25} - \frac{7}{25}i$ or $0.04 - 0.28i$ from no working in (b)		
	Note	Give 2 nd A0 for simplifying a correct $\frac{1}{25} - \frac{7}{25}i$ to give a final answer of 1-7i		
(c)	Note	M1 can be implied by awrt 0.283 or truncated 0.282		
	Note	Give A0 for $\frac{\sqrt{50}}{25}$ or 0.28284 without reference to $\frac{\sqrt{2}}{5}$ or $\frac{1}{5}\sqrt{2}$		
	Note	Give M0 for $\sqrt{\left(\frac{1}{25}\right)^2 + \left(\frac{-7i}{25}\right)^2}$ unless recovered by later working		
	Note	Give M1 A1 for writing $\left \frac{z_1}{z_2}\right = \frac{\sqrt{2}}{5}$ from no working.		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom