

Mark Scheme (Results)

Summer 2017

Pearson Edexcel International A Level in Further Pure Mathematics F1 (WFM01/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017 Publications Code WFM01_01_1706_MS All the material in this publication is copyright © Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- L or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Summer 2017 www.mystudybro.com Past Paper (Mark Scheme) General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = ...$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

www.mystudybro.com This resource was created and owned by Pearson Edexcel

WFM01 Further Pure Mathematics F1

Mark Scheme

Question Number		Scheme	Notes	Marks	
1.		$3x^2$ -	$5x + 1 = 0$ has roots ∂, b		
	a + b =	$\frac{5}{3}, ab = \frac{1}{3}$	Both $a + b = \frac{5}{3}$ and $ab = \frac{1}{3}$, seen or implied	B1	
		$\frac{a^2+b^2}{ab}=\dots$	Attempts to substitute at least one of their $(a^2 + b^2)$ or their ab into $\frac{a^2 + b^2}{ab}$	M1	
	$a^2 + b^2 =$	$=\left(a+b\right)^2-2ab=$	Use of a correct identity for $a^2 + b^2$ (May be implied by their work)	M1	
	$\frac{a}{b} + \frac{b}{a} =$	$\frac{\left(\frac{5}{3}\right)^2 - 2\left(\frac{1}{3}\right)}{\left(\frac{1}{3}\right)} = \frac{\frac{19}{9}}{\frac{1}{3}} = \frac{19}{3}$	dependent on ALL previous marks being awarded $\frac{19}{3}$ or $\frac{57}{9}$ or $6\frac{1}{3}$ or 6.3 o.e. from correct working	A1 cso	
				(4)	
		Question 1 Notes			
		5 1			
1.	Note	Finding $a + b = \frac{3}{3}$, $ab = \frac{1}{3}$	by writing down a , $b = \frac{5 + \sqrt{13}}{6}$, $\frac{5 - \sqrt{13}}{6}$ or by applying		
		$\partial + b = \left(\frac{5 + \sqrt{13}}{6}\right) + \left(\frac{5 - \sqrt{13}}{6}\right)$	$a + b = \left(\frac{5 + \sqrt{13}}{6}\right) + \left(\frac{5 - \sqrt{13}}{6}\right) = \frac{5}{3} \text{ and } ab = \left(\frac{5 + \sqrt{13}}{6}\right) \left(\frac{5 - \sqrt{13}}{6}\right) = \frac{1}{3} \text{ scores B0.}$		
	Note	Those candidates who then	apply $\partial + b = \frac{5}{3}$, $\partial b = \frac{1}{3}$ having written down/applied		
			part (a) can only score the M marks.		
	Note	Give M0M0A0 for $\frac{a}{b} + \frac{b}{a}$			
	Note	Give M0M0A0 for $\frac{a}{b} + \frac{b}{a} = \frac{a^2 + b^2}{ab} = \frac{\left(\frac{5 + \sqrt{13}}{6}\right)^2 + \left(\frac{5 - \sqrt{13}}{6}\right)^2}{\left(\frac{5 + \sqrt{13}}{6}\right)\left(\frac{5 - \sqrt{13}}{6}\right)} = \frac{19}{3}$			
	Note	Give M0M0A0 for $\frac{a}{b} + \frac{b}{a} = \frac{(a+b)^2 - 2ab}{ab} = \frac{\left(\left(\frac{5+\sqrt{13}}{6}\right) + \left(\frac{5-\sqrt{13}}{6}\right)\right)^2 - 2\left(\frac{5+\sqrt{13}}{6}\right)\left(\frac{5-\sqrt{13}}{6}\right)}{\left(\frac{5+\sqrt{13}}{6}\right)\left(\frac{5-\sqrt{13}}{6}\right)} = -\frac{b}{ab}$			
	Note	Allow B1 for both S = $\frac{5}{3}$ a	and $P = \frac{1}{3}$ or for $\mathring{a} = \frac{5}{3}$ and $\widetilde{O} = \frac{1}{3}$		
	Note		3 without reference to $\frac{19}{3}$ or $\frac{57}{9}$ or $6\frac{1}{3}$		

Question Number		Scheme	Notes	Marks		
2. (a)	$\mathbf{AB} = \left(\begin{array}{c} \end{array} \right)$	$ \begin{array}{ccc} 3 & 1 & -2 \\ -1 & 0 & 5 \end{array} \right) \left(\begin{array}{ccc} 2 & 4 \\ -k & 2k \\ 3 & 0 \end{array} \right) $				
	=	$ \begin{array}{ccc} 6-k-6 & 12+2k-0 \\ -2+0+15 & -4+0+0 \end{array} \right) $	Obtains a 2 2 matrix consisting of 4 elements with at least two correct elements which can be simplified or un-simplified	M1		
	=	$ \begin{array}{cc} -k & 12+2k \\ 13 & -4 \end{array} \right) $	Correct <i>un-simplified</i> matrix for AB	A1 (2)		
(1)	Jat AD					
(b)	$\left\{ \det(\mathbf{AB}) = 0 \ \triangleright \ \right\}$ $(-k)(-4) - 13(12 + 2k) = 0$		Applies " $ad - bc$ " = 0 on their 2 $\stackrel{<}{}$ 2 matrix for AB and solves the resulting equation to give $k =$	M1		
	Þ -22k	$\frac{156 - 26k = 0}{= 156}$ $\frac{156}{22} \text{ or } -\frac{78}{11} \text{ or } -7\frac{1}{11}$	$k = -\frac{156}{22} \text{ or } -\frac{78}{11} \text{ or } -7\frac{1}{11}$ Accept any exact equivalent form for k Condone - 7.09	A1		
				(2)		
				4		
		1	Question 2 Notes			
2. (a)	Note	Give A1 (ignore subsequent wor by an incorrect simplified answe	king) for a correct un-simplified answer which is later for a correct un-simplified answer which is later for a	ollowed		
(b)	Note	Give M1A1 for sight of the corre				
	Note	Condone the sign error in applying $13(12 + 2k) = 0$ to give $156 + 26k = 0$ (o.e.)				
	E.g. Allow M1 for $\begin{vmatrix} -k & 12 + 2k \\ 13 & -4 \end{vmatrix} = 0 \vartriangleright 4k - 156 + 26k = 0 \bowtie k =$					
	Note	Give final A0 for -7.0 or -7.1 o	or - 7.09 without reference to $-\frac{156}{22}$ or $-\frac{78}{11}$ or $-7\frac{1}{11}$			

Summer 2017

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel **Mathematics F1**

Calarian Scheme Natas				
Scheme		No	otes	Marks
Required to prove by induction the result \sum_{r}	$\sum_{r=1}^{n} \frac{1}{r(r+1)}$	$\frac{2}{1)(r+2)} = \frac{1}{2} - \frac{1}{(r+2)}$	$\frac{1}{(n+1)(n+2)}, \ n \stackrel{\frown}{i} \stackrel{\frown}{\frown}$	
$n = 1$: LHS = $\frac{1}{3}$, RHS = $\frac{1}{2} - \frac{1}{(2)(3)} = \frac{1}{3}$		hows either RHS	$S = \frac{1}{2} - \frac{1}{(1+1)(2+1)} = \frac{1}{3}$	B1
(Assume the result is true for $n - k$)		2(2)(3)	5 2 0 5	
	+1)(k+	$\frac{2}{1+1)(k+1+2)}$	Adds the $(k + 1)^{\text{th}}$ term to the sum of k terms	M1
$= \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)(k+3)}$				
$= \frac{1}{2} - \frac{(k+3)}{(k+1)(k+2)(k+3)} + \frac{2}{(k+1)(k+2)(k+3)}$ or $= \frac{1}{2} - \left(\frac{(k+3)-2}{(k+1)(k+2)(k+3)}\right)$ dependent on the previous M mark Makes $(k+1)(k+2)(k+3)$ a common denominator for their second and third fractions				dM1
$=\frac{1}{2} - \frac{1}{(k+2)(k+3)}$ Obtain	$1 + \frac{1}{2} - \frac{1}{(1 + 1)^2}$			A1
		k+1. As the resu	It has been shown to be	A1 cso
It is gained by candidates conveying	ng the id	leas of all four une	derlined points	(5)
				5
	ay 2	1		
$\bigcap_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+1+1)(k+1+2)}$ Adds the $(k+1)^{\text{th}}$ terms to the sum of k terms				
2(k+1)(k+2)(k+2)				dM1
$=\frac{k^3+6k^2+9k+4}{2(k+1)(k+2)(k+3)}=\frac{(k+1)(k^2+5k+1)(k+2)(k+3)}{2(k+1)(k+2)(k+3)}$	(+4) =	$\frac{k^2 + 5k + 4}{2(k+2)(k+3)} =$	$\frac{(k+2)(k+3)-2}{2(k+2)(k+3)}$	
$=\frac{1}{2} - \frac{1}{(k+2)(k+3)}$ Obtain	$\frac{1}{2} - \frac{1}{(1-1)^2}$	$\frac{1}{(k+2)(k+3)}$ or	$\frac{1}{2} - \frac{1}{(k+1+1)(k+1+2)}$ by correct solution only	A1
	Required to prove by induction the result $n = 1: LHS = \frac{1}{3}, RHS = \frac{1}{2} - \frac{1}{(2)(3)} = \frac{1}{3}$ (Assume the result is true for $n = k$) $\overset{k+1}{\bigoplus} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)(k+3)}$ $= \frac{1}{2} - \frac{(k+3)}{(k+1)(k+2)(k+3)} + \frac{2}{(k+1)(k+2)(k+3)}$ $= \frac{1}{2} - \frac{(k+3)-2}{(k+1)(k+2)(k+3)}$ Obtain If the result is true for $n = k$, then it is true true for $n = 1$, then the Final A1 is dependent on all pro- It is gained by candidates conveying either at the end of their solut The M1dM1A1 marks for Alternative With $\overset{k+1}{\bigoplus} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)}$ $= \frac{(k+1)(k+2)(k+3) - 2(k+3) + 2(2)}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k^2 + 5k + 3)}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k^2 + 5k + 3)}{2(k+1)(k+2)(k+3)}$	Required to prove by induction the result $\bigotimes_{r=1}^{n} \frac{1}{r(r+r)}$ $n = 1: LHS = \frac{1}{3}, RHS = \frac{1}{2} - \frac{1}{(2)(3)} = \frac{1}{3}$ and s or RH Assume the result is true for $n = k$) $\bigotimes_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)}$ $= \frac{1}{2} - \frac{1}{(k+1)(k+2)(k+3)} + \frac{2}{(k+1)(k+2)(k+3)}$ $= \frac{1}{2} - \frac{(k+3) - 2}{(k+1)(k+2)(k+3)}$ Obtains $\frac{1}{2} - \frac{1}{(k+1)(k+2)(k+3)}$ If the result is true for $n = k$, then it is true for $n = \frac{1}{1}$ true for $n = 1$, then the result is Final A1 is dependent on all previous m It is gained by candidates conveying the id either at the end of their solution or as The M1dM1A1 marks for Alternative Way 2 $\bigotimes_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)}$ $= \frac{(k+1)(k+2)(k+3) - 2(k+3) + 2(2)}{2(k+1)(k+2)(k+3)}$ $= \frac{k^3 + 6k^2 + 9k + 4}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k^2 + 5k + 4)}{2(k+1)(k+2)(k+3)} = \frac{1}{2}$	Required to prove by induction the result $\int_{r=1}^{n} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{2}$ $n = 1: LHS = \frac{1}{3}, RHS = \frac{1}{2} - \frac{1}{(2)(3)} = \frac{1}{3}$ and shows either RHS or RHS = $\frac{1}{2} - \frac{1}{(2)(3)} = \frac{1}{3}$ Assume the result is true for $n = k$) $\int_{r=1}^{k-1} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+1+1)(k+1+2)}$ $= \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)(k+3)}$ $= \frac{1}{2} - \frac{(k+3)}{(k+1)(k+2)(k+3)} + \frac{2}{(k+1)(k+2)(k+3)}$ $= \frac{1}{2} - \frac{(k+3)-2}{(k+1)(k+2)(k+3)}$ $= \frac{1}{2} - \frac{1}{(k+2)(k+3)}$ If the result is true for $n = k$, then it is true for $n = k+1$. As the result true for $n = 1$, then the result is true for all n (1) Final AI is dependent on all previous marks being scored It is gained by candidates conveying the ideas of all four unce it is gained b	Required to prove by induction the result $\bigcap_{r=1}^{n} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(n+1)(n+2)}, n^{\top} \frown$ Shows or states LHS = $\frac{1}{3}$ and shows either RHS = $\frac{1}{2} - \frac{1}{(1+1)(2+1)} = \frac{1}{3}$ and shows either RHS = $\frac{1}{2} - \frac{1}{(1+1)(2+1)} = \frac{1}{3}$ Assume the result is true for $n = k$.) $\bigcap_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+1+1)(k+1+2)}$ Adds the $(k+1)^{\text{th}}$ term to the sum of k terms $= \frac{1}{2} - \frac{1}{(k+1)(k+2)(k+3)} + \frac{2}{(k+1)(k+2)(k+3)}$ $= \frac{1}{2} - \frac{(k+3)-2}{(k+1)(k+2)(k+3)}$ Adds the $(k+1)^{(k+1)(k+1+2)}$ $= \frac{1}{2} - \frac{1}{(k+2)(k+3)}$ Detains $\frac{1}{2} - \frac{1}{(k+2)(k+3)}$ or $\frac{1}{2} - \frac{1}{(k+1+1)(k+1+2)}$ Adds the $(k+1)^{(k+1+2)}$ If the result is true for $n - k$, then it is true for $n - k + 1$. As the result has been shown to be true for $n = 1$, then the result is true for all n ($\overline{1} \frown$) Final A1 is dependent on all previous marks being scored in that part. It is gained by candidates converging the ideas of all four underlined points either at the end of their solution or as a narrative in their solution. $\frac{k+1}{2r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)(k+3)} = \frac{(k+1)(k+2)(k+3)}{(k+1)(k+1)(k+1+1)(k+1+2)}$ Adds the $(k+1)^{\text{th}}$ terms to the sum of k terms $\frac{k^{k+1}}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k+2)(k+3)}{(k+1)(k+2)(k+3)} = \frac{(k+1)(k+2)(k+3)}{(k+1)(k+2)(k+3)} = \frac{(k+1)(k+2)(k+3)}{(k+1)(k+2)(k+3)} = \frac{(k+1)(k+2)(k+3)}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k+2)(k+3)}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k+2)(k+3)}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k+2)(k+3)}{2(k+1)(k+2)(k+3)} = \frac{(k+2)(k+3)}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k+2)(k+3)}{2(k+1)(k+2)(k+3)} = \frac{(k+2)(k+3)}{2(k+1)(k+2)(k+3)} = \frac{(k+2)(k+3)}{2(k+1)(k+2)(k+3)} = \frac{(k+2)(k+3)}{2(k+1)(k+2)(k+3)} = \frac{(k+1)(k+2)(k+3)}{2(k+1)(k+2)(k+3)} = \frac{(k+2)(k+3)}{2(k+1)(k+2)(k+3)} = \frac{(k+2)(k+3)}{2(k+2)(k+3)} =$

		Question 3 Notes					
3.	Note	LHS = RHS by itself or LHS = RHS = $\frac{1}{3}$ is not sufficient for the 1 st B1 mark.					
	Note Way 2	The 1 st A1 can be obtained by e.g. using algebra to show that $\bigcap_{r=1}^{k+1} \frac{2}{r(r+1)(r+2)}$ give	es				
		$\frac{(k^2+5k+4)}{2(k+2)(k+3)}$ and by using algebra to show that $\frac{1}{2} - \frac{1}{(k+2)(k+3)}$ also gives $\frac{(k^2+5k+4)}{2(k+3)}$	(k+5k+4) + 2)(k+3)				
	Note	Moving from $\frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+2)(k+3)}$ to $\frac{1}{2} - \frac{1}{(k+2)(k+3)}$					
		<i>with no intermediate working</i> is 2 nd M0 1 st A0 2 nd A0.					
Way 3	The M1d	M1A1 marks for Alternative Way 3					
	$\mathop{\text{a}}_{r=1}^{k+1} \frac{1}{r(r+1)}$	$\prod_{k=1}^{n+1} \frac{2}{r(r+1)(r+2)} = \frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{2}{(k+1)(k+1+1)(k+1+2)} \text{Adds the } (k+1)^{\text{th term}} \text{ to the sum of } k \text{ terms} M1$					
	$=\frac{1}{2}-\frac{1}{(k)}$	$\frac{1}{2} - \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)} - \frac{1}{(k+2)(k+3)}$ dependent on the previous M mark This step must be seen in Way 3 dM1					
	$=\frac{1}{2}-\frac{1}{(k)}$	1 Obtains $\frac{1}{2} = \frac{1}{2}$ or $\frac{1}{2} = \frac{1}{2}$	A1				

Mathematics F1 WFM01

Summer 2017 Past Paper (Mark Scheme)

Question Number	Scheme		Ň	lotes	Marks
4. (a) Way 1	$\left\{x = 4t, \ y = \frac{4}{t} \Rightarrow \right\} \ 3\left(\frac{4}{t}\right)$	-2(4t) = 10		nd $y = \frac{4}{t}$ into the printed btain an equation in <i>t</i> only	M1
	$8t^{2} + 10t - 12 = 0$ or $4t^{2} + (can be implie)$		Note: E.g. $12 - 8t^2 =$	A correct 3 term quadratic $10t$, $8t^2 + 10t - 12 \{= 0\}$ re acceptable for this mark	A1
	$(8t-6)(t+2) = 0 \vartriangleright t$ or $(4t-3)(2t+4) = 0 \trianglerighteq t$ or $(4t-3)(t+2) = 0 \trianglerighteq t =$	=	Correct method (e.g. f square or applying	on the previous M mark factorising, completing the g the quadratic formula) of olving a 3TQ to find $t =$	dM1
	• $x = 4\left(\frac{3}{4}\right) = 3$ and $y = $ • $x = 4(-2) = -8$ and	(-)	Correct substitution for <i>t</i> into the g	th the previous M marks at least one of their values given parametric equations ts of corresponding values for $x = \dots$ and $y = \dots$	ddM1
	$A\left(3,\frac{16}{3}\right), B\left(-8, -2\right)$ or A	A: $x = 3, y = \frac{16}{3}$ and	nd <i>B</i> : $x = -8, y = -2$	Identifies the correct coordinates for <i>A</i> and <i>B</i>	A1 cao
		、 、	T .41	1.1	(5)
(a) Way 2	$x\left(\frac{10+2x}{3}\right) = 16 \qquad \left(\frac{3}{2}\right)$ $3\left(\frac{16}{x}\right) - 2x = 10 \qquad 3y$	2 /	3y - 2x = 10 into $xy = \frac{k}{x} or x = \frac{k}{y},$	ubstitutes their rearranged y = k or substitutes either k^{-1} 0, into $3y - 2x = 10$	M1
	$2x^{2} + 10x - 48 = 0 \text{ or } x^{2} + \frac{10}{3}x - 16 = 0 \text{ or } \frac{3}{2}y$ or $3y^{2} - 10y - 32 = 0$ (c	$x^2 - 5y - 16 = 0$	Note: $10x + 2x^2$	n in either x only or y only A correct 3 term quadratic $x^2 = 48$, $3y^2 - 10y = 32$ or re acceptable for this mark	A1
	e.g. $(2x+16)(x-3) = 0 \bowtie$ or $(x+8)(x-3) = 0 \bowtie$ or $(3y-16)(y+2) = 0 \bowtie$	<i>x</i> =	Correct method (e.g. f square or applying	on the previous M mark factorising, completing the g the quadratic formula) of nd either $x =$ or $y =$	dM1
	E.g. $x = 3 \vartriangleright y = \frac{16}{3}$ $x = -8 \vartriangleright y = \frac{16}{-8} = -2$ dependent on both the previous M marks. Correct substitution of at least one of their values for x or y into either $3y - 2x = 10$ or $y = \frac{k}{x}$ or $x = \frac{k}{y}$, $k \downarrow 0$, and obtains <i>two sets</i> of corresponding values for $x =$ and $y =$			nto either $3y - 2x = 10$ or $\frac{k}{x}$ or $x = \frac{k}{y}$, $k^{-1} 0$, and	ddM1
	$A\left(3,\frac{16}{3}\right), B\left(-8, -2\right)$ or A	A: $x = 3, y = \frac{16}{3}$ and	nd <i>B</i> : $x = -8, y = -2$	Identifies the correct coordinates for <i>A</i> and <i>B</i>	A1 cao
					(5)
(b)	$\left(\frac{3+(-8)}{2},\frac{\frac{16}{3}+(-2)}{2}\right); = \left(\frac{16}{3},\frac{16}{3}+(-2)\right)$	$\left(-\frac{5}{2},\frac{5}{3}\right)$		heir (x_1, y_1) and (x_2, y_2) apply $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ o.e.	M1;
				Correct answer	A1
					(2)
					7

VFM01	

		Question 4 Notes
4. (a)	SC	If the two previous M marks have been gained then award Special Case ddM1 for finding
		their correct points by writing either $x = 3$, $y = \frac{16}{3}$ or $x = -8$, $y = -2$ or $\left(3, \frac{16}{3}\right)$ or $\left(-8, -2\right)$
	Note	A decimal answer of e.g. $A(3, 5.33), B(-8, -2)$ (without a correct exact answer) is 2 nd A0
	Note	Writing coordinates the wrong way round
		E.g. writing $x = 3$, $y = \frac{16}{3}$ and $x = -8$, $y = -2$ followed by $A\left(\frac{16}{3}, 3\right)$, $B\left(-8, -2\right)$ is $2^{nd} A0$
	Note	Imply the dM1 mark for <i>writing down</i> the <i>correct</i> roots for <i>their</i> quadratic equation. E.g.
		• $2x^2 + 10x - 48 = 0$ or $x^2 + 5x - 24 = 0$ or $\frac{2}{3}x^2 + \frac{10}{3}x = 16 \rightarrow x = 3, -8$
		• $\frac{3}{2}y^2 - 5y - 16 = 0$ or $3y^2 - 10y - 32 = 0 \rightarrow y = \frac{16}{3}, -2$
		• $8t^2 + 10t = 12$ or $4t^2 + 5t - 6 = 0 \rightarrow t = \frac{3}{4}, -2$
	Note	For example, give dM0 for
		• $8t^2 + 10t = 12$ or $4t^2 + 5t - 6 = 0 \rightarrow t = \frac{1}{4}, -2$ [incorrect solution]
		with no intermediate working.
	Note	You can also imply the 1 st A1 dM1 marks for either $(10 + 2r)$ (16)
		• $x\left(\frac{10+2x}{3}\right) = 16 \text{ or } 3\left(\frac{16}{x}\right) - 2x = 10 \rightarrow x = 3, -8$
		• $\left(\frac{3y-10}{2}\right)y = 16 \text{ or } 3y - 2\left(\frac{16}{y}\right) = 10 \rightarrow y = \frac{16}{3}, -2$
		• $3\left(\frac{4}{t}\right) - 2(4t) = 10 \rightarrow x = 3, -8$
		• $3\left(\frac{4}{t}\right) - 2(4t) = 10 \rightarrow y = \frac{16}{3}, -2$
		with no intermediate working.
	Note	You can imply the 1 st A1 dM1 ddM1 marks for either
		• $x\left(\frac{10+2x}{3}\right) = 16 \text{ or } 3\left(\frac{16}{x}\right) - 2x = 10 \rightarrow x = 3, -8 \text{ and } y = \frac{16}{3}, -2$
		• $3\left(\frac{4}{t}\right) - 2(4t) = 10 \rightarrow x = 3, -8 \text{ and } y = \frac{16}{3}, -2$
		with no intermediate working.
		You can then imply the final A1 mark if they correctly identify the correct pairs of values or P_{1}
	Note	coordinates which relate to the point <i>A</i> and the point <i>B</i> . Give 2 nd A0 for a final answer of both $A\left(3, \frac{16}{3}\right), B\left(-8, -2\right)$ and $A\left(-8, -2\right), B\left(3, \frac{16}{3}\right)$,
(b)	Note	A decimal answer of e.g. $(-2.5, 1.67)$ (without a correct exact answer) is A0
	Note	Allow A1 for $\left(-\frac{5}{2}, \frac{10}{6}\right)$ or $\left(-2\frac{1}{2}, -1\frac{2}{3}\right)$ or exact equivalent.

Summer 2017

www.mvstudvbro.com

Mathematics F1 WFM01

Past Paper	(Mark Scheme)	This		ated and ov	vned by Pearson Edexcel
Question Number		Scheme	2		Notes
-	$C_{intern} f(x)$	7 7	u^5 $u > 0$ and u_2	at af f(m)	0 lies in the interval [2

Question Number			Scheme				Notes		Marks
5.	Given f(.	x) = 30	$= 30 - \frac{7}{\sqrt{x}} - x^5$, $x > 0$ and root of $f(x) = 0$ lies in the interval [2, 2.1]						
(a)	f(2) = 2.	9497	or f(2.1)	= - 6.0105	Atter	Attempts to evaluate <i>at least one</i> of $f(2)$ <i>or</i> $f(2.1)$ and evaluates $f(2.05)$			M1
Way 1	f(2.05) = -1.3160			f		,	runcated) to 1 sf runcated) to 1 sf	A1	
	$f(2.023) = \dots$ Evaluates $f(2)$					lates $f(2.025)$ (a	revious M mark nd not $f(2.075)$)	dM1	
	f(2.025) so interva or (2.025	ıl is (2	.025, 2.05)	or $2.025 \leqslant \alpha \leqslant 2.05$ or $2.025 < a < 2.05$ or $[2.025, 2.05]$ or (2.025, 2.05) equivalent in words. Condens. 2.025, 2.05]				A1	
	Note that some candidates only indicate the sign of f and not its value. In this case the M marks can still score as defined but not the A marks.					(4)			
(a)	Common approach in the form of a table (use the mark scheme above)								
Way 2	а		f(<i>a</i>)	b		f(<i>b</i>)	$\frac{a+b}{2}$	$f\left(\frac{a+b}{2}\right)$	
	2		2.9497			- 6.0105	2.05	-1.3160	
	2		2.9497.			-1.3160	2.025 marks in part (a	0.86846	
		SC) finter var is	$2.023 \leq a \leq 2$	2.03 WU	ulu score luli	marks in part (a	a)	
(b)	$f(\mathbf{r}) =$	$-\frac{7}{r}$	$\frac{3}{2} - 5r^4$			1		or $-x^5 \rightarrow \pm Bx^4$ n-zero constants.	M1
	$f(x) = -\frac{7}{2}x^{-\frac{3}{2}} - 5x^{4}$			At least one of either $-\frac{7}{2}x^{-\frac{3}{2}}$ or $-5x^4$ simplified or un-simplified				A1	
					Correct differentiation simplified or un-simplified				A1
	$\Big\{\alpha\simeq 2-$	$\frac{f(2)}{f'(2)}$	$\Rightarrow \alpha \simeq 2 -$	<u>2.94974746</u> -81.2374368	8 <u></u> 87		ttempt at Newton	revious M mark n-Raphson using f(2) and $f(2)$	dM1
	{ <i>a</i> = 2.0.	363101	.99} Þ <i>a</i>	= 2.04 (2 dp)		2.04 on th	previous marks heir first iteration equent iterations)	A1 cso cao
	Correc	t diffeı		•			scores full mai	rks in part (b)	
			Correct an	swer with <u>no</u>	working	g scores no ma	arks in part (b)		(5)
					0				9
	NT	Circ	and MO.E.			stion 5 Notes (2.07)	15)		
5. (a)	Note			-		(2.07) and $f(2.07)$			
	Note			;	-	(2.05) " unless			
	Note			-			b) with <i>no evide</i>	<i>nce</i> of evaluating	
		at led	ist one of ei	ther $f(2)$ or f	I(2.1) is	MOA0M0A0			

www.mystudybro.com

Mathematics F1 WFM01

Summer Past Paper	(Mark Sche	me) This resource was created and owned by Pearson Edexcel Wf
	(
		Question 5 Notes Continued
5. (b)	Note	Incorrect differentiation followed by their estimate of a with no evidence of applying the
		NR formula is final dM0A0.
	Final	This mark can be implied by applying at least one correct <i>value</i> of either $f(2)$ or $f(2)$
	dM1	in 2 - $\frac{f(2)}{f(2)}$. So just 2 - $\frac{f(2)}{f(2)}$ with an incorrect answer and no other evidence
		scores final dM0A0.
	Note	You can imply the M1A1A1 marks for algebraic differentiation for either
		• $f(2) = -\frac{7}{2}(2)^{-\frac{3}{2}} - 5(2)^4$
		• $f(2)$ applied correctly in $\alpha \simeq 2 - \frac{30 - 7(2)^{-\frac{1}{2}} - (2)^5}{-\frac{7}{2}(2)^{-\frac{3}{2}} - 5(2)^4}$
	Note	Differentiating INCORRECTLY to give $f(x) = -\frac{7}{2}x^{-2} - 5x^4$ leads to

This response should be awarded M1A1A0M1A0

 $\alpha \simeq 2 - \frac{2.949747468...}{-81.75} = 2.036082538... = 2.04 (2 dp)$

Question Number	Scheme		Notes	Marks	
6. (a)	$\bigotimes_{r=1}^{n} r^{2}(r+1) = \bigotimes_{r=1}^{n} r^{3} + \bigotimes_{r=1}^{n} r^{2}$	{ N o	Dete: Let $f(n) = \frac{1}{12}n(n+1)(n+2)(3n+1)$ or their answer to part (a).		
	$=\frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1)$		empts to expand $r^2(r+1)$ and attempts to at least one correct standard formula into their resulting expression.	M1	
			Correct expression (or equivalent)	A1	
	$= \frac{1}{12}n(n+1) \Big[3n(n+1) + 2(2n+1) \Big]$		dependent on the previous M mark ttempt to factorise at least $n(n + 1)$ having pted to substitute both standard formulae.	dM1	
	$= \frac{1}{12}n(n+1)\left[3n^2 + 7n + 2\right]$		{this step does not have to be written}		
	$= \frac{1}{12}n(n+1)(n+2)(3n+1)$		Correct completion with no errors. Note: $a = 12, b = 1$	A1 cso	
				(4)	
(b) Way 1	$\left\{\sum_{r=25}^{49}r^2(r+1)\right\}$		Attempts to find either $f(49) - f(24)$ or $f(49) - f(25)$. This mark can be implied.	M1	
	$= \left(\frac{1}{12}(49)(50)(51)(148)\right) - \left(\frac{1}{12}(24)(25)\right)$ $\left\{= 1541050 - 94900 = 1446150\right\}$)(26)(73)	Correct numerical expression for f(49) - f(24) which can be simplified or un-simplified. Note: This mark can be implied by seeing 1446150	Al	
	$\left\{\sum_{r=25}^{49} \left(r^2(r+1)+2\right)\right\}$ = "1446150" + 25(2); = 1446200		25(2) or equivalent to their $\bigotimes_{r=25}^{49} r^2(r+1)$ ar evidence that $\bigotimes_{r=25}^{49} 2 = 2(49) - 2(24)$ or 50	M1	
			1446200	A1 cao	
				(4)	
(b) Way 2	$\left\{\sum_{r=25}^{49} \left(r^2(r+1)+2\right)\right\} = \left(\frac{1}{12}(49)(50)(51)(14)(14)(14)(14)(14)(14)(14)(14)(14)(1$	(8) + 2(49) =	$\left(\frac{1}{12}(24)(25)(26)(73) + 2(24)\right)$		
	$= (\underline{1541050} + \underline{98}) - (\underline{94900} + \underline{48}) = 1541148 - 94948 = 1446200$				
	Attempts to find either $f(49) - f(24)$ or $f(49) - f(25)$				
	Correct numerical expression for $f(49) - f(24)$ which can be simplified or un-simplified. Note: This mark can be implied by $(\underline{1541050} +) - (\underline{94900} +)$ or $1541148 - 94948$				
	Adds 50 or equivalent to their $\underset{r=25}{\overset{49}{\circ}}r^2(r+1)$ or clear evidence that $\underset{r=25}{\overset{49}{\circ}}2 = 2(49) - 2(24)$ or 50				
	Note: This mark can be implied by	(<u></u> + <u>2(49)</u>)) - ($\underline{\dots}$ + $\underline{2(24)}$) or 1541148 - 94948		
		1446200		A1 cao	
				(4)	
				8	

Ore estimat							
Question Number		Scheme	Notes	Marks			
6. (b) Way 3	$\left\{ \sum_{r=25}^{49} \left(r^2(r+1) + 2 \right) \right\} = \sum_{r=25}^{49} r^3 + \sum_{r=25}^{49} r^2 + \sum_{r=25}^{49} 2$ $= \left(\frac{1}{4} (49)^2 (50)^2 - \frac{1}{4} (24)^2 (25)^2 \right) + \left(\frac{1}{6} (49) (50) (99) - \frac{1}{6} (24) (25) (49) \right) + \frac{(98 - 48)}{6} \right]$ $= (1500625 - 90000) + (40425 - 4900) + 50 = 1410625 + 35525 + 50 = 1446200$ $\mathbf{or} = \bigotimes_{r=25}^{49} \left(r^3 + r^2 + 2 \right)$ $= \left(\frac{1}{4} (49)^2 (50)^2 + \frac{1}{6} (49) (50) (99) + 2(49) \right) - \left(\frac{1}{4} (24)^2 (25)^2 + \frac{1}{6} (24) (25) (49) + 2(24) \right)$						
	Attempts to find either $\underline{f(49) - f(24)}$ or $\underline{f(49) - f(25)}$						
	Correct numerical expression for $f(49) - f(24)$ which can be simplified or un-simplified.						
	Adds 50 or equivalent to their $\bigcap_{r=25}^{49} r^2(r+1)$ or clear evidence that $\bigcap_{r=25}^{49} 2 = 2(49) - 2(24)$ or 50						
	1446200						
			n 6 Notes	1			
6. (a)	Note Applying e.g. $n = 1$, $n = 2$ to the printed equation without applying the standard formulae to give $a = 12$, $b = 1$ is M0A0M0A0						
	Alt 1	Alt 1 Alt Method 1: Using $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{3}{4}n^2 + \frac{1}{6}n^{\circ} - \frac{3}{a}n^4 + \frac{(9+b)}{a}n^3 + \frac{(6+3b)}{a}n^2 + \frac{2b}{a}n^{\circ}$ o.e.					
	dM1						
	A1 cso						
	Alt 2	Alt 2 Alt Method 2: $\frac{1}{4}n^2(n+1)^2 + \frac{1}{6}n(n+1)(2n+1) \circ \frac{1}{a}n(n+1)(n+2)(3n+b)$					
	dM1						
	A1						
	Note Allow final dM1A1 for $\frac{1}{4}n^4 + \frac{5}{6}n^3 + \frac{3}{4}n^2 + \frac{1}{6}n$ or $\frac{1}{12}n(3n^3 + 10n^2 + 9n + 2)$						
		or $\frac{1}{12}(3n^4 + 10n^3 + 9n^2 + 2n) \rightarrow \frac{1}{12}n(n)$	(n+1)(n+2)(3n+1) from no incorrect work	ting.			

		Question 6 Notes Continued					
6. (b)	Note	Give 1 st M1 1 st A0 for applying $f(49) - f(25)$. i.e. 1541050 - 111150 $\{= 1429900\}$					
	Note	You cannot follow through their incorrect answer from part (a) for the 1 st A1 mark.					
	Note	Give M1A0M1A0 for applying $[f(49) + 2(49)] - [f(25) + 2(24)]$					
		i.e. $1541148 - 111198 \{= 1429950\}$					
	Note	Give M1A0M0A0 for applying $[f(49) + 2(49)] - [f(25) + 2(25)]$					
		i.e. $1541148 - 111200 \{= 1429948\}$					
	Note	Give 1 st M0 1 st A0 for applying $(49)^2(50) - (24)^2(25) = 120050 - 14400 = 105650$					
	Note	Give 1 st M0 1 st A0 for applying $(49)^2(50) - (25)^2(26) = 120050 - 16250 = 103800$					
	Note	Give M0A0M0A0 for listing individual terms.					
		e.g. $16250 + 18252 + \dots + 112896 + 120050 = 1446200$					
	Note	Give 2 nd M0 for lack of bracketing in					
		$\frac{1}{12}(49)(50)(51)(148) + 2(49) - \frac{1}{12}(24)(25)(26)(73) + 2(24) \text{ unless recovered}$					
	Note	Give M0A0M0A0 for writing down 1446200 without any working.					
	Note	Applying f(49) - f(24) for $\frac{1}{4}n(n+1)(n+2)(3n+1)$ is 4623150 - 284700 = 4338450					
		is 1 st M1 1 st A0					

www.mystudybro.com

Past Paper Question							
Number		Scheme		Marks			
7.	$f(z) = z^4$	$^{4} + 4z^{3} + 6z^{2} + 4z + a$, <i>a</i> i	s a real const				
(a)		$\left\{z_2 = \right\} 1 - 2i$		1 - 2i			
					(1)		
(b)(i)				Attempt to expand $(z - (1+2i))(z - (1-2i))$			
				or $(z - (1+2i))(z - (\text{their complex } z_2))$			
				or any valid method <i>to establish a quadratic factor</i>			
		$z^2 - 2z + 5$	e.	g. $z = 1 \pm 2i \bowtie z - 1 = \pm 2i \bowtie z^2 - 2z + 1 = -4$ or sum of roots 2, product of roots 5			
				to give $z^2 \pm (\text{their sum})z + (\text{their product})$	A 1		
				$\frac{z^2 - 2z + 5}{\text{Attempts to find the other quadratic factor.}}$	A1		
			e o usino la	and division to obtain either $z^2 \pm kz +, k^{-1} 0$			
			e.g. using i	or $z^2 \pm az + b$, $b^{-1}0$, $a \operatorname{can} \operatorname{be} 0$	241		
	$\mathbf{f}(x) = (z$	$(z^2 - 2z + 5)(z^2 + 6z + 13)$			M1		
				ng e.g. $f(z) = (z^2 - 2z + 5)(z^2 \pm kz \pm c), k^{-1} 0$			
			or $f(z)$ =	$= (z^2 - 2z + 5)(z^2 \pm az \pm b), b^{-1} 0, a \text{ can be } 0$	A1		
				$z^2 + 6z + 13$			
	$\left\{z^2+6z\right\}$	$+13 = 0 \triangleright \}$					
	Either			dependent on only the previous M mark			
	• $z = \frac{-6 \pm \sqrt{36 - 4(1)(13)}}{2(1)}$			Correct method of applying the quadratic	dM1		
				formula or completing the square for solving			
	• $(z+3)^2 - 9 + 13 = 0 \triangleright z =$			a 3TQ on their 2 nd quadratic factor			
	${z =} -3 + 2i, -3 - 2i$			-3+2i and -3-2i	A1		
					(6		
(ii)	$\left\{a=\right\}$ 65			65 or $a = 65$ stated anywhere in (b)	B1		
					(1		
	Question 7 Notes						
7. (b)(i)	Question 7 NotesNoteNo working leading to $x = -3 + 2i, -3 - 2i$ is M0A0M0A0M0A0.						
	Note	You can assume $x^{\circ}z$ for solutions in this question.					
	Note		Give dM1A1 for $z^2 + 6z + 13 = 0 \Rightarrow z = -3 + 2i, -3 - 2i$ with no intermediate work				
	Note	Special Case: If their second <i>3 term quadratic</i> factor can be factorised then					
		give Special Case dM1 for correct factorisation leading to $z =$					
	Note	Otherwise, give 3 rd dM0 for applying a method of factorising to solve their 3TQ.					
	Note	Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "					
		Formula:					
		Attempt to use the correct formula (with values for a, b and c)					
		Completing the square					
		$\left(z\pm\frac{b}{2}\right)^2\pm q\pm c=0, q\neq 0$, leading to $z=$					
		$\left \begin{pmatrix} 2 & 1 \\ & 2 \end{pmatrix} \right \neq q \pm c = 0,$	$\frac{1}{2}$ $\pm q \pm c = 0, q \neq 0, \text{ readility to } z =$				

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question							
Question Number	Scheme			Notes	Marks		
8.	$C: y^2 = 36x, P(9p^2, 18p)$ lies on C, where p is a constant.						
(a)	$y = 6x^{\frac{1}{2}} \vartriangleright \frac{dy}{dx} = \frac{1}{2}(6)x^{-\frac{1}{2}} = \frac{3}{\sqrt{x}}$			$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm k x^{-\frac{1}{2}}$			
	$y^2 = 36x \triangleright 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 36$	5		$py\frac{\mathrm{d}y}{\mathrm{d}x} = q$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 18 \left(\frac{1}{18p}\right)$)		their $\frac{dy}{dt} \sim \frac{1}{\frac{1}{\frac{dx}{dt}}}$	- c t		
	So at <i>P</i> , $m_T = \frac{1}{p}$			Correct calculus work leading to $m_T = \frac{1}{p}$	A1		
	$y - 18p = \frac{1}{p}(x - 9p^2)$	Correc		the intermethod for an equation of a tangent $(1, 1)$			
	or $y = \frac{1}{p}x + 9p$		W	here $m_T \begin{pmatrix} 1 \\ m_N \end{pmatrix}$ is found by using calculus.	M1		
	$y = \frac{1}{p}x + \frac{1}{p}p$			Note: m_T must be a function of p			
	leading to $py - x = 9p^2$ (*)			Correct solution only	A1 *		
(1)						(4)	
(b)	(Directrix: $x = -9 \triangleright$) $a = 9$			a = 9 or $a = 9$ stated anywhere in this question			
()	Tangant goas through $(-a, 6)$					(1)	
(c)	$6n + 0 = 0 n^2$			heir value $x = -a''$ or their value $x = a'''$			
				= 6 into either $py - x = 9p^2$ or $py - x = -9p^2$			
	$9p^2 - 6p - 9 = 0$ or $3p^2 - 2p - 3 = 0$						
	E.g. $p = \frac{6 \pm \sqrt{36 - 4(9)(-9)}}{2(9)}$			dependent on the previous M mark Correct method of solving their 3TQ			
				$p = \frac{1 + \sqrt{10}}{3}$ or $\frac{6 + \sqrt{360}}{18}$ or $\frac{6 + 6\sqrt{10}}{18}$ etc.			
	Note: Give A0 for giving two values for <i>p</i> as their answer to part (c)					(3)	
(d)	$x = 9\left(\frac{1+\sqrt{10}}{3}\right)^2, \ y = 18\left(\frac{1+\sqrt{10}}{3}\right)$			Uses a real value of <i>p</i> , which is the result of substituting $(\pm a, 6)$ into $py - x = \pm 9p^2$, and substitutes <i>p</i> into at least one of either $x = 9p^2$ or $y = 18p$			
	$(11 + 2\sqrt{10}, 6 + 6\sqrt{10})$ or $(11 + 2\sqrt{10}, 6(1 + \sqrt{10}))$			Either $x = 11 + 2\sqrt{10}$ or $y = 6 + 6\sqrt{10}$ or $y = 6(1 + \sqrt{10})$	A1		
				Correct coordinates of <i>P</i> . Condone $x =, y =$	A1		
	Note: Give 2^{nd} A0 for two sets of coordinates for <i>P</i>					(3)	
						11	

Question Number	Scheme	e	Notes			
9. (a)	$\left\{ \left z \right = \right\} \sqrt{\left(\frac{1}{5}\right)^2 + \left(-\frac{2}{5}\right)^2}; = \frac{\sqrt{5}}{5}$	$\frac{\sqrt{5}}{5}$ or $\frac{1}{\sqrt{5}}$ or $\sqrt{\frac{1}{5}}$	$\sqrt{\left(\frac{1}{5}\right)^2 + \left(-\frac{2}{5}\right)^2}$ or $\sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2}$ which can be implied.			
				Correct exact answer	A1	
	$\begin{cases} \arg z = \arctan(-2) = -1.1 \end{cases}$	07148718 $\} = -1.1$	1 (2 dp)	-1.11 cao or 5.18 cao	B1	
		- 1			(3)	
(b) Way 1	$w = \frac{i}{z} = \frac{i}{(\frac{1}{5} - \frac{2}{5}i)}$ o	r $w = \frac{5/i}{5z} = \frac{5/i}{(1-2i)}$	$\frac{i}{2i}$ Correct method of making <i>w</i> the subject and substituting for <i>z</i>			
	$= \frac{i(\frac{1}{5} + \frac{2}{5}i)}{(\frac{1}{5} - \frac{2}{5}i)(\frac{1}{5} + \frac{2}{5}i)}$ $- \frac{-\frac{2}{5} + \frac{1}{5}i}{-\frac{1}{5}i}$	$= \frac{5/i(1+2i)}{(1-2i)(1+2i)}$ $-10/+5/i$	Multiplies of right han	ent on the previous M mark s numerator and denominator d side by $(\frac{1}{5} + \frac{2}{5}i)$ or $(1 + 2i)$ o give an expression in terms	dM1	
	$= \frac{-\frac{2}{5} + \frac{1}{5}/i}{\frac{1}{25} + \frac{4}{25}}$	$=\frac{-10/+5/i}{1+4}$		n contains a real denominator		
	= -2/ + /i	= -2/ + /i		-2/ +/i or /i -2/	A1	
					(3)	
(b) Way 2	$(\frac{1}{5} - \frac{2}{5}i)(a + bi) = /i \bowtie \frac{1}{5}$ $\frac{1}{5}a + \frac{2}{5}b = 0 \text{ or } -\frac{2}{5}a + \frac{1}{5}b$	5 5 5	expar either	stitutes z and w into $zw = /i$, ads zw and attempts to equate the real part of the imaginary part of the resulting equation.	M1	
	$\frac{1}{5}a + \frac{2}{5}b = 0, -\frac{2}{5}a + \frac{1}{5}b = 1$ $\Rightarrow a = \dots \text{ or } b = \dots$ $b = \dots$					
	$\{a = -2/, b = / \bowtie\} w =$	-2/ +/i		-2/ +/i or /i -2/		
					(3)	
	$\left[\left[4 \left(\ldots \right) \right] 4 \left[\left[1 - 2 \right] \right] \right]$		Substitutes z,	/ and their w into $\frac{4}{3}(z + w)$	M1	
(c)	$\left\{\frac{4}{3}(z+w) = \right\} \frac{4}{3}\left(\left(\frac{1}{5} - \frac{2}{5}i\right) + \right.$	$\left(-\frac{2}{10}+\frac{1}{10}1\right)$; = $-\frac{2}{5}1$		$-\frac{2}{5}i$ or $-\frac{6}{15}i$ or $-0.4i$ o.e.	A1	
(d)	$C(-\frac{1}{5},\frac{1}{10}) = B(0,\frac{1}{10})$	•	 Criteria plots (¹/₅, -²/₅) in quadrant 4 plots (0, ¹/₁₀) on the positive imaginary axis plots (-¹/₅, ¹/₁₀) in quadrant 2 plots (0, -²/₅) on the negative imaginary axis 			
			Satisfies a	t least two of the four criteria	B1	
	$D(0, -\frac{2}{5})$		Satisfies all four criteria with some indication of scale or coordinates stated. All points (arrows) must be in the correct positions relative to each other.			
					(2)	
					10	

ated and owned by Pearson Edexcel	WFM01
Question 9 Notes	
45 or a truncated 0.44	
г Г	

	Question 9 Notes					
9. (a)	a) Note M1 can be implied by awrt 0.45 or a truncated 0.44					
	Note	Give A0 for 0.4472 without reference to $\frac{\sqrt{5}}{5}$ or $\frac{1}{\sqrt{5}}$ or $\sqrt{\frac{1}{5}}$				
	Note	Give B0 for -1.11 followed by a final answer of 1.11				
(b)	Note	Be aware that $\frac{1}{(\frac{1}{5} - \frac{2}{5}i)} = 1 + 2i$				

Mathematics F1

Past Paper	er (Mark Scheme) This resource was created and owned by Pearson Edexcel					WFM0	
Question Number		Scheme	Notes		Marks	s	
10. (a)	$\begin{pmatrix} \frac{\sqrt{2}}{2} & - \\ \frac{\sqrt{2}}{2} & - \end{pmatrix}$	$\frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} \text{or} \left(\begin{array}{cc} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{array} \right)$	Co	Correct matrix which is expressed in exact surds			
	(_)					(1)
(b)	$\begin{pmatrix} \frac{1}{2} & - \\ \frac{\sqrt{3}}{2} & - \end{pmatrix}$	$ \frac{\sqrt{3}}{2} \\ \frac{1}{2} $	Co	Correct matrix which is expressed in exact surds			
							(1)
(c)	$\begin{cases} a & b \\ c & d \end{cases}$	$ \begin{pmatrix} 1 \\ 2 \\ -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} \\ \frac{1}{2} \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}$	=	matrix from	r matrix from part (a) by their n part (b) [either way round] and finds at least one element in the resulting matrix	M1	
	$\left(\frac{\sqrt{2}}{\sqrt{2}}\right)$	$\frac{\sqrt{6}}{\sqrt{6}}$ $\frac{-\sqrt{2}-\sqrt{6}}{\sqrt{6}}$ $\left(\frac{1-\sqrt{3}}{2\sqrt{2}}, \frac{-1}{2}\right)$	$\frac{-\sqrt{3}}{\sqrt{2}}$	At	least 3 correct exact elements	A1	
	$= \left(\frac{4}{\sqrt{2}} + \frac{\sqrt{2}}{4}\right)$	$\frac{\sqrt{6}}{\sqrt{6}} = \frac{-\sqrt{2} - \sqrt{6}}{4} \\ \frac{\sqrt{6}}{\sqrt{6}} = \frac{\sqrt{2} - \sqrt{6}}{4} \\ \frac{\sqrt{2} - \sqrt{6}}{4} \\ \frac{\sqrt{2} - \sqrt{6}}{4} \\ \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{1}{2} \\ \frac{\sqrt{3} + $	$\frac{-\sqrt{3}}{2\sqrt{2}}$		Correct exact matrix Note: Allow multiplication either way round	A1	
					Rotation (condone turn)		(3)
(d)	Rotation about (0, 0)and about (0, 0) or about O or about the origin			B1			
	105 degrees (anticlockwise)			105 degrees or $\frac{7p}{12}$ (anticlockwise) or 255 degrees clockwise or $\frac{17p}{12}$ clockwise		B1 o.e	
	Note: Give 2 nd B0 for 105 degrees clockwise Note: Give B0B0 for combinations of transformations						(2)
(e)	Either						
		$\sin 75^{\circ} = \sin 105^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ $\sin 75^{\circ} = \sin 105^{\circ} = \frac{\sqrt{2} + \sqrt{6}}{4} = \frac{1}{2}$	$\frac{\sqrt{3}+1}{2\sqrt{2}}$		on the 1 st A mark in part (c) as $\sin 75^\circ = \sin 105^\circ = \frac{\sqrt{3}+1}{2\sqrt{2}}$	dB1	
	$\cos 75^\circ = -\cos 105^\circ = -\left(\frac{1-\sqrt{3}}{2\sqrt{2}}\right) \text{ or } \frac{\sqrt{3}-1}{2\sqrt{2}} \text{ or } \frac{\sqrt{6}-\sqrt{2}}{4} \qquad \begin{array}{c} \text{States } \cos 75^\circ = -\cos 105^\circ \\ \text{and deduces a correct} \\ \text{exact value for } \cos 75^\circ \end{array}$			B1			
							(2)
			Опе	estion 10 Notes			9
10. (e)	ALT 1Comparing their matrix found in part (c) with a correct $-\cos 75$ $-\sin 75$ $\sin 75$ $-\cos 75$						
	(representing a rotation 105° anti-clockwise about <i>O</i>) gives						
	$\sin 75^\circ = \frac{\sqrt{3} + 1}{2\sqrt{2}}$ (with the 1 st A mark scored in part (c))				B1		
	$\cos 75^\circ = -\left(\frac{1-\sqrt{3}}{2\sqrt{2}}\right)$ or $\frac{\sqrt{3}-1}{2\sqrt{2}}$ or $\frac{\sqrt{6}-\sqrt{2}}{4}$				B1		
							(2)

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom