

Winter 2017

Mark Scheme (Results)

January 2017

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017 Publications Code WFM01_01_1701_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2017 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme		Notes		Marks
1.	$f(x) = 2^x - 10\sin x - 2$, x measured in radians				
(a)	f(2) = -7.092974268 f(3) = -4.588799919		Attempts to fin for both $f(2)$		M1
	Sign change {negative, positive} {and $f(x)$ is continuous} therefore {a root} <i>a</i> is between $x = 2$ and $x = 3$	f(3) = awrt	Both f(2) = awrt 5 or truncated 4 or trunca sign change and cor	ated 4.5,	A1 cso
(b)	$\frac{a-2}{"7.092974268"} = \frac{3-a}{"4.588799919"}$ or $\frac{a-2}{3-a} = \frac{"7.092974268"}{"4.588799919"}$ or $\frac{a-2}{"7.092974268"} = \frac{3-2}{"4.588799919" + "7.092}$	2974268"	A correct linear inter method. Do not al mark if a total of one negative lengths are u either fraction is th way up. This mark	low this or three sed or if e wrong	(2) M1
	Either $a = \left(\frac{(3)("7.092974268") + (2)("4.588799919)}{"4.588799919" + "7.092974268"}\right)$ or $a = 2 + \left(\frac{"7.092974268"}{"4.588799919" + "7.092974268"}\right)$	dependent on the previous M mark. Rearranges to make <i>a</i> =		dM1	
	or $a = 2 + \left(\frac{"-7.092974268"}{"-4.588799919" + "-7.0929742}\right)$ $\left\{a = 2.607182963\right\} \bowtie a = 2.607 (3 \text{ dp})$	68"		2.607	A1 cao
					(3)
(b) Way 2	$\frac{x}{"7.092974268"} = \frac{1-x}{"4.588799919"} \Rightarrow x = \frac{"7}{1}$	7.092974268 1.68177419	." = 0.6071829632		
	<i>a</i> = 2 + 0.6071829632		Finds x using a correct method of tangles and applies " $2 + \text{their } x$ "		M1 dM1
	${a = 2.607182963} \bowtie a = 2.607 (3 dp)$			2.607	A1 cao
(b) Way 3	= P x =	4.588799919 1.68177419			
	<i>a</i> = 3 - 0.3928170366		Finds x using a correct m iangles and applies "3 -		M1 dM1
	${a = 2.607182963} \bowtie a = 2.607 (3 dp)$			2.607	A1 cao
					5

	Question 1 Notes					
1. (a)	A1	correct solution only Candidate needs to state both $f(2) = awrt - 7$ and $f(3) = awrt 5$ or truncated 4 or truncated 4.5 along with a reason and conclusion . Reference to change of sign or e.g. $f(2) f(3) < 0$ or a diagram or < 0 and > 0 or one negative, one positive are sufficient reasons. There must be a (minimal, not incorrect) conclusion, e.g. root is between 2 and 3, hence root is in the				
		interval, QED and a square are all acceptable. Ignore the presence or absence of any reference to continuity. A minimal acceptable reason and conclusion is "change of sign, hence root".				
(a)	Note					
	Note	Some candidates will write $f(2) = 4$, $f(3) = -0.4147$				

Winter 2017 Past Paper (Mark Scheme)

Question Number	Scheme	Notes	Marks			
2.	$2x^2 - x + 3 = 0 \text{ has roots } a, b$ Note: Parts (a) and (b) can be marked together.					
	Note: Parts (a) and	(b) can be marked together.				
(a)	$a + b = \frac{1}{2}, ab = \frac{3}{2}$	Both $\partial + b = \frac{1}{2}$ and $\partial b = \frac{3}{2}$	B1			
			(1)			
(b)	$\frac{1}{a} + \frac{1}{b} = \frac{b+a}{ab} = \frac{\frac{1}{2}}{\frac{3}{2}}$	Attempts to substitute at least one of their $(a + b)$ or their ab into $\frac{b+a}{ab}$	M1			
	$=\frac{1}{3}$	$\frac{1}{3}$ from correct working	A1 cso			
			(2)			
(c)	$\mathbf{Sum} = \left(2\partial - \frac{1}{b}\right) + \left(2b - \frac{1}{\partial}\right)$	Uses at least one of $2(\text{their } (a + b))$ or their				
	$=2(a+b)-\left(\frac{1}{a}+\frac{1}{b}\right)$	$\frac{1}{a} + \frac{1}{b}$ in an attempt to find a numerical value	M1			
	$= 2\left(\frac{1}{2}\right) - \left(\frac{1}{3}\right) = \frac{2}{3}$	for the sum of $\left(2a - \frac{1}{b}\right)$ and $\left(2b - \frac{1}{a}\right)$.				
	Product = $\left(2a - \frac{1}{b}\right)\left(2b - \frac{1}{a}\right)$	Expands $\left(2a - \frac{1}{b}\right)\left(2b - \frac{1}{a}\right)$ and uses their				
	$= 4ab - 2 - 2 + \frac{1}{ab}$	ab at least once in an attempt to find a	M1			
	$= 4\left(\frac{3}{2}\right) - 4 + \frac{1}{\left(\frac{3}{2}\right)}$	numerical value for the product of $\left(2a - \frac{1}{b}\right)$ and $\left(2b - \frac{1}{a}\right)$.	IVII			
	$= 6 - 4 + \frac{2}{3} = \frac{8}{3}$					
	$x^2 - \frac{2}{3}x + \frac{8}{3} = 0$	Applies x^2 - (their sum) x + their product (Can be implied) Note: (" = 0" not required for this mark.)	M1			
	$3x^2 - 2x + 8 = 0$	Any integer multiple of $3x^2 - 2x + 8 = 0$ including the "= 0"	A1			
			(4)			
			/			

Winter 2017 Past Paper (Mark Scheme)

		Question 2 Notes
2. (a)	Note	Finding $a + b = \frac{1}{2}$, $ab = \frac{3}{2}$ by writing down a , $b = \frac{1 + \sqrt{23}i}{4}$, $\frac{1 - \sqrt{23}i}{4}$ or by applying
		$ = \frac{1+\sqrt{23}i}{4} + \left(\frac{1-\sqrt{23}i}{4}\right) = \frac{1}{2} \text{ and } ab = \left(\frac{1+\sqrt{23}i}{4}\right)\left(\frac{1-\sqrt{23}i}{4}\right) = \frac{3}{2} $
		scores B0 in part (a).
(b), (c)	Note	Those candidates who apply $a + b = \frac{1}{2}$, $ab = \frac{3}{2}$ in part (b) and/or part (c) having
		written down/applied $a, b = \frac{1 + \sqrt{23}i}{4}, \frac{1 - \sqrt{23}i}{4}$ in part (a) will be
		penalised the final A mark in part (b) and penalised the final A mark in part (c).
(b)	Note	Applying <i>a</i> , <i>b</i> = $\frac{1+\sqrt{23}i}{4}$, $\frac{1-\sqrt{23}i}{4}$ explicitly in part (b) will score M0A0.
		E.g.: Give no credit for $\frac{1}{1+\sqrt{23}i} + \frac{1}{1-\sqrt{23}i} = \frac{1}{3}$
		or for $\frac{1}{a} + \frac{1}{b} = \frac{b+a}{ab} = \left(\left(\frac{1+\sqrt{23}i}{4} \right) + \left(\frac{1-\sqrt{23}i}{4} \right) \right)$, $\left(\left(\frac{1+\sqrt{23}i}{4} \right) \left(\frac{1-\sqrt{23}i}{4} \right) \right) = \frac{1}{3}$
(c)	Note	Candidates are not allowed to apply ∂ , $b = \frac{1 + \sqrt{23}i}{4}$, $\frac{1 - \sqrt{23}i}{4}$ explicitly in part (c).
	Note	A correct method leading to a candidate stating $p = 3, q = -2, r = 8$ without writing a
		final answer of $3x^2 - 2x + 8 = 0$ is final A0

Question Number		Scheme	Notes	Marks		
3.	$\mathbf{f}(x) = x^4$	$+2x^3+26x^2+32x+160,$	$x_1 = -1 + 3i$ is given.			
		$x_2 = -1 - 3i$	Writes down the root -1-3i Note: -1-3i needs to be stated explicitly somewhere in the candidate's working for B1	B1		
		$x^2 + 2x + 10$	Attempt to expand $(x - (-1+3i))(x - (-1-3i))$ or $(x - (-1+3i))(x - (their complex x_2))or any valid method to establish a quadratic factore.g. x = -1 \pm 3i \bowtie x + 1 = \pm 3i \bowtie x^2 + 2x + 1 = -9or sum of roots -2, product of roots 10to give x^2 \pm (their sum)x + (their product)$	M1		
			$x^2 + 2x + 10$	A1		
	$\mathbf{f}(x) = (x^2)$	$x^2 + 2x + 10)(x^2 + 16)$	$x^{2} + 2x + 10$ Attempts to find the other quadratic factor. e.g. using long division to get as far as $x^{2} +$ or e.g. $f(x) = (x^{2} + 2x + 10)(x^{2} +)$	M1		
			$x^2 + 16$	A1		
	${x^2 + 16} =$	$= 0 \bowtie x = $ = $\pm \sqrt{16}i$; = $\pm \frac{1}{2}$	dependent on only the previous M markCorrect method of solving <i>their</i> 2 nd quadratic	dM1		
			$\begin{array}{c} \text{factor to give } x = \dots \\ \text{4i and } -4i \end{array}$	A1		
				(7)		
			Question 3 Notes	Ι		
3.	Note					
	Note	Give 3 rd M1 for $x^2 + k = 0$, $k > 0$ \triangleright at least one of either $x = \sqrt{k}$ i or $x = -\sqrt{k}$				
		Therefore $x^2 + 16 = 0$ leading to a final answer of $x = \sqrt{16}i$ only is 3^{rd} M1.				
	Note	$x^{2} + 16 = 0$ leading to $x = \pm \sqrt{(16i)}$ unless recovered is 3 rd M0 3 rd A0.				
	Note	Give 3^{rd} M0 for $x^2 + k = 0$, $k > 0 \Rightarrow x = \pm ki$				
	Note	Give 3^{rd} M0 for $x^2 + k =$	$x = 0, k > 0 \Rightarrow x = \pm k \text{ or } x = \pm \sqrt{k}$			
		Therefore $x^2 + 16 = 0$ le	eading to $x = \pm 4$ is 3^{rd} MO.			
		Therefore $x^2 + 16 = 0$ leading to $(x + 4)(x - 4) = 0 \triangleright x = \pm 4$ is 3^{rd} M0.				
	Note	No working leading to $x = -1 - 3i$, $4i$, $-4i$ is B1M0A0M0A0M0A0.				
	Note	Candidates can go from	$x^2 + 16 = 0$ to $x = \pm 4i$ for the final dM1A1 marks.			
	3 rd dM1	You can give this mark f which can be a 3TQ.	for a correct method for solving <i>their</i> quadratic $x^2 + k$, k	> 0		
	Note		s $x^2 - 16 = 0$ leading to $(x + 4)(x - 4) = 0 \triangleright x = \pm 4$ gets 3	rd M1.		

Question Number		Scheme		Not	es	Marks
4. (a)	$\left\{\sum_{r=1}^{n} r(2r-$	$(+1)(3r+1) = \begin{cases} a \\ a \\ r=1 \end{cases} (\frac{6r^3 + 5r^2 + r}{r})$			$6r^3 + 5r^2 + r$	B1
	$= 6 \left(\frac{1}{4}n^2\right)$	$(n+1)^2 + 5\left(\frac{1}{6}n(n+1)(2n+1)\right) +$	$\left(\frac{1}{2}n(n+1)\right)$. , , , ,	M1
			Correct expression (or equivalent)			A1
	$=\frac{1}{6}n(n+$	+1)(9n(n+1) + 5(2n+1) + 3)		dependent on the j mpt to factorise at least p substitute all three s	ast $n(n+1)$ having	dM1
	$=\frac{1}{6}n(n+$	$(-1)(9n^2 + 19n + 8)$		Correct completi	on with no errors. a = 9, b = 19, c = 8	A1 cso
			20			(5)
(b)	Let $f(n)$	$= \frac{1}{6}n(n+1)(9n^2+19n+8).$ S	50 $\overset{20}{\overset{20}{\circ}}r(2r+1)$	(3r+1) = f(20) - f(9)		
	$=\left(\frac{1}{6}(20)\right)$	$(20+1)(9(20)^2+19(20)+8)$	$20+1)(9(20)^{2}+19(20)+8) - \left(\frac{1}{6}(9)(9+1)(9(9)^{2}+19(9)+8)\right) = \begin{cases} Attempts to find either f(20) - f(9) \text{ or } f(20) - f(9) \text{ or } f(20) - f(10) \end{cases}$			
	$\begin{cases} = \left(\frac{1}{6}\right)(20) \end{cases}$	$0)(21)(3988) - \left(\frac{1}{6}(9)(10)(908)\right) - \left(\frac{1}{6}(9)(10)(10)(10)(10)(10)(10)(10)(10)(10)(10$	$(21)(3988) - \left(\frac{1}{6}(9)(10)(908)\right) = 279160 - 13620 = 265540$ 265540			
						(2)
			Question	4 Notes		7
4. (a)	Note	Applying e.g. $n = 1, n = 2, n = 1$ to give $a = 9, b = 19, c = 8$ is	= 3 to the print	ed equation without a	pplying the standar	d formulae
	Alt 1	Alt Method 1: Using $\frac{3}{2}n^4$ +	$\frac{14}{2}n^3 + \frac{9}{2}n^2 +$	$\frac{4}{2}n^{\circ}\frac{1}{6}an^{4}+\frac{1}{6}(a+b)$	$(b)n^3 + \frac{1}{c}(b+c)n^2 + \frac{1}{c}(b+c)n^2$	$\frac{1}{cn}$ o.e.
	dM1 A1 cso	Equating coefficients and find Finds $a = 9, b = 19, c = 8$ and	ds at least two	of $a = 9, b = 19, c = 8$	3)
	Alt 2	Alt Method 2: $6\left(\frac{1}{4}n^2(n+1)^2\right) + 5\left(\frac{1}{6}n(n+1)(2n+1)\right) + \left(\frac{1}{2}n(n+1)\right) = \frac{1}{6}n(n+1)(an^2+bn+c)$				
	dM1 A1	Substitutes $n = 1$, $n = 2$, $n = 3$ into this identity o.e. and finds at least two of $a = 9$, $b = 19$, $c = 8$ Finds $a = 9$, $b = 19$, $c = 8$.				= 19, <i>c</i> = 8
	Note	Allow final dM1A1 for $\frac{3}{2}n^4 + \frac{14}{3}n^3 + \frac{9}{2}n^2 + \frac{4}{3}n$ or $\frac{1}{6}n(9n^3 + 28n^2 + 27n + 8)$				
		or $\frac{1}{6}(9n^4 + 28n^3 + 27n^2 + 8n^3)$	or $\frac{1}{6}(9n^4 + 28n^3 + 27n^2 + 8n) \rightarrow \frac{1}{6}n(n+1)(9n^2 + 19n + 8)$, from no incorrect working.			
(b)	Note	Give M1A0 for applying $f(20) - f(10)$. i.e. 279160 - 20130 $\{= 259030\}$				
	Note	Give M0A0 for applying 20(
	Note	Give M0A0 for applying 20(0.655.10
	Note	Give M0A0 for listing individ	dual terms. e.g	g. $6510 + 8602 + \dots$	+ 42978 + 50020 =	265540

Question Number	Scheme			Notes	Marks
5.		$= -7 + 3i; \frac{1}{1}$	$\frac{z}{+i} + w = 3$	- 6i	
(a)	$\left\{ \left z \right = \sqrt{(-7)^2 + (3)^2} \right\} = \sqrt{58} \text{ or }$	7.61577		$\sqrt{58}$ or awrt 7.62	B1
(b)	$\arg z = \rho - \arctan\left(\frac{3}{7}\right)$ or $= \frac{\rho}{2} + \arctan\left(\frac{7}{3}\right)$ or $= -\rho - \arctan\left(\frac{3}{7}\right)$		$2^{nd} c$ (1.2)	etry in order to find an angle in the puadrant. i.e. in the range of either 57, 3.14) or $(-3.14, -4.71)$ r (90°, 180°) or (-180°, -270°).) by itself is not sufficient for M1.	(1) M1
	$\{ = p - 0.40489 \} = 2.7367$ or $\{ = -p - 0.40489 \} = -3.546$	64 { = - 3.55	$\left(2 \mathrm{dp}\right)$	either awrt 2.74 or awrt - 3.55	A1 o.e.
	{ Note: $\arg z = 156.8014^{\circ}$ or				(2)
(c) Way 1	$\frac{(-7+3i)}{(1+i)}\frac{(1-i)}{(1-i)} + w = 3 - 6i$	$\frac{(-7+3i)}{(1+i)}\frac{(1+i)}{(1+i)}$	$\frac{-i}{-i}$ + $w = 3$ - or can be	- 6i or $\frac{z}{(1+i)}\frac{(1-i)}{(1-i)} + w = 3 - 6i$ e implied by $-2 + 5i + w = 3 - 6i$	M1
	-2 + 5i + w = 3 - 6i				
	w = 5 - 11i		der	bendent on the previous M mark Rearranges to make $w = \dots$	dM1
				5 - 11i	A1
					(3)
(c)	z + w(1 + i) = (3 - 6i)(1 + i) w(1 + i) = (9 - 3i) - (-7 + 3i)	Fully corr	ect method o	f multiplying each term by $(1 + i)$	M1
Way 2	W(1+1) = (9-51) - (-7+51)		dor	andont on the provider M mark	
	$w = \frac{(16 - 6i)(1 - i)}{(1 + i)(1 - i)}$	Rearra	-	be denoted by the previous M mark $w = \dots$ and multiplies by $\frac{(1-i)}{(1-i)}$	dM1
	w = 5 - 11i			5 - 11i	A1
					(3)
(d)	(-7,3) Im ▲	Т		Plotting $-7 + 3i$ correctly. at be indicated by a scale (could be axes) or labelled with coordinates or a complex number <i>z</i> .	B1
	0	Re T		Plotting their <i>w</i> correctly. at be indicated by a scale (could be axes) or labelled with coordinates or a complex number <i>w</i> .	B1ft
	(5, -11)	1		Special Case B0 if both $-7 + 3i$ and their <i>w</i> are relative to each other without any scale or labelled coordinates.	
					8

Winter 2017www.mystudybro.comPast Paper (Mark Scheme)This resource was created and owned by Pearson Edexcel

Mathematics F1 WFM01

Question Number		Scheme			Notes	Marks
6.	f	$(x) = x^3 - \frac{1}{2x} + x^{\frac{3}{2}}, x > 0$				
(a)	f	$\mathcal{C}(x) = 3x^2 + \frac{1}{2}x^{-2} + \frac{3}{2}x^{\frac{1}{2}}$	$x^3 - x^3$		At least one of either $\frac{1}{2x} \rightarrow \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \rightarrow \pm Cx^{\frac{1}{2}}$ and <i>C</i> are non-zero constants.	M1
	or f	$\mathcal{U}(x) = 3x^2 + (2x)^{-2}(2) + \frac{3}{2}x^{\frac{1}{2}}$			differentiated terms are correct	A1
		2			Correct differentiation.	A1
	$\begin{cases} \alpha \simeq 0.6 \end{cases}$	$-\frac{f(0.6)}{f'(0.6)} \right\} \Rightarrow \alpha \simeq 0.6 - \frac{-0.152575}{3.6307835}$	<u>3318</u> 893	Valid atte	dent on the previous M mark empt at Newton-Raphson using r values of $f(0.6)$ and $f(0.6)$	dM1
	${a = 0.64}$	420226971} $\triangleright a = 0.642 (3 \text{ dp})$		_	dent on all 4 previous marks 0.642 on their first iteration hore any subsequent iterations)	A1 cso cao
	C	Correct differentiation followed by				
		Correct answer with <u>no</u> v	vorking	scores no m	arks in (a)	(5)
(b)				Chooses a	suitable interval for <i>x</i> , which is	(5)
Way 1	f(0.6415) = -0.001630649 $f(0.6425) = -0.002020826$ within ± 0.0005 of their answer to (a) a		-	M1		
	Ū.	age {negative, positive} {and $f(x)$ is as} therefore {a root} $a = 0.642$ (3 d			lues correct awrt (or truncated) of, sign change and conclusion.	A1 cso
						(2)
(b)	Applying	Newton-Raphson again Using <i>a</i>	= 0.642	or better e.g	g. <i>a</i> =0.64200226971	
Way 2		$\alpha \simeq 0.642 - \frac{0.0001949626}{3.651474882} \left\{ = 0.642022697 - \frac{0.0002778408}{3.651497787} \right\}$			Evidence of applying Newton-Raphson for a second time on their answer to part (a)	M1
		42 (3 dp)			a = 0.642 (3 dp)	A1 cso
		Note: You can recover	r work f	or Way 2 in		(2)
						7
			Question	6 Notes		
6. (a)	Note	Incorrect differentiation followed book NR formula is final dM0A0.	by their e	stimate of <i>E</i>	7 with no evidence of applying	the
	Final dM1 This mark can be implied by applying at least one correct <i>value</i> of either $f(0.6)$ or $f^{\xi}(0.6)$ in $0.6 - \frac{f(0.6)}{f^{\xi}(0.6)}$. So just $0.6 - \frac{f(0.6)}{f^{\xi}(0.6)}$ with an incorrect answer and no other evidence scores final dM0A0.				<i>,</i>	
	Note	If a candidate writes $0.6 - \frac{f(0.6)}{f(0.6)}$	= 0.642	with no diff	ferentiation, send the response to	o review.

		Question 6 Notes
6. (b)	A1	Way 1: correct solution only Candidate needs to state both of their values for $f(x)$ to awrt (or truncated) 1 sf along with a reason and conclusion. Reference to change of sign or e.g. $f(0.6415) f(0.6425) < 0$ or a diagram or < 0 and > 0 or one negative, one positive are sufficient reasons. There must be a correct conclusion, e.g. $\partial = 0.642$ (3 dp). Ignore the presence or absence of any reference to continuity. A minimal acceptable reason and conclusion is "change of sign, so $\partial = 0.642$ (3 dp)."
	Note	Stating "root is in between 0.6415 and 0.6425" without some reference to $a = 0.642$ (3 dp) is not sufficient for A1.
	Note	The root of $f(x) = 0$ is 0.6419466, so candidates can also choose x_1 which is less than 0.6419466 and choose x_2 which is greater than 0.6419466 with both x_1 and x_2 lying in the interval $[0.6415, 0.6425]$ and evaluate $f(x_1)$ and $f(x_2)$.
	Note	Conclusions to part (b) Their conclusion needs to convey that they understand that $a = 0.642$ to 3 decimal places. Therefore acceptable conclusions are: e.g. 1: $a = 0.642$ (3 dp) e.g. 2: (a) is correct to 3 dp {Note: their answer to part (a) must be 0.642} e.g. 3: my answer to part (a) is correct to 3 dp {Note: their answer to part (a) must be 0.642} e.g. 4: the answer is correct to 3 d.p. {Note: their answer to part (a) must be 0.642} Note that saying " a is correct to 3 dp" or "0.642 is correct" or " $a = 0.642$ " are not acceptable conclusions. $0.642 - \frac{f(0.642)}{ft(0.642)} = 0.642(3 dp)$ is sufficient for M1A1 in part (b).
6. (b)	Note	ft(0.642) Helpful Table
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Question Number		Scheme		Notes	Marks
7. (i)(a)	Reflection	n		Reflection	B1
	in the y-a	xis.		dependent on the previous B mark	dB1
				Allow <i>y</i> -axis or $x = 0$	(2)
(i)(a)	Stretch so	cale factor -1		Stretch scale factor -1	B1
Way 2				dependent on the previous B mark	
•••uy _	parallel to	the <i>x</i> -axis		parallel to the <i>x</i> -axis	dB1
					(2)
(b)	${\mathbf{B}} = { \begin{cases} 3 \\ 0 \end{cases}}$	$\begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$		$\begin{pmatrix} 3 & \dots \\ \dots & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & \dots \\ \dots & 3 \end{pmatrix}$	M1
				Correct matrix	A1
					(2)
		Note: Parts (ii)(a) and (ii	i)(b) can	be marked together.	
	$\{k=\}$	$(-4)^2 - (3)(-3); = 5$	Att	tempts $\sqrt{\pm 16 \pm 9}$ or uses full method of	
/··· \ / \				trigonometry to find $k =$	M1;
(ii)(a)	$k\cos q =$	$-4, k\sin q = -3$		· ·	
		= and then $k =$		5 only	A1 cao
					(2)
	$5\cos \alpha =$	-4, $5\sin q = -3$, $\tan q = \frac{3}{4}$		Uses trigonometry to find an expression in the range	
(b)	4			M1	
(0)	or tan ⁻¹	$an^{-1}\left(\frac{3}{4}\right)$ and e.g. $q = p + tan^{-1}\left(\frac{3}{4}\right)$		(3.14, 4.71) or (-3.14, -1.57)	IVII
		(4)		or (180°, 270°) or (-180°, -90°)	
	$\begin{cases} q = p + \end{cases}$	0.64350} = 3.78509{= 3.79 (2	dp	awrt 3.79 or awrt - 2.50	A1
					(2)
(c)	$\{\mathbf{M}^{-1}=\}$	$\frac{1}{25} \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix}$		$\frac{1}{25} \text{ or } \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix}$	M1
		25(3-4)	$\frac{1}{25} \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix} \text{ or } \begin{pmatrix} -0.16 & -0.12 \\ 0.12 & -0.16 \end{pmatrix} \text{ o.e.}$		
					(2)
)	7 Notos	10
7. (i)	Note			n 7 Notes	
(i)	Note	Give B1B0 for "Reflection in the <i>y</i> -axis about (0, 0)".Send to review a response which states, e.g. "enlargement parallel to the <i>x</i> -axis"			
(ii)(b)	Note	Allow M1 (implied) for awrt 217	° or awi	t -143°	
(ii)(b)	Note	$\begin{pmatrix} k\cos q & -k\sin q\\ k\sin q & k\cos q \end{pmatrix} = \begin{pmatrix} -4 & 3\\ -3 & -4 \end{pmatrix}$			
(ii) (c)	Note	Allow M1 for $\begin{pmatrix} -0.8 & -0.6 \\ 0.6 & -0.8 \end{pmatrix}$			

Winter 2017 Past Paper (Mark Scheme)

Question Number	Scheme		Notes	Marks	
8.	$C: y^2 = 4ax$, <i>a</i> is a positive com	stant. $P(at^2, 2)$	(at) lies on C; k, p, q are constants.		
(a)	$y = 2a^{\frac{1}{2}}x^{\frac{1}{2}} \triangleright \frac{dy}{dx} = \frac{1}{2}(2)a^{\frac{1}{2}}x^{-\frac{1}{2}}$	∇x	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}$	-	
	$y^2 = 4ax \triangleright 2y \frac{dy}{dx} = 4a$	ı	$py\frac{\mathrm{d}y}{\mathrm{d}x} = q$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 2a\left(\frac{1}{2at}\right)$		their $\frac{dy}{dt} < \frac{1}{\frac{1}{\frac{dx}{dt}}}$		
	$\frac{dy}{dx} = a^{\frac{1}{2}}x^{-\frac{1}{2}} \text{ or } 2y\frac{dy}{dx} = 4a \text{ or } \frac{dy}{dx} = 2a\left(\frac{1}{2at}\right)$ Correct differentiation		A1		
	So, $m_N = -t$	lies $m_N = \frac{-1}{m_T}$,	where m_T is found from using calculus.	M1	
	2	<u> </u>	Can be implied by later working		
	$y - 2at = -t(x - at^2)$ or $y = -tx + 2at + at^3$		line method for an equation of a normal $m_N \begin{pmatrix} 1 & m_T \end{pmatrix}$ is found from using calculus.	M1	
	leading to $y + tx = at^3 + 2at$ (*)	(*) Correct solution only			
	Note: m_N must be a function	tion of <i>t</i> for the	2 nd M1 and the 3 rd M1 mark.		(5)
(b)	Coordinates of B are $(5a, 0)$	(5a, 0). Condone $x = 5a$ if coordinates are not stated.			
					(1)
(c)	{their $(5a, 0)$ into y	$y + tx = at^3 + 2$	$at \triangleright $ $\} 5at = at^3 + 2at$		
	$\left\{m_{BP} = \right\} \frac{2at - 0}{at^2 - 5a} = -t$				
	$PB^{2} = (at^{2} - 5a)^{2} + (2at)^{2} \vartriangleright \frac{d(PB^{2})}{dt} = 2(at^{2} - 5a)2at + 2(2at)2a = 0$				
	$PB^2 = a^2t^4 - 10a^2t^2 + 25a^2 + 4a^2t^2$	$a^2 = a^2 t^4 - 6a^2 t^4$	$dt^2 + 25a^2 \vartriangleright \frac{d(PB^2)}{dt} = 4a^2t^3 - 12a^2t = 0$	-	
	Substitutes their coordinates of <i>B</i> into	the normal equ	nation or finds m_{BP} and sets this equal to		
	their m_N or minimises PB or PB^2 to obtain an equation in <i>a</i> and <i>t</i> only. Note: $t \circ q$ or <i>p</i> .				
	$t^3 - 3t = 0$ or $t^2 - 3 = 0 \bowtie t =$		dependent on the previous M mark Solves to find $t =$	dM1	
	$\{Q, R \text{ are}\}$ $(3a, 2\sqrt{3}a)$ and $(3a, -2\sqrt{3}a)$	(3 <i>a</i>)	At least one set of coordinates is correct. Both sets of coordinates are correct.	A1 A1	
			Both sets of coordinates are correct.		(4)
(d)	Area $BQR = \frac{1}{2}(2(2a\sqrt{3}))(5a - 3a)$	Poi	nts are in the form $B(ka, 0)$, $Q(a, b)$		
	or $= \frac{1}{2} \begin{vmatrix} 2 & 3a & 3a & 5a \\ 5a & 3a & 3a & 5a \\ 0 & 2\sqrt{3}a & -2\sqrt{3}a & 0 \end{vmatrix}$	ap	and $R(a, -b)$, k^{-1} 0 and plies either $\frac{1}{2} \left(\left \left(ka - a \right) \right \right) \left(2b \right)$ or writes	M1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		down a correct ft determinant statement.		
	$=4a^2\sqrt{3}$		$4a^2\sqrt{3}$	A1	
					(2)
					12

www.mystudybro.com This resource was created and owned by Pearson Edexcel Mathematics F1 WFM01

Question Number	Scheme	Notes	Marks		
8. (c) Way 2	$y^{2} = 4ax \text{ into } (x - 5a)^{2} + y^{2} = r^{2}$ $(x - 5a)^{2} + 4ax = r^{2}$ $x^{2} - 10ax + 25a^{2} + 4ax = r^{2}$ $x^{2} - 6ax + 25a^{2} - r^{2} = 0$ $\left\{ "b^{2} - 4ac = 0" \vartriangleright \right\} 36a^{2} - 4(1)(25a^{2} - r^{2}) = 0$	Substitutes $y^2 = 4ax$ into $(x - \text{their } x_A)^2 + y^2 = r^2$ and applies " $b^2 - 4ac = 0$ " to the resulting quadratic equation.	M1		
	$36a^{2} - 100a^{2} + 4r^{2} = 0$ $4r^{2} = 64a^{2} \bowtie r^{2} = 16a^{2} \bowtie r = 4a$ So $r = 4a$ gives $x^{2} - 6ax + 25a^{2} - 16a^{2} = 0$ $x^{2} - 6ax + 9a^{2} = 0 \bowtie (x - 3a)(x - 3a) = 0$ $\bowtie x = 3a$	dependent on the previous M mark Obtains $r = ka$, $k > 0$, where k is a constant and uses this result to form and solve a quadratic to find x which is in terms of a.	dM1		
	$\{y^{2} = 4ax \ \triangleright \} \ y^{2} = 4a(3a) = 12a^{2} \ \triangleright \ y = \pm 2\sqrt{3}a$ $\{Q, R \text{ are} \} \ (3a, 2\sqrt{3}a) \text{ and } (3a, -2\sqrt{3}a)$	At least one set of coordinates is correct. Both sets of coordinates are correct.	A1 A1 (4)		
	Question 8 Notes				
8. (c)	A marks Allow $(3a, \sqrt{12}a)$ and $(3a, -\sqrt{12}a)$ as e respectively.	exact alternatives to $(3a, 2\sqrt{3}a)$ and $(3a)$	$a, -2\sqrt{3}a)$		

Question Number	Scheme			Notes	Marks
9.	(i) $\bigotimes_{r=1}^{n} (4r^3 - 3r^2 + r) = n^3(n+1);$ (ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9				
(i)	$n = 1:$ LHS = 4 - 3 + 1 = 2, RHS = $1^{3}(1 + 1) = 2$ RHS = 2 or states LHS = R		bows or states both LHS = 2 and $S = 2$ or states LHS = RHS = 2	B1	
	(Assume the result is true for $n = k$) $\bigotimes_{r=1}^{k+1} (4r^3 - 3r^2 + r) = k^3(k+1) + 4(k+1)^3 - 3(k+1)^2 + (k+1)$			Adds the $(k + 1)^{\text{th}}$ term to the sum of k terms	M1
	$= (k+1)\left[k^{3} + 4(k+1)^{2} - 3(k+1) + 1\right]$ or $(k+1)\left[k^{3} + 4k^{2} + 5k + 2\right]$ or $(k+2)\left[k^{3} + 3k^{2} + 3k + 1\right]$			dependent on the previous M mark. Takes out a factor of either $(k + 1)$ or $(k + 2)$	dM1
	= (k+1)(k+1)(k+1)(k+2) dependent on both the previous M marks. Factorises out and obtains either $(k+1)(k+1)()$ or $(k+1)(k+2)()$				
	= $(k+1)^3(k+1+1)$ or = $(k+1)^3(k+2)$ Achieves this result with no errors.				A1
	If the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for all n (\hat{l} (\hat{l})				
	Note: Expanded quartic is $k^4 + 5k^3 + 9k^2 + 7k + 2$				
(ii)	$f(1) = 5^2 + 3 - 1 = 27$ $f(1) = 27$ is the minin				B1
Way 1	$f(k+1) - f(k) = (5^{2(k+1)} + 3(k+1) - 1) - (5^{2k} + 3k - 1)$			Attempts $f(k+1) - f(k)$	M1
	$f(k+1) - f(k) = 24(5^{2k}) + 3$				
	$= 24(5^{2k} + 3k - 1) - 9(8k - 3)$			$24(5^{2k} + 3k - 1)$ or $24f(k)$	A1
	or = $24(5^{2k} + 3k - 1) - 72k + 27$			-9(8k-3) or $-72k+27$	A1
	f(k+1) = 24f(k) - 9(8k-3) + f(k) or $f(k+1) = 24f(k) - 72k + 27 + f(k)$ dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject				dM1
	or $f(k+1) = 25(5^{2k} + 3k - 1) - 72k + 27$ and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$				
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> , As the result has been shown to be <u>true for $n = 1$</u> , then the result is true for all n (\hat{l} (\hat{l})				
(ii) Way 2	$f(1) = 5^2 + 3 - 1 = 27$			f(1) = 27 is the minimum	B1
Way 2	$f(k+1) = 5^{2(k+1)} + 3(k+1) - 1$			Attempts $f(k+1)$	M1
	$f(k+1) = 25(5^{2k}) + 3k + 2$			$2\pi(\pi^{2k} - 2k - 1) = 2\pi(k^{2k})$	A 1
	$= 25(5^{2k} + 3k - 1) - 9(8k - 3)$			$\frac{25(5^{2k}+3k-1) \text{ or } 25f(k)}{-9(8k-3) \text{ or } -72k+27}$	A1
		dependent on at least one of the previous accuracy marks being awarded. Makes $f(k + 1)$ the subject		A1 dM1	
	or $f(k+1) = 25(5^{2k} + 3k - 1) - 72k + 27$ and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$				UIVII
	If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be true for $n = 1$, then the result is true for all $n(\hat{1})$				
			411		

M1 A1 A1 dM1		(ii) $f(n) = 5^{2n} + 3i$					
M1 A1 A1 dM1	f(1) = 27 is the minimum						
M1 A1 A1 dM1		General Method: Using $f(k+1) - mf(k)$; where <i>m</i> is an integer					
A1 A1 dM1	Attempts $f(k+1) - mf(k)$	$f(1) = 5^2 + 3 - 1 = 27$					
A1 dM1		$= (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k})$	f(k+1)				
A1 dM1	$f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$						
dM1	$(5 - m)(5^{2k} + 3k - 1)$ or $(25 - m)f(k)$	$2^{2k} + 3k - 1) - 9(8k - 3)$	= (2				
dM1	- 9(8 <i>k</i> - 3) or - 72 <i>k</i> + 27	$(2^{2k} + 3k - 1) - 72k + 27$	or = (2				
A 1 acc	accuracy marks being awarded. + 1) the subject and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$	f(k+1) = (25 - m)f(k) - 9(8k - 3) + mf(k) or $f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$ dependent on at least one of the previou accuracy marks being awarded Makes $f(k+1)$ the subject and expresses it i					
A1 cso	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> , As the result has been shown to be true for $n = 1$, then the result is is true for all $n(\hat{l})$						
	General Method: Using $f(k+1) - mf(k)$						
B1	f(1) = 27 is the minimum	$=5^2 + 3 - 1 = 27$	Way 4				
M1	Attempts $f(k+1) - mf(k)$	$f(k+1) - mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - m(5^{2k} + 1)$					
	$f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$						
A1	$m = -2$ and $27(5^{2k})$	$P(x) = -2 D f(k+1) + 2f(k) = -2^{2}/(5^{2k}) + 9k$					
A1	m = -2 and $9k$						
	$f(k+1) = 27(5^{2k}) + 9k - 2f(k)$ dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject and expresses it in terms of $f(k)$ or $(5^{2k} + 2k - 1)$						
	and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$ If the result is true for $n - k$ then it is true for $n - k + 1$. As the result has been shown to be						
A1 cso	If the result is true for $n = k$, then it is true for $n = k + 1$. As the result has been shown to be						
		true for $n = 1$, then the result is true for all n (\hat{l} $$)					
		Note Some candidates may set $f(k) = 9M$ and so may prove the follow					
	• $\{f(k+1) = 25f(k) - 9(8k-3)\} \bowtie f(k+1) = 225M - 9(8k-3)$ • $\{f(k+1) = 25f(k) - 72k + 27\} \bowtie f(k+1) = 225M - 72k + 27$						
part.			(i) Note (i) & (ii) Note				
	-	It is gained by candidates conveying the ideas of all four underlined points					
-24		 either at the end of their solution or as a narrative in their solution. Note In part (ii), Way 4 there are many alternatives where candidates focus on isolating 					
5 ^{2K})	Note In part (ii), Way 4 there are many alternatives where candidates focus on isolating $b(5^2)$ where b is a multiple of 0. Listed below are some alternative results:						
, <u>)</u> ,	alternative results:	$f(k+1) = 36(5^{2k}) - 11f(k) + 36k - 9 \qquad f(k+1) = 18(5^{2k}) + 7f(k) - 18k + 9$					
, j,	$19(5^{2k}) + 7f(k) + 10k + 0$						
, ,		$(1) 07(5^{2K}) 0f(1-) 0^{1-}$					
Question 9 Notes Question 9 Notes e LHS = RHS by itself is not sufficient for the 1 st B1 mark in part (i). e Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in that part is gained by candidates conveying the ideas of all four underlined points either at the end of their solution or as a narrative in their solution. In part (ii), Way 4 there are many alternatives where candidates focus on isolating b(5 ²) where b is a multiple of 9. Listed below are some alternative results:							

	Question 9 Notes Continued							
	(ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9							
9. (ii)	The A1A1dM1 marks for Alternatives using $f(k+1) - mf(k)$							
	Way 4.1	$f(k+1) = 25(5^{2k}) + 3k + 2$						
		$= 36(5^{2k}) - 11(5^{2k}) + 3k + 2$						
		$= 36(5^{2k}) - 11[(5^{2k}) + 3k - 1] + 36k - 9$	$m = -11$ and $36(5^{2k})$	A1				
			m = -11 and $36k - 9$	A1				
		$f(k+1) = 36(5^{2k}) - 11f(k) + 36k - 9$	as before	dM1				
		or $f(k+1) = 36(5^{2k}) - 11[(5^{2k}) + 3k - 1] + 36k - 9$		GIVI1				
	Way 4.2	$f(k+1) = 25(5^{2k}) + 3k + 2$						
		$= 27(5^{2k}) - 2(5^{2k}) + 3k + 2$						
		$= 27(5^{2k}) - 2[(5^{2k}) + 3k - 1] + 9k$	$m = -2$ and $27(5^{2k})$	A1				
			m = -2 and $9k$	A1				
		$f(k+1) = 27(5^{2k}) - 2f(k) + 9k$	as before	dM1				
		or $f(k+1) = 27(5^{2k}) - 2[(5^{2k}) + 3k - 1] + 9k$	as before	CIVII				
	Way 4.3	$f(k+1) = 25(5^{2k}) + 3k + 2$						
		$= 18(5^{2k}) + 7(5^{2k}) + 3k + 2$						
		$= 18(5^{2k}) + 7[(5^{2k}) + 3k - 1] - 18k + 9$	$m = 7$ and $18(5^{2k})$	A1				
			m = 7 and $-18k + 9$	A1				
		$f(k+1) = 18(5^{2k}) + 7f(k) - 18k + 9$	as before	dM1				
		or $f(k+1) = 18(5^{2k}) + 7[(5^{2k}) + 3k - 1] - 18k + 9$	us before	GIVII				
	Way 4.4	$f(k+1) = 25(5^{2k}) + 3k + 2$						
		$= 9(5^{2k}) + 16(5^{2k}) + 3k + 2$						
		$= 9(5^{2k}) + 16[(5^{2k}) + 3k - 1] - 45k + 18$	$m = 16$ and $9(5^{2k})$	A1				
			m = 16 and $-45k + 18$	A1				
		$f(k+1) = 9(5^{2k}) + 16f(k) - 45k + 18$	as before	dM1				
		or $f(k+1) = 9(5^{2k}) + 16[(5^{2k}) + 3k - 1] - 45k + 18$		G1711				

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom