

Mark Scheme (Results)

January 2017

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code WFM01_01_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- WFM01
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to $x=...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

WFM01

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

January 2017 WFM01 Further Pure Mathematics F1 **Mark Scheme**

Question Number	Scheme	Notes	Marks		
1.	$f(x) = 2^x - 10\sin x - 2$, x measured in radians				
(a)	f(2) = -7.092974268 f(3) = 4.588799919		Attempts to find value for both $f(2)$ and $f(3)$	1 1 1 1	
	Sign change {negative, positive} {and $f(x)$ is continuous} therefore {a root} a is between $x = 2$ and $x = 3$	f(3) = awrt	Both f(2) = awrt - 7 and 5 or truncated 4 or truncated 4. sign change and conclusion	5, A1 cso	
(b)	$\frac{a-2}{"7.092974268"} = \frac{3-a}{"4.588799919"}$ or $\frac{a-2}{3-a} = \frac{"7.092974268"}{"4.588799919"}$ or $\frac{a-2}{"7.092974268"} = \frac{3-2}{"4.588799919" + "7.092974268"}$	A correct linear interpolation method. Do not allow the mark if a total of one or three negative lengths are used or either fraction is the wrong way up. This mark may be implied	is ee if M1		
	Either $a = \left(\frac{(3)("7.092974268") + (2)("4.58879991974268")}{"4.588799919" + "7.092974268"}\right)$ or $a = 2 + \left(\frac{"7.092974268"}{"4.588799919" + "7.092974268"}\right)$ or $a = 2 + \left(\frac{"-7.092974268"}{"-4.588799919" + "-7.092974268"}\right)$	dependent on the previous M mark Rearranges to make $\partial =$	K.		
	$\{a = 2.607182963\} \bowtie a = 2.607 (3 dp)$	68")	2.60	7 A1 cao	
				(3)	
(b) Way 2	$\frac{x}{"7.092974268"} = \frac{1-x}{"4.588799919"} \Rightarrow x = \frac{"7}{1}$	7.092974268 11.68177419	·" = 0.6071829632		
	<i>a</i> = 2 + 0.6071829632		Finds x using a correct method α iangles and applies "2 + their α		
	${a = 2.607182963} \bowtie a = 2.607 (3 dp)$		2.60	7 A1 cao	
(b) Way 3	= P x = _	4.588799919 11.68177419	— = 0.39281/0366 I		
	a = 3 - 0.3928170366	Finds x using a correct method of similar triangles and applies "3 - their x "			
	${a = 2.607182963} \bowtie a = 2.607 (3 dp)$		2.60	7 A1 cao	
				5	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1

	Question 1 Notes				
1. (a)	A1	correct solution only Candidate needs to state both $f(2) = awrt - 7$ and $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and conclusion. Reference to change of sign or e.g. $f(2) f(3) < 0$ or a diagram or $f(3) = awrt 5$ or truncated 4.5 along with a reason and conclusion. Reference to change of sign or e.g. $f(2) f(3) < 0$ or a diagram or $f(3) = awrt 5$ or truncated 4.5 along with a reason and $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4.5 along with a reason and conclusion is $f(3) = awrt 5$ or truncated 4.5			
(a)	Note	In degrees, $f(2) = 1.651005033$, $f(3) = 5.476640438$			
	Note	Some candidates will write $f(2) = 4$, $f(3) = -0.4147$			

Winter 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Mathematics F1 WFM01

Question Number	Scheme	Notes	Marks
2.	$2x^2 - x + 3 =$	= 0 has roots a, b	
	Note: Parts (a) and	(b) can be marked together.	
(a)	$a + b = \frac{1}{2}, ab = \frac{3}{2}$	Both $a + b = \frac{1}{2}$ and $ab = \frac{3}{2}$	B1
		Attangue de maladidade et la colonia de	(1)
(b)	$\frac{1}{a} + \frac{1}{b} = \frac{b+a}{ab} = \frac{\frac{1}{2}}{\frac{3}{2}}$	Attempts to substitute at least one of their $(a + b)$ or their ab into $\frac{b+a}{ab}$	M1
	$=\frac{1}{3}$	$\frac{1}{3}$ from correct working	A1 cso
			(2)
(c)	$Sum = \left(2a - \frac{1}{b}\right) + \left(2b - \frac{1}{a}\right)$	Uses at least one of $2(\text{their } (a + b))$ or their	
	$=2(a+b)-\left(\frac{1}{a}+\frac{1}{b}\right)$	$\frac{1}{a} + \frac{1}{b}$ in an attempt to find a numerical value	M1
	$= 2\left(\frac{1}{2}\right) - \left(\frac{1}{3}\right) = \frac{2}{3}$	for the sum of $\left(2a - \frac{1}{b}\right)$ and $\left(2b - \frac{1}{a}\right)$.	
	Product = $\left(2a - \frac{1}{b}\right)\left(2b - \frac{1}{a}\right)$	Expands $\left(2a - \frac{1}{b}\right)\left(2b - \frac{1}{a}\right)$ and uses their	
	$= 4ab - 2 - 2 + \frac{1}{ab}$	ab at least once in an attempt to find a	M1
	$=4\left(\frac{3}{2}\right)-4+\frac{1}{\left(\frac{3}{2}\right)}$	numerical value for the product of $\left(2a - \frac{1}{b}\right)$ and $\left(2b - \frac{1}{a}\right)$.	
	$= 6 - 4 + \frac{2}{3} = \frac{8}{3}$	product of $(2a - \frac{1}{b})$ and $(2b - \frac{1}{a})$.	
	$x^2 - \frac{2}{3}x + \frac{8}{3} = 0$	Applies x^2 - (their sum) x + their product (Can be implied) Note: (" = 0" not required for this mark.)	M1
	$3x^2 - 2x + 8 = 0$	Any integer multiple of $3x^2 - 2x + 8 = 0$ including the "= 0"	A1
			(4)
1			7

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1 WFM01

		Question 2 Notes
2. (a)	Note	Finding $a + b = \frac{1}{2}$, $ab = \frac{3}{2}$ by writing down a , $b = \frac{1 + \sqrt{23}i}{4}$, $\frac{1 - \sqrt{23}i}{4}$ or by applying
		$a + b = \left(\frac{1 + \sqrt{23}i}{4}\right) + \left(\frac{1 - \sqrt{23}i}{4}\right) = \frac{1}{2} \text{ and } ab = \left(\frac{1 + \sqrt{23}i}{4}\right) \left(\frac{1 - \sqrt{23}i}{4}\right) = \frac{3}{2}$
		scores B0 in part (a).
(b), (c)	Note	Those candidates who apply $\partial + \partial = \frac{1}{2}$, $\partial b = \frac{3}{2}$ in part (b) and/or part (c) having
		written down/applied ∂ , $b = \frac{1 + \sqrt{23}i}{4}$, $\frac{1 - \sqrt{23}i}{4}$ in part (a) will be
		penalised the final A mark in part (b) and penalised the final A mark in part (c).
(b)	Note	Applying a , $b = \frac{1 + \sqrt{23}i}{4}$, $\frac{1 - \sqrt{23}i}{4}$ explicitly in part (b) will score M0A0.
		E.g.: Give no credit for $\frac{1}{1 + \sqrt{23}i} + \frac{1}{1 - \sqrt{23}i} = \frac{1}{3}$
		4 4
		or for $\frac{1}{a} + \frac{1}{b} = \frac{b+a}{ab} = \left(\left(\frac{1+\sqrt{23}i}{4} \right) + \left(\frac{1-\sqrt{23}i}{4} \right) \right) \cdot \left(\left(\frac{1+\sqrt{23}i}{4} \right) \left(\frac{1-\sqrt{23}i}{4} \right) \right) = \frac{1}{3}$
(c)	Note	Candidates are not allowed to apply ∂ , $b = \frac{1 + \sqrt{23}i}{4}$, $\frac{1 - \sqrt{23}i}{4}$ explicitly in part (c).
	Note	A correct method leading to a candidate stating $p = 3$, $q = -2$, $r = 8$ without writing a
		final answer of $3x^2 - 2x + 8 = 0$ is final A0

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1 WFM01

Question Number		Scheme	Notes	Marks			
3.	$f(x) = x^4$	$+2x^3+26x^2+32x+160,$	$x_1 = -1 + 3i$ is given.				
		$x_2 = -1 - 3i$	Writes down the root -1 - 3i Note: -1 - 3i needs to be stated explicitly somewhere in the candidate's working for B1	B1			
	$x^2 + 2x + 10$		Attempt to expand $(x - (-1+3i))(x - (-1-3i))$ or $(x - (-1+3i))(x - (\text{their complex } x_2))$ or any valid method to establish a quadratic factor e.g. $x = -1 \pm 3i \bowtie x + 1 = \pm 3i \bowtie x^2 + 2x + 1 = -9$ or sum of roots -2 , product of roots 10 to give $x^2 \pm (\text{their sum})x + (\text{their product})$	M1			
			$x^2 + 2x + 10$ Attempts to find the other quadratic factor.	A1			
	f(x) = (x	$^2 + 2x + 10)(x^2 + 16)$	Attempts to find the other quadratic factor. e.g. using long division to get as far as $x^2 +$ or e.g. $f(x) = (x^2 + 2x + 10)(x^2 +)$	M1			
			$x^2 + 16$	A1			
	$\left\{x^2 + 16 = \right\}$	$=0 \triangleright x = $ = $\pm \sqrt{16}i$; = $\pm \sqrt{16}i$	dependent on only the previous M mark Correct method of solving <i>their</i> 2^{nd} quadratic factor to give $x =$	dM1			
			factor to give $x = \dots$ 4 i and -4 i	A1			
				(7)			
			Question 3 Notes	7			
3.	Note $x_1 = -1 + 3i$, $x_2 = -1 - 3i$ leading to $(x - 1 + 3i)(x - 1 - 3i)$ is 1st M0 1st A0						
	Note	Give 3 rd M1 for $x^2 + k = 0$, $k > 0$ \Rightarrow at least one of either $x = \sqrt{k}i$ or $x = -\sqrt{k}i$					
		Therefore $x^2 + 16 = 0$ leading to a final answer of $x = \sqrt{16}i$ only is 3^{rd} M1.					
	Note	$x^2 + 16 = 0$ leading to $x = \pm \sqrt{(16i)}$ unless recovered is 3^{rd} M0 3^{rd} A0.					
	Note	Give 3 rd M0 for $x^2 + k = 0$, $k > 0$ $\triangleright x = \pm ki$					
	Note	Give 3 rd M0 for $x^2 + k = 0$, $k > 0$ $\Rightarrow x = \pm k$ or $x = \pm \sqrt{k}$					
			Therefore $x^2 + 16 = 0$ leading to $x = \pm 4$ is 3^{rd} M0.				
		Therefore $x^2 + 16 = 0$ leading to $(x + 4)(x - 4) = 0 \Rightarrow x = \pm 4$ is 3^{rd} M0.					
	Note	No working leading to $x = -1 - 3i$, $4i$, $-4i$ is B1M0A0M0A0M0A0.					
	Note	Candidates can go from	$x^2 + 16 = 0$ to $x = \pm 4i$ for the final dM1A1 marks.				
	3 rd dM1		for a correct method for solving <i>their</i> quadratic $x^2 + k$, x	> 0			
	Note	e.g. their 2 nd quadratic i	$x^2 - 16 = 0$ leading to $(x + 4)(x - 4) = 0 \Rightarrow x = \pm 4$ gets 3	rd M1.			

www.mystudybro.comThis resource was created and owned by Pearson Edexcel **Mathematics F1**

Past Paper (Mark Scheme)

Question Number	Scheme			Notes		Marks
4. (a)	$\left\{ \sum_{r=1}^{n} r(2r +$	$+1)(3r+1) = \begin{cases} & \bigcap_{r=1}^{n} \left(\frac{6r^3 + 5r^2 + r}{r} \right) \end{cases}$		$6r^3 + 5r^2 + r$		B1
		$(n+1)^2 + 5\left(\frac{1}{6}n(n+1)(2n+1)\right) +$,	Attempts to expand $r(2r+1)(3r+1)$ and attempts to substitute at least one correct standard formula into their resulting expression.		M1
				Correct expressi	on (or equivalent)	A1
	$=\frac{1}{6}n(n+$	-1)(9n(n+1) + 5(2n+1) + 3)		dependent on the part to factorise at least o substitute all three s	ast $n(n+1)$ having	dM1
	$=\frac{1}{6}n(n+$	$-1)(9n^2+19n+8)$	Correct completion with no arrows			A1 cso
			20			(5)
(b)	Let f(n)	$= \frac{1}{6}n(n+1)(9n^2+19n+8). S$	So $\sum_{r=10}^{20} r(2r+1)$	(3r+1) = f(20) - f(9)		
	$=\left(\frac{1}{6}(20)\right)$	$ (20+1)(9(20)^2+19(20)+8) - \left(\frac{1}{6}(9)(9+1)(9(9)^2+19(9)+8)\right) $ Attempts to find either $f(20) - f(9)$ or $f(20) - f(10)$				M1
	$\begin{cases} = \left(\frac{1}{6}\right)(20) \end{cases}$	$(9)(21)(3988) - \left(\frac{1}{6}(9)(10)(908)\right) = 279160 - 13620 = 265540$				A1
				•		(2)
			04	4 NI - 4		7
4. (a)	Note	Applying e.g. $n = 1$, $n = 2$, $n = 1$ to give $a = 9$, $b = 19$, $c = 8$ is		ed equation without a	pplying the standar	d formulae
	Alt 1	Alt Method 1: Using $\frac{3}{2}n^4$ +	$\frac{14}{3}n^3 + \frac{9}{2}n^2 +$	$\frac{4}{3}n \circ \frac{1}{6}an^4 + \frac{1}{6}(a+b)$	$(a)n^3 + \frac{1}{6}(b+c)n^2 + \frac$	1 cn o.e.
	dM1 A1 cso	Equating coefficients and find Finds $a = 9, b = 19, c = 8$ and	ds at least two	of $a = 9$, $b = 19$, $c = 3$	3	
	Alt 2	Alt Method 2: $6\left(\frac{1}{4}n^2(n+1)\right)$	$\left(\frac{1}{6}n(n+1)\right)^2$	$+1)(2n+1) + \left(\frac{1}{2}n(n+1)\right)$	$(n+1) \equiv \frac{1}{6}n(n+1)(a+1)$	$an^2 + bn + c$
	dM1	Substitutes $n = 1$, $n = 2$, $n = 3$	into this ident	ity o.e. and finds at le	east two of $a = 9, b$	= 19, c = 8
	A1	Finds $a = 9, b = 19, c = 8.$				
	Note	Allow final dM1A1 for $\frac{3}{2}n^4$	$+\frac{14}{3}n^3+\frac{9}{2}n^2$	$+\frac{4}{3}n \text{ or } \frac{1}{6}n(9n^3+28n^3+26n^3+6n^3+26n^3+6n^3+6n^3+6n^3+6n^3+6n^3+6n^3+6n^3+$	$8n^2 + 27n + 8)$	
		or $\frac{1}{6}(9n^4 + 28n^3 + 27n^2 + 8n^3)$	$n) \rightarrow \frac{1}{6}n(n+1)$	1) $(9n^2 + 19n + 8)$, from	n no incorrect work	ing.
(b)	Note	Give M1A0 for applying f (20	0) - f(10). i.e	. 279160 - 20130 {=	259030}	
	Note	Give M0A0 for applying 20(
	Note	Give M0A0 for applying 20(, , , , ,			
	Note	Give M0A0 for listing individ	dual terms. e.g	g. 6510 + 8602 +	+ 42978 + 50020 =	265540

Mathematics F1

Winter 2017 www.mystudybro.com Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number	Scheme			Notes	Marks
5.	z =	$= -7 + 3i; \frac{1}{1}$	$\frac{z}{+i} + w = 3$	- 6i	
(a)	$\left\{ \left z \right = \sqrt{(-7)^2 + (3)^2} \right\} = \sqrt{58} \text{ or } $	7.61577		$\sqrt{58}$ or awrt 7.62	B1
(b)	$\arg z = \rho - \arctan\left(\frac{3}{7}\right)$ $\operatorname{or} = \frac{\rho}{2} + \arctan\left(\frac{7}{3}\right)$ $\operatorname{or} = -\rho - \arctan\left(\frac{3}{7}\right)$		$ \begin{array}{c} 2^{\text{nd}} & 0 \\ (1) & 0 \end{array} $	etry in order to find an angle in the quadrant. i.e. in the range of either $57, 3.14$ or $(-3.14, -4.71)$ or $(90^{\circ}, 180^{\circ})$ or $(-180^{\circ}, -270^{\circ})$. by itself is not sufficient for M1.	(1) M1
					A1 o.e.
(c) Way 1	$\frac{(-7+3i)}{(1+i)}\frac{(1-i)}{(1-i)} + w = 3-6i$	+ $w = 3 - 6i$ $\frac{(-7 + 3i)(1 - i)}{(1 + i)(1 - i)} + w = 3 - 6i \text{ or } \frac{z}{(1 + i)(1 - i)} + w = 3 - 6i$ or can be implied by $-2 + 5i + w = 3 - 6i$			M1
	-2 + 5i + w = 3 - 6i w = 5 - 11i				dM1
(c)	z + w(1+i) = (3-6i)(1+i) $w(1+i) = (9-3i) - (-7+3i)$	Fully corr	ect method o	of multiplying each term by (1 + i)	(3) M1
Way 2	$w = \frac{(16 - 6i)}{(1 + i)} \frac{(1 - i)}{(1 - i)}$ $w = 5 - 11i$	Rearra	_	pendent on the previous M mark e $w =$ and multiplies by $\frac{(1-i)}{(1-i)}$ 5 - 11i	dM1
					(3)
(d)	Im ↑ (-7,3)	Т		Plotting -7 + 3i correctly. st be indicated by a scale (could be axes) or labelled with coordinates or a complex number <i>z</i> .	B1
	0	Re T		Plotting their <i>w</i> correctly. st be indicated by a scale (could be axes) or labelled with coordinates or a complex number <i>w</i> .	B1ft
	(5, -11)			B0 if both -7 + 3i and their w are relative to each other without any scale or labelled coordinates.	
					8

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number		Scheme			Notes	Marks
6.	f	$(x) = x^3 - \frac{1}{2x} + x^{\frac{3}{2}}, x > 0$				
(a)		$\mathcal{C}(x) = 3x^2 + \frac{1}{2}x^{-2} + \frac{3}{2}x^{\frac{1}{2}}$	$x^3 \rightarrow$	$\Rightarrow \pm Ax^2 \text{ or } -$	At least one of either $\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx^{\frac{1}{2}}$	M1
(11)	or f	$\mathcal{C}(x) = 3x^2 + (2x)^{-2}(2) + \frac{3}{2}x^{\frac{1}{2}}$			B and C are non-zero constants. differentiated terms are correct Correct differentiation.	A1
	$\alpha \simeq 0.6$	$\frac{1}{160000000000000000000000000000000000$			dM1	
	$\left\{a = 0.64\right\}$	dependent on all 4 previous marks 0.642 on their first iteration (Ignore any subsequent iterations)			A1 cso cao	
	C	Correct differentiation followed by		et answer so	cores full marks in (a)	
		Correct answer with no	working	scores no n	narks in (a)	(5)
(b) Way 1	, ,	Chooses a suitable interval for x , which is within ± 0.002020826 within ± 0.002020826 least one attempt to evaluate $f(x)$.			M1	
	•	ge {negative, positive} {and $f(x)$ is} therefore {a root} $\partial = 0.642$ (3 d		Both va	lues correct awrt (or truncated) sf, sign change and conclusion.	A1 cso
						(2)
(b)		Newton-Raphson again Using &			g. <i>a</i> = 0.64200226971	
Way 2		$\alpha \simeq 0.642 - \frac{0.0001949626}{3.651474882} \left\{ = 0.64 \right.$ $\alpha \simeq 0.642022697 - \frac{0.0002778408}{3.651497787} \left\{ = 0.64 \right.$			Evidence of applying Newton-Raphson for a second time on their answer to part (a)	M1
	a = 0.64	42 (3 dp)			a = 0.642 (3 dp)	A1 cso
		Note: You can recove	r work f	or Way 2 in		(2)
			0 "	(N		7
((-)	NT. 4		Question		0 mith no midomf1 '	41 ₄ a
6. (a)	Note	Incorrect differentiation followed NR formula is final dM0A0.				
	Final This mark can be implied by applying at least one correct <i>value</i> of either $f(0.6)$ or $f(0.6)$ in $0.6 - \frac{f(0.6)}{f(0.6)}$. So just $0.6 - \frac{f(0.6)}{f(0.6)}$ with an incorrect answer and no other evidence scores final dM0A0.			ce		
	Note	If a candidate writes $0.6 - \frac{f(0.6)}{f(0.6)}$	= 0.642	with no dif	ferentiation, send the response to	review.

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Past Paper (Mark Scheme)

			Question 6 Notes				
6. (b)	A1	a reason and conclusion. Reference or a diagram or < 0 and > 0 to be a correct conclusion, e.g. ∂	f their values for $f(x)$ to awrt (or truncated) 1 sf along verence to change of sign or e.g. $f(0.6415) \hat{f}(0.6425) < \mathbf{or}$ one negative, one positive are sufficient reasons. The $f(0.642)$ is $f(0.642)$. Ignore the presence or absence of any realler eason and conclusion is "change of sign, so $f(0.642)$ is $f(0.6425) < f(0.6425)$.	0 ere must ference to			
	Note	Stating "root is in between 0.64 is not sufficient for A1.	15 and 0.6425" without some reference to $\partial = 0.642$ ((3 dp)			
	Note						
	Note	Conclusions to part (b) Their conclusion needs to convey that they understand that $a = 0.642$ to 3 decimal places. Therefore acceptable conclusions are: e.g. 1: $a = 0.642$ (3 dp) e.g. 2: (a) is correct to 3 dp {Note: their answer to part (a) must be 0.642} e.g. 3: my answer to part (a) is correct to 3 dp {Note: their answer to part (a) must be 0.642} e.g. 4: the answer is correct to 3 d.p. {Note: their answer to part (a) must be 0.642} Note that saying "a is correct to 3 dp" or "0.642 is correct" or "a = 0.642" are not acceptable conclusions.					
	Note	$0.642 - \frac{f(0.642)}{f(0.642)} = 0.642(3 \mathrm{dp})$) is sufficient for M1A1 in part (b).				
6. (b)	Note	x 0.6415 0.6416 0.6417 0.6418 0.6419 0.6420 0.6421 0.6422 0.6423 0.6424 0.6425	f(x) -0.001630649 -0.001265547 -0.000900435 -0.000535312 -0.000170180 0.000194963 0.000560115 0.000925278 0.001290451 0.001655634 0.002020827				

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics F1

۱۸/	ΝЛ	Λ.	1

Question Number		Scheme		Notes	Marks		
7. (i)(a)	Reflection	1		Reflection	B1		
	in the y-ax	xis.		dependent on the previous B mark Allow y-axis or $x = 0$	dB1		
						(2)	
(i)(a)	Stretch sc	ale factor -1		Stretch scale factor -1	B1		
Way 2	parallel to	the x-axis		dependent on the previous B mark parallel to the <i>x</i> -axis	dB1		
				-		(2)	
(b)	$\left\{ \mathbf{B} = \right\} \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$		$\begin{pmatrix} 3 & \dots \\ \dots & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & \dots \\ \dots & 3 \end{pmatrix}$	M1		
		,		Correct matrix	A1		
				-		(2)	
		Note: Parts (ii)(a) and (ii	i)(b) can	be marked together.			
	$\{k=\}\sqrt{(}$	$\overline{(-4)^2 - (3)(-3)}$; = 5	Att	empts $\sqrt{\pm 16 \pm 9}$ or uses full method of	М1.		
(ii)(a)	or			trigonometry to find $k =$	M1;		
(11)(a)	$k\cos q =$	$-4, k\sin q = -3$		5 only	A1 cac	0	
	to give $Q = \dots$ and then $k = \dots$		Johny				
		2		II.		(2)	
	$5\cos q = -$	-4 , $5\sin q = -3$, $\tan q = \frac{3}{4}$		Uses trigonometry to find an expression in the range			
(b)	or $\tan^{-1}\left(\frac{3}{4}\right)$ and e.g. $q = p + \tan^{-1}\left(\frac{3}{4}\right)$			(3.14, 4.71) or (-3.14, -1.57)			
				or (180°, 270°) or (-180°, -90°)			
	${q = p + }$	0.64350} = 3.78509{= 3.79 (2	(dp)	awrt 3.79 or awrt - 2.50	A1		
						(2)	
(a)	$\left\{\mathbf{M}^{-1} = \right\} \frac{1}{25} \begin{pmatrix} -4 & -3\\ 3 & -4 \end{pmatrix}$			$\frac{1}{25} \text{ or } \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix}$	M1		
(c)				$\frac{1}{25} \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix}$ or $\begin{pmatrix} -0.16 & -0.12 \\ 0.12 & -0.16 \end{pmatrix}$ o.e.	A1 o.e	: .	
						(2)	
)wast!	a 7 Notes		10	
7. (i)	Note	Give B1B0 for "Reflection in the		n 7 Notes			
(i)	Note			g. "enlargement parallel to the <i>x</i> -axis"			
(ii)(b)	Note	Allow M1 (implied) for awrt 217					
(ii)(b)	Note						
(ii) (c)	Note	Allow M1 for $\begin{pmatrix} -0.8 & -0.6 \\ 0.6 & -0.8 \end{pmatrix}$					

Winter 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Mathematics F1

Question Number	Scheme	Notes	Marks		
8.	$C: y^2 = 4ax$, a is a positive constant. $P(at^2, 2at)$ lies on C ; k, p, q are constants.				
(a)	$y = 2a^{\frac{1}{2}}x^{\frac{1}{2}} > \frac{dy}{dx} = \frac{1}{2}(2)a^{\frac{1}{2}}x^{-\frac{1}{2}} = \frac{\sqrt{a}}{\sqrt{x}}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}$:		
	$y^2 = 4ax \triangleright 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 4a$		$py\frac{\mathrm{d}y}{\mathrm{d}x} = q$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 2a \left(\frac{1}{2at}\right)$		$py \frac{dy}{dx} = q$ their $\frac{dy}{dt} = \frac{1}{\text{their } \frac{dx}{dt}}$		
	$\frac{dy}{dx} = a^{\frac{1}{2}}x^{-\frac{1}{2}} \text{ or } 2y\frac{dy}{dx} = 4a \text{ or } \frac{dy}{dx} = 2$	$aa\left(\frac{1}{2at}\right)$	Correct differentiation	A1	
	So, $m_N = -t$ Applies $m_N = \frac{-1}{m_T}$, where m_T is found from using calculus.			M1	
	Can be implied by later working				
	$y - 2at = -t(x - at^2)$ Correct straight line method for an equation of a normal where $m_N \begin{pmatrix} 1 & m_T \end{pmatrix}$ is found from using calculus.			M1	
	leading to $y + tx = at^3 + 2at$ (*) Correct solution only			A1	
	Note: m_N must be a function of	of t for the	2 nd M1 and the 3 rd M1 mark.		(5)
(b)	Coordinates of B are $(5a, 0)$ $(5a, 0)$. Condone $x = 5a$ if coordinates are not stated.			B1	
					(1)
(c)	$ \begin{cases} \text{their } (5a, 0) \text{ into } y + tx \end{cases} $	$= at^3 + 2$	$at \triangleright $ $5at = at^3 + 2at$		
	$\left\{m_{BP}=\right\}$	$\frac{2at - 0}{at^2 - 5a}$	$\frac{1}{t} = -t$		
	$PB^2 = (at^2 - 5a)^2 + (2at)^2 \Rightarrow \frac{6}{3}$	$\frac{\mathrm{d}(PB^2)}{\mathrm{d}t} = 2$	$2(at^2 - 5a)2at + 2(2at)2a = 0$	M1	
	$PB^2 = a^2t^4 - 10a^2t^2 + 25a^2 + 4a^2t^2 = a^2$	$^2t^4 - 6a^2t^2$	+ $25a^2$ $\triangleright \frac{d(PB^2)}{dt} = 4a^2t^3 - 12a^2t = 0$		
	Substitutes their coordinates of <i>B</i> into the r	normal equ	eation or finds m_{BP} and sets this equal to		
	their m_N or minimises PB or PB^2 to obtain	in an equa	ation in a and t only. Note: $t \circ q$ or p.		
	$t^3 - 3t = 0$ or $t^2 - 3 = 0 \bowtie t =$	1	dependent on the previous M mark Solves to find $t =$	dM1	
	$\{Q, R \text{ are}\}\ (3a, 2\sqrt{3}a) \text{ and } (3a, -2\sqrt{3}a)$		At least one set of coordinates is correct. Both sets of coordinates are correct.	A1 A1	
			Both sets of coordinates are correct.		(4)
(d)	$A_{ros} ROP = \frac{1}{(2(2a\sqrt{3}))(5a-3a)}$	Poir	its are in the form $B(ka, 0)$, $Q(\partial, b)$		
	Area $BQR = \frac{1}{2}(2(2a\sqrt{3}))(5a - 3a)$		and $R(a, -b), k \mid 0$ and	3.64	
	or = $\frac{1}{2}$ $\begin{vmatrix} 5a & 3a & 3a & 5a \\ 0 & 2\sqrt{3}a & -2\sqrt{3}a & 0 \end{vmatrix}$	apı	plies either $\frac{1}{2} \left\ \left(ka - a \right) \right\ \left(2b \right)$ or writes	M1	
	. 2 [down a correct ft determinant statement.		
	$=4a^2\sqrt{3}$		$4a^2\sqrt{3}$	A1	(2)
					(2) 12
	1	ı		1	

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number		Scheme	Notes	Marks	
8. (c) Way 2	$y^{2} = 4ax \text{ into } (x - 5a)^{2} + y^{2} = r^{2}$ $(x - 5a)^{2} + 4ax = r^{2}$ $x^{2} - 10ax + 25a^{2} + 4ax = r^{2}$ $x^{2} - 6ax + 25a^{2} - r^{2} = 0$ $\{"b^{2} - 4ac = 0" \bowtie \} 36a^{2} - 4(1)(25a^{2} - r^{2}) = 0$ $36a^{2} - 100a^{2} + 4r^{2} = 0$ $4r^{2} = 64a^{2} \bowtie r^{2} = 16a^{2} \bowtie r = 4a$ So $r = 4a$ gives $x^{2} - 6ax + 25a^{2} - 16a^{2} = 0$ $x^{2} - 6ax + 9a^{2} = 0 \bowtie (x - 3a)(x - 3a) = 0$ $\bowtie x = 3a$		Substitutes $y^2 = 4ax$ into $(x - \text{their } x_A)^2 + y^2 = r^2$ and applies " $b^2 - 4ac = 0$ " to the resulting quadratic equation.	M1	
			dependent on the previous M mark Obtains $r = ka$, $k > 0$, where k is a constant and uses this result to form and solve a quadratic to find x which is in terms of a .	dM1	
	$\begin{cases} y^2 = 4ax \mid \\ \end{cases}$	\Rightarrow $y^2 = 4a(3a) = 12a^2 \Rightarrow y = \pm 2\sqrt{3}a$	At least one set of		
	$\{Q, R \text{ are}\}\ (3a, 2\sqrt{3}a) \text{ and } (3a, -2\sqrt{3}a)$		coordinates is correct. Both sets of coordinates are correct.	A1 A1	
				(4)	
	Question 8 Notes				
8. (c)	A marks Allow $(3a, \sqrt{12}a)$ and $(3a, -\sqrt{12}a)$ as exact alternatives to $(3a, 2\sqrt{3}a)$ and $(3a, -2\sqrt{3}a)$ respectively.				

Mathematics F1 WFM01

Winter 2017 www.mystudybro.com Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes		Marks		
9.	(i) $\bigcap_{r=1}^{n} (4r^3 - 3r^2 + r) = n^3(n+1)$; (ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9					
(i)	Shows or states both LHS = 2 and RHS = 2 or states LHS = RHS = $\frac{1}{2}$		B1			
	(Assume the result is true for $n = k$)					
	$ \bigcap_{r=1}^{k+1} (4r^3 - 3r^2 + r) = k^3(k+1) + 4(k+1)^3 - 3(k+1)^2 + (k+1)^3 - 3(k+1)^2 + (k+1)^3 - 3(k+1)^3 + (k+1)^3 - 2(k+1)^3 + (k+1)^3 + ($	<i>k</i> + 1)		Adds the $(k+1)^{th}$ term to the sum of k terms	M1	
	$= (k+1) \left[k^3 + 4(k+1)^2 - 3(k+1) + 1 \right]$ or $(k+1) \left[k^3 + 4k^2 + 5k + 2 \right]$ or $(k+2) \left[k^3 + 3k^2 \right]$	+3k+1		dependent on the previous M mark . Takes out a factor of either $(k + 1)$ or $(k + 2)$	dM1	
	= (k+1)(k+1)(k+2) dependent of	on both the	_	evious M marks. Factorises out $0(k+1)()$ or $(k+1)(k+2)()$	ddM1	
	$= (k+1)^3(k+1+1)$ or $= (k+1)^3(k+2)$		Ac	hieves this result with no errors.	A1	
	If the result is true for $n = k$, then it is true for k	n=k+1.	As th	e result has been shown to be		
	true for $n = 1$, then the resu				A1 cso	
	Note: Expanded quartic is $k^4 + 5k^3 + 9k^2 + 7k + 2$				6	
(ii)	$f(1) = 5^2 + 3 - 1 = 27$			f(1) = 27 is the minimum	B1	
Way 1	$f(k+1) - f(k) = (5^{2(k+1)} + 3(k+1) - 1) - (5^{2k} + 3k - 1)$	- 1)		Attempts $f(k+1) - f(k)$	M1	
	$f(k+1) - f(k) = 24(5^{2k}) + 3$,				
	$= 24(5^{2k} + 3k - 1) - 9(8k - 3)$			$24(5^{2k} + 3k - 1)$ or $24f(k)$	A1	
	or = $24(5^{2k} + 3k - 1) - 72k + 27$			-9(8k-3) or $-72k+27$	A1	
		dependent on at least one of the previous accuracy				
	or $f(k+1) = 24f(k) - 72k + 27 + f(k)$ mar	marks being awarded. Makes $f(k+1)$ the subject			dM1	
	or $f(k+1) = 25(5^{2k} + 3k - 1) - 72k + 27$	and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$				
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k$</u>	n=k+1, A	As the	e result has been shown to be	A 1 aga	
	true for $n = 1$, then the resul	t is true fo	r all <i>i</i>	$n(\widehat{1})$	A1 cso	
				_	(6)	
(ii)	$f(1) = 5^2 + 3 - 1 = 27$			f(1) = 27 is the minimum	B1	
Way 2	$f(k+1) = 5^{2(k+1)} + 3(k+1) - 1$			Attempts $f(k+1)$	M1	
	$f(k+1) = 25(5^{2k}) + 3k + 2$					
	$= 25(5^{2k} + 3k - 1) - 9(8k - 3)$			$25(5^{2k} + 3k - 1)$ or $25f(k)$	A1	
	or = $25(5^{2k} + 3k - 1) - 72k + 27$			-9(8k-3) or $-72k+27$	A1	
				t one of the previous accuracy ded. Makes $f(k+1)$ the subject	dM1	
	or $f(k+1) = 25(5^{2k} + 3k - 1) - 72k + 27$	nd express	es it i	in terms of $f(k)$ or $(5^{2k} + 3k - 1)$		
	If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be					
	true for $n = 1$, then the result is true for all $n(\widehat{1})$			A1 cso		
					12	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	Scheme		Notes	Marks
	(ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9			
General Method: Using $f(k+1) - mf(k)$; where m is an integer				
$f(1) = 5^2 + 3 - 1 = 27$ $f(1) = 27$ is the minimum		f(1) = 27 is the minimum	B1	
f(k+1)-	$mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2(k+1)} + 3(k+1) - 1)$	$2^{2k} + 3k - 1$	Attempts $f(k+1) - mf(k)$	M1
$f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$				
= (2	$(5-m)(5^{2k}+3k-1)-9(8k-3)$	(25	$(5-m)(5^{2k}+3k-1)$ or $(25-m)f(k)$	A1
or = (2	$(5-m)(5^{2k}+3k-1) - 72k + 27$		-9(8k-3) or $-72k+27$	A1
f(k+1) = (25 - m)f(k) - 9(8k - 3) + mf(k) or $f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject and expresses it in			dM1	
				A1 cso
				B1
f(k+1) -	· · · · · · · · · · · · · · · · · · ·	$\frac{1}{2^k} + 3k - 1$	Attempts $f(k+1) - mf(k)$	M1
	$m = 2$ and $27(5^{2k})$			A1
e.g. $m = -$	$-2 P f(k+1) + 2f(k) = 2/(5^{2k}) + 9$	9 <i>K</i>	m = -2 and $9k$	A1
dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject				
				A1 cso
<u>true for $n = 1$</u> , then the result <u>is true for all n</u> (\hat{l}				
• $\{f(k+1) = 25f(k) - 72k + 27\} \bowtie f(k+1) = 225M - 72k + 27$				
Question 9 Notes				
Note	LHS = RHS by itself is not sufficient for the 1 st B1 mark in part (i).			
Note	Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in that part. It is gained by candidates conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution.			
Note In part (ii), Way 4 there are many alternatives where candidates focus on isolating $b(5)$ where b is a multiple of 9. Listed below are some alternative results:				^{2k}),
$f(k+1) = 36(5^{2k}) - 11f(k) + 36k - 9$ $f(k+1) = 27(5^{2k}) - 2f(k) + 9k$ $f(k+1) = 9(5^{2k}) + 16f(k) - 45k + 18$ See the next page for how these are derived.				
	$f(k+1) = (2 - 1)^{-1}$ or = (2 or = (2 or f(k+1) or f(k+1) - 1) or f(k+1) - 1 or f(k	General Method: Using f(k f(1) = $5^2 + 3 - 1 = 27$ $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5)$ $f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + 1$ $= (25 - m)(5^{2k} + 3k - 1) - 9(8k - 3)$ or $= (25 - m)(5^{2k} + 3k - 1) - 72k + 27$ f(k+1) = (25 - m)f(k) - 9(8k - 3) + mf(k) or $f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ If the result is true for $n = k$, then it is true for $n = 1$, then the result is true for $n = 1$, then the result is $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5)$ $f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + 1$ e.g. $f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + 1$ $f(k+1) - mf(k) = (25 - m)(6^{2k}) + 3k(1 - m) + 1$ $f(k+1) - mf(k) = (25 - m)(6^{2k}) + 3k(1 - m) + 1$ $f(k+1) - mf(k) = (25 - m)(6^{2k}) + 3k(1 - m) + 1$ $f(k+1) - mf(k) = (25 - m)(6^{2k}) + 3k(1 -$	General Method: Using $f(k+1) - mf(k)$; where $f(1) = 5^2 + 3 - 1 = 27$ $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 3k - 1)$ $f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ $= (25 - m)(5^{2k} + 3k - 1) - 9(8k - 3)$ or $= (25 - m)(5^{2k} + 3k - 1) - 72k + 27$ $f(k+1) = (25 - m)f(k) - 9(8k - 3) + mf(k)$ or $f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ If the result is true for $n = k$, then it is true for $n = k + 1$, As true for $n = 1$, then the result is is true for $n = 1$, then the result is $n = 1$. $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 3k - 1)$ $f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ e.g. $m = -2$ $polysia = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m$	General Method: Using $f(k+1) - mf(k)$; where m is an integer $f(1) = 5^2 + 3 - 1 = 27$ $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 3k - 1)$ $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 3k - 1)$ $= (25 - m)(5^{2k} + 3k - 1) - 9(8k - 3)$ or $= (25 - m)(5^{2k} + 3k - 1) - 72k + 27$ $f(k+1) = (25 - m)f(k) - 9(8k - 3) + mf(k)$ or $f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be true for $n = 1$, then the result is is true for all $n = 1$ at tempts $f(k+1) - mf(k) = (25 - m)(5^{2k} + 3k - 1) - (25 - m)(5^{2k} + 3k - 1)$ $f(k+1) - mf(k) = (25 - m)f(k) - 72k + 27 + mf(k)$ General Method: Using $f(k+1) - mf(k)$ $f(1) = 5^2 + 3 - 1 = 27$ $f(1) = 27 \text{ is the minimum}$ $f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 3k - 1)$ $f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$ $e.g. m = -2 \Rightarrow f(k+1) + 2f(k) = 27(5^{2k}) + 9k$ $m = -2 \text{ and } 27(5^{2k})$ $m =$

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	Question 9 Notes Continued					
9. (ii)	(ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9 The A1A1dM1 marks for Alternatives using $f(k+1) - mf(k)$					
	Way 4.1	$f(k+1) = 25(5^{2k}) + 3k + 2$				
		$= 36(5^{2k}) - 11(5^{2k}) + 3k + 2$				
		$= 36(5^{2k}) - 11[(5^{2k}) + 3k - 1] + 36k - 9$	$m = -11$ and $36(5^{2k})$ m = -11 and $36k - 9$	A1 A1		
		$f(k+1) = 36(5^{2k}) - 11f(k) + 36k - 9$ or $f(k+1) = 36(5^{2k}) - 11[(5^{2k}) + 3k - 1] + 36k - 9$	as before	dM1		
	Way 4.2	$f(k+1) = 25(5^{2k}) + 3k + 2$				
		$= 27(5^{2k}) - 2(5^{2k}) + 3k + 2$				
		$= 27(5^{2k}) - 2[(5^{2k}) + 3k - 1] + 9k$	$m = -2$ and $27(5^{2k})$	A1		
		$f(k+1) = 27(5^{2k}) - 2f(k) + 9k$ or $f(k+1) = 27(5^{2k}) - 2[(5^{2k}) + 3k - 1] + 9k$	m = -2 and $9k$ as before	dM1		
	Way 4.3	$f(k+1) = 25(5^{2k}) + 3k + 2$				
		$= 18(5^{2k}) + 7(5^{2k}) + 3k + 2$				
		$= 18(5^{2k}) + 7[(5^{2k}) + 3k - 1] - 18k + 9$	$m = 7$ and $18(5^{2k})$ m = 7 and $-18k + 9$	A1 A1		
		$f(k+1) = 18(5^{2k}) + 7f(k) - 18k + 9$ or $f(k+1) = 18(5^{2k}) + 7[(5^{2k}) + 3k - 1] - 18k + 9$	as before	dM1		
	Way 4.4	$f(k+1) = 25(5^{2k}) + 3k + 2$				
		$= 9(5^{2k}) + 16(5^{2k}) + 3k + 2$				
		$= 9(5^{2k}) + 16[(5^{2k}) + 3k - 1] - 45k + 18$	$m = 16$ and $9(5^{2k})$ m = 16 and $-45k + 18$	A1 A1		
		$f(k+1) = 9(5^{2k}) + 16f(k) - 45k + 18$ or $f(k+1) = 9(5^{2k}) + 16[(5^{2k}) + 3k - 1] - 45k + 18$	as before	dM1		

Winter 2017

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel