Past Paper (Mark Scheme)

Mark Scheme (Results)

June 2018

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

June 2018
Publications Code
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given

Mathematics F1

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to x = ...

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Mathematics F1

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

WFM01

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

WFM01

www.mystudybro.com
This resource was created and owned by Pearson Edexcel
June 2018

WFM01 Further Pure Mathematics F1 **Mark Scheme**

Question Number		Scheme		Notes	Marks				
1.	$\sum_{r=1}^{n} r(r+$	$3) = \sum_{r=1}^{n} r^2 + 3 \sum_{r=1}^{n} r$							
	$=\frac{1}{6}n(n+$	$1)(2n+1) + 3\left(\frac{1}{2}n(n+1)\right)$	Atte	empts to expand $r(r+3)$ and attempts to substitute at least one correct standard formula into their resulting expression.	M1				
		,		Correct expression (or equivalent)	A1				
	$=\frac{1}{6}n(n+$	dependent on the previous M mark $1)[(2n+1)+9]$ Attempt to factorise at least $n(n+1)$ having attempted to substitute both correct standard formulae.			dM1				
				{this step does not have to be written}					
	$=\frac{n}{3}(n+1)$	$\frac{1}{n}(2n+10)$ or $\frac{1}{3}n(n+1)(n+3)$	5)	Correct completion with no errors. Note: $a = 3, b = 5$	A1				
	-	-			(4)				
				0 4 1 1 1 1	4				
1.	NI o 4 o	Applying $a = n - 1, n - 2$	to the	Question 1 Notes e printed equation without applying the standard form	mulaa				
1.	Note	to give $a=3, b=5$ is MOA			nurac				
	Alt 1		Alt Method 1 (Award the first two marks using the main scheme)						
		Using $\frac{1}{3}n^3 + 2n^2 + \frac{5}{3}n = \frac{1}{6}$	Using $\frac{1}{3}n^3 + 2n^2 + \frac{5}{3}n \equiv \frac{1}{a}n^3 + \left(\frac{b+1}{a}\right)n^2 + \frac{b}{a}n$ o.e.						
	dM1	Equating coefficients to fin	nd bot	h $a = \dots$ and $b = \dots$ and at least one correct of $a = 3$	3 or $b = 5$				
	A1	Finds $a = 3$ and $b = 5$	•						
	Alt 2	Alt Method 2: (Award the	he firs	et two marks using the main scheme)					
		$\frac{1}{6}n(n+1)(2n+1) + \frac{3}{2}n(n-1)$	+1) ≡	$\frac{n}{-}(n+1)(n+b)$					
	77.54								
	dM1	Substitutes $n = 1$, $n = 2$, in and at least one correct of		is identity o.e. and solves to find both $a =$ and $b =$, $b = 5$	•				
		Note: $n = 1$ gives $4 = \frac{2(1)^n}{n!}$	$\frac{(a+b)}{a}$	or $2a - b = 1$ and $n = 2$ gives $14 = \frac{6(2+b)}{a}$ or $7a$	-3b = 6				
	A1	Finds $a=3$ and $b=5$	и	и					
'	Note	Allow final dM1A1 for $\frac{1}{3}$	Allow final dM1A1 for $\frac{1}{3}n^3 + 2n^2 + \frac{5}{3}n$ or $\frac{1}{3}(n^3 + 6n^2 + 5n) \rightarrow \frac{n}{3}(n+1)(n+5)$						
		with no incorrect working.							
	Note	A correct proof $\sum_{r=1}^{n} r(r +$	A correct proof $\sum_{r=1}^{n} r(r+3) = \frac{n}{3}(n+1)(n+5)$ followed by stating an incorrect e.g. $a=5, b=3$						
		is M1A1dM1A1 (ignore s	ubseqı	uent working)					
	Note	Give A0 for $\frac{2}{6}n(n+1)(n+1)$	5) wit	Thout reference to $a = 3$ or $\frac{n}{3}(n+1)(n+5)$ or $\frac{1}{3}n(n+1)$	+1)(n+5)				

Summer	2018
Guillillei	2010

Mathematics F1

(4)

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 **Ouestion** Scheme Marks Notes Number 2. P represents an anti-clockwise rotation about the origin through 45 degrees $\begin{vmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{vmatrix} \text{ or e.g. } \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ Correct matrix which is **B**1 (a) expressed in exact surds **(1)** Enlargement M1 (b) Enlargement or enlarge About (0,0) or about O or about the origin and scale or factor or times and $k\sqrt{2}$ Centre (0, 0) with scale factor $k\sqrt{2}$ A1 **Note:** Allow $\sqrt{2k^2}$ in place of $k\sqrt{2}$ **Note:** Give M0A0 for combinations of transformations **(2)** Multiplies their matrix from (c) Way 1 part (a) by **Q** [either way round] $\{\mathbf{PQ} = \} \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} k\sqrt{2} & 0 \\ 0 & k\sqrt{2} \end{pmatrix} = \begin{pmatrix} k & -k \\ k & k \end{pmatrix}$ M1 and applies "ad - bc" to the resulting matrix to give $2k^2$ or states | their det \mathbf{PQ} | = $2k^2$ **A**1 $\{\det \mathbf{PQ} = \}$ $(k)(k) - (-k)(k) = 2k^2$ Condone $\{\det \mathbf{PQ} = \} k^2 + k^2$ 6(their determinant) = 147 $6(2k^2) = 147$ or $2k^2 = \frac{147}{6}$ M1or puts their determinant equal to $\frac{147}{6}$ $\left\{ \Rightarrow k^2 = \frac{49}{4} \Rightarrow \right\} k = \frac{7}{2}$ Obtains k = 3.5, o.e. A₁ (4)applies "ad - bc" to **Q** (c) $\det \mathbf{Q} = (k\sqrt{2})(k\sqrt{2}) - (0)(0)$ or $\det \mathbf{Q} = (k\sqrt{2})(k\sqrt{2})$ Way 2 M1or applies $(k\sqrt{2})^2$ and deduces that $\det \mathbf{PQ} = 2k^2$ $\{\det \mathbf{P} = 1 \Rightarrow\} \det \mathbf{PQ} = (1)(2k^2) = 2k^2$ or states | their det PQ| = $2k^2$ A₁ or $\det \mathbf{Q} = 2k^2$ or $\det \mathbf{Q} = 2k^2$ 6(their det(**PQ**)) = 147 or (their det(**PQ**)) = $\frac{147}{6}$ $6(2k^2) = 147$ or $2k^2 = \frac{147}{6}$ M1 or 6(their det(\mathbf{Q})) = 147 or (their det(\mathbf{PQ})) = $\frac{147}{6}$ $\left\{ \Rightarrow k^2 = \frac{49}{4} \Rightarrow \right\} k = \frac{7}{2}$ Obtains k = 3.5, o.e. A1

Summer 2018

www.mystudybro.com

Mathematics F1

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 **Question 2 Notes 2.** (b) Note "original point" is not acceptable in place of the word "origin". "expand" is not acceptable for M1 Note "enlarge x by $k\sqrt{2}$ and no change in y" is M0A0 Note Obtaining $k = \pm 3.5$ with no evidence of k = 3.5 {only} is A0 Note (c) Give M1A1M0A0 for writing down $147(2k^2) = 6$ or $\frac{1}{2k^2} = \frac{147}{6}$ or $6\left(\frac{1}{2k^2}\right) = 147$, o.e. Wav 2 Note 1 with no other supporting working. Give M0A0M1A0 for writing $\det \mathbf{Q} = \frac{1}{k^2 - (-k^2)}$ or $\frac{1}{2k^2}$, followed by $6\left(\frac{1}{2k^2}\right) = 147$ Way 2 Note 2 Allow M1A1 for an incorrect rotation matrix **P**, leading to det $\mathbf{PQ} = 2k^2$ Note Allow M1A1M1A1 for an incorrect rotation matrix **P**, leading to det **PQ** = $2k^2$ and k = 3.5, o.e. Note Using the scale factor of enlargement to write down $k\sqrt{2} = \sqrt{\frac{147}{6}} \Rightarrow k = 3.5$ is M1A1dM1A1 Note Using the scale factor of enlargement to write down $k\sqrt{2} = \sqrt{\frac{6}{147}}$ is M1A1dM0 Note

Summer 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number	Scheme			Notes	Marks
3.	$C: y^2 = 6x$; S is the focus of C; $y^2 = 6x$	4ax; P	$P(at^2, 2at)$; Q lies on the directrix of C. $PQ = 14$		
(a)	$\{a = 1.5 \Rightarrow\}$ S has coordinates $(1.5, 0)$	$(1.5, 0) \text{ or } \left(\frac{3}{2}, 0\right) \text{ or } \left(\frac{6}{4}, 0\right)$		B1 cao	
(1)	Note: You can recover this ma	rk for λ	S(1.5, 0) stated e	(1)	
(b)	{ PQ is parallel to the x -axis \Rightarrow } Focus-directrix Property $\Rightarrow SP \{= PQ\}$	=14		SP = 14 or 14 stated by itself in (b)	B1 cao
	Note: $PQ = 14$ stated by		ı vithout reference		(1)
(c) Way 1	$\left\{ \text{directrix } x = -\frac{3}{2} \& PQ = 14 \Rightarrow \right\} x_P$			x = 14 – their " a "	M1
	$y_P^2 = 6(12.5) \Rightarrow y_P = \dots$		_	endent on the previous M mark $\sin x$ into $y^2 = 6x$ and finds $y =$	dM1
	Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	(3)	Correct a	and paired. Accept $(12.5, \sqrt{75})$	A1
					(3)
	$ \begin{array}{c c} & & P \\ & & & y \text{ or } \sqrt{6x} \\ \hline & & & & \\ & & & & \\ & & & & \\ & & & &$				
(c) Way 2	$(x-1.5)^{2} + (6x) = 14^{2}$ $\Rightarrow x^{2} + 3x - 193.75 = 0 \Rightarrow x = \dots$			chagoras to $x-"a"$, $\sqrt{6x}$ and 14, and solves quadratic equation in x to give $x=$	M1
				As in Way 1	dM1 A1 (3)
(c) Way 3	$11^2 + y^2 = 14^2 \implies y = \dots$		Applies Py	thagoras to $14-"2a"$, y and 14, and solves to give $y =$	M1
	$\left(\sqrt{75}\right)^2 = 6x \Rightarrow x = \dots$		_	endent on the previous M mark eir y into $y^2 = 6x$ and finds $x =$	dM1
	Either $x = 12.5, y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	(3)		and paired. Accept $(12.5, \sqrt{75})$	A1
	,	,		, , ,	(3)
(c) Way 4	$(1.5t^2 - 1.5)^2 + (3t)^2 = 14^2$ Applies Pythagoras to "1.5" $t^2 -$ "1.5", 2("1.5") t and 14 t forms and solves a quadratic equation in t to give $t^2 =$ or $t =$, and finds at leasts one of $t =$ or $t =$ by using $t = 1.5$ " $t = 1.5$ " or $t = 1.5$ "				M1
	$\Rightarrow t^2 = \frac{25}{3} \Rightarrow t = \frac{5\sqrt{3}}{3}$ $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3}\right)^2, y = 3 \left(\frac{5\sqrt{3}}{3}\right)$		-	Finds both $x =$ and $y =$ and $x = 1.5$ and $y = 2$ and	dM1
	Either $x = 12.5$, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$	3)	Correct a	and paired. Accept $(12.5, \sqrt{75})$	A1
					(3)
					5

Summer	2018
Julilie	2010

Mathematics F1

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 Ouestion Marks Scheme Notes Number C: $y^2 = 6x$; S is the focus of C; $y^2 = 4ax$; $P(at^2, 2at)$; Q lies on the directrix of C. PQ = 143. (c) Uses horizontal distance PQ = 14 to form and solve the $\left\{ x_P = \frac{3}{2}t^2, x_Q = -\frac{3}{2}, PQ = 14 \Rightarrow \right\}$ Wav 5 equation "1.5" t^2 - "-1.5" = 14 to give t^2 = ... or t = ..., M1 $(1.5t^2 - -1.5) = 14 \implies 1.5t^2 = 12.5$ and finds at leasts one of x = ... or y = ... by using $x = "1.5"t^2$ or y = 2("1.5")t $\Rightarrow t^2 = \frac{25}{3} \Rightarrow t = \frac{5\sqrt{3}}{3}$ dependent on the previous M mark $\Rightarrow x = 1.5 \left(\frac{5\sqrt{3}}{3} \right)^2, \quad y = 3 \left(\frac{5\sqrt{3}}{3} \right)$ Finds both x = ... and y = ...dM1 by using $x = "1.5"t^2$ and y = 2("1.5")tEither x = 12.5, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ **A**1 **(3)** (c) $\left\{ S(1.5,0), P\left(\frac{y^2}{6}, y\right), SP = 14 \Rightarrow \right\}$ Way 6 Applies Pythagoras to $\frac{y^2}{6}$ – "1.5", y and 14, M1 $\left(\frac{1}{6}y^2 - \frac{3}{2}\right)^2 + y^2 = 14^2 \implies y = \dots$ and solves to give y = ... $\{y^4 + 18y^2 - 6975 = 0\}$ dependent on the previous M mark dM1 Substitutes their y into $y^2 = 6x$ and finds x = ...Either x = 12.5, $y = 5\sqrt{3}$ or $(12.5, 5\sqrt{3})$ Correct and paired. Accept $(12.5, \sqrt{75})$ **A**1 (3)**Question 3 Notes** Writing coordinates the wrong way round **3.** (c) Note E.g. writing x = 12.5, $y = 5\sqrt{3}$ followed by $(5\sqrt{3}, 12.5)$ is final A0 Obtaining both $(12.5, 5\sqrt{3})$ and $(12.5, -5\sqrt{3})$ with no evidence of only $(12.5, 5\sqrt{3})$ is A0 Note Give final A1 for (12.5, awrt 8.66), with either $y = \sqrt{75}$ or $y = 5\sqrt{3}$ seen in their working Note

You can mark part (b) and part (c) together

Note

Mathematics F1

Summer 2018 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number	Scheme		Notes	Marks	
4.	$\mathbf{A} = \begin{pmatrix} 2p & 3q \\ 3p & 5q \end{pmatrix}; \ \mathbf{XA} = \mathbf{B}; \ \mathbf{B} = \begin{pmatrix} p & q \\ 6p & 11q \\ 5p & 8q \end{pmatrix}$				
(a)	$\{\det(\mathbf{A}) = \} 2p(5q) - (3p)(3q) \{ = p \}$	q	2p(5q) - (3p)(3q) which can be un-simplified or simplified	B1	
	$\left\{ \mathbf{A}^{-1} = \right\} \frac{1}{pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \text{ or } \begin{pmatrix} \frac{5}{p} \\ -\frac{3}{2} \end{pmatrix}$	$-\frac{3}{p}$	$\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix}$	M1	
	$\begin{pmatrix} & & & & & & & & & & & & & & & & & & &$	$\left(\frac{2}{q}\right)$	Correct \mathbf{A}^{-1}	A1	
		I			(3)
(b) Way 1	$ \begin{cases} \mathbf{X} = \mathbf{B}\mathbf{A}^{-1} = \\ p & q \\ 6p & 11q \\ 5p & 8q \end{cases} \frac{1}{pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} = \dots $ $ = \frac{1}{pq} \begin{pmatrix} 2pq & -pq \\ -3pq & 4pq \\ pq & pq \end{pmatrix} $ $ = \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix} $				
	(2pq - pq)		At least 4 correct elements	A1	
	$= \frac{1}{pq} \begin{bmatrix} -3pq & 4pq \\ pq & pq \end{bmatrix}$	dependent on the first M mark Finds a 2 v 2 matrix of 6 alamants			
	$= \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix}$		Finds a 3×2 matrix of 6 elements Correct simplified matrix for X		
(1-)					(4)
(b) Way 2	$ \{\mathbf{XA} = \mathbf{B} \Rightarrow\} \begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix} \begin{pmatrix} 2p & 3q \\ 3p & 5q \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \end{pmatrix} \\ 2pa + 3pb = p, 3qa + 5qb = q $	$\begin{bmatrix} p & q \\ 5p & 11q \\ 5p & 8q \end{bmatrix}$	Applies $\mathbf{X}\mathbf{A} = \mathbf{B}$ for a 3×2 matrix \mathbf{X} and attempts simultaneous equations in a and b or c and d or e and f to find at least one of a , b , c , d , e or f	M1	
	or $2pc+3pd = 6p$, $3qc+5qd = 11q$ or $2pe+3pf = 5p$, $3qe+5qf = 8q$ and finds at least one of a, b, c, d, e or f		Note: Allow one slip in copying down A Note: Allow one slip in copying down B		
	(2a+3b=1, 3a+5b=1) $a=2$	[2, b = -1]	At least 4 correct elements	A1	
	$\begin{cases} 2c + 3d = 6, & 3c + 5d = 11 \\ 2e + 3f = 5, & 3e + 5f = 8 \end{cases} \Rightarrow c = -3, d = 4$ $e = 1, f = 1$ $\Rightarrow \mathbf{X} = \begin{pmatrix} 2 & -1 \\ -3 & 4 \\ 1 & 1 \end{pmatrix}$		dependent on the first M mark Finds all 6 elements for the 3×2 matrix X	dM1	
			Correct simplified matrix for X	A1	
					(4)
	1			1	7

Summer	2018
Cullille	2010

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Past Paper	(Iviark Scher	ne) This resource was created and owned by Pearson Edexcei WFM01					
		Question 4 Notes					
4. (a)	Note	Condone $\frac{1}{10pq-9pq} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \text{ or } \frac{1}{2p(5q)-(3p)(3q)} \begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \text{ for A1}$					
	Note	Condone $\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \frac{1}{pq}$ or $\begin{pmatrix} 5q & -3q \\ -3p & 2p \end{pmatrix} \frac{1}{2p(5q) - (3p)(3q)}$ for A1					
	Note	Condone $ \begin{pmatrix} \frac{5q}{pq} & -\frac{3q}{pq} \\ -\frac{3p}{pq} & \frac{2p}{pq} \end{pmatrix} $ for A1					
(b)	Note	Way 1: Allow SC 1 st A1 for at least 4 correct elements in $ \begin{pmatrix} \frac{2pq}{\text{their det } \mathbf{A}} & \frac{-pq}{\text{their det } \mathbf{A}} \\ \frac{-3pq}{\text{their det } \mathbf{A}} & \frac{4pq}{\text{their det } \mathbf{A}} \end{pmatrix} $					
		$\left(\begin{array}{c} \text{their det } \mathbf{A} & \text{their det } \mathbf{A} \end{array}\right)$ or for at least 4 of these elements seen in their calculations					

Past Paper (Mark Scheme)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Past Paper	(Mark Scher	me) This reso	ne) This resource was created and owned by Pearson Edexcel				
Question Number		Scheme	Scheme Notes				
5.	$z^4 - 6z^3$	$+34z^2-54z+225$	$S \equiv (z^2 + 9)(z^2 + az)$	+b); a, b are real numbers			
				At least one of $a = -6$ or $b = 25$	B1		
(a)	a = -6, b = 25			Both $a = -6$ and $b = 25$	B1		
					(2	2)	
(b)	$\left\{z^2 + 9 = 0 \Longrightarrow\right\} z = 3i, -3i$ $\left\{z^2 - 6z + 25 = 0 \Longrightarrow\right\}$ $ z = \frac{6 \pm \sqrt{(-6)^2 - 4(1)(25)}}{2(1)} $ or $ (z - 3)^2 - 9 + 25 = 0 \Longrightarrow z = \dots$			At least one of $3i$, $-3i$, $\sqrt{9}i$ or $-\sqrt{9}i$	M1		
				Both 3i and −3i	A1		
				Correct method of applying the quadratic formula or completing the square for solving their $z^2 + az + b = 0$; $a, b \ne 0$	M1		
	$\{z =\} 3 +$	+ 4i, 3 – 4i		3 + 4i and $3 - 4i$	A1		
					(4	4)	
(c)	(0,:	0	4) Re	 Criteria ± 3i or ± (their k)i plotted correctly on the imaginary axis, where k∈ R, k > 0 dependent on the final M mark being awarded in part (b) Their final two roots of the form λ± μi, λ, μ≠0, are plotted correctly Satisfies at least one of the criteria Satisfies both criteria with some indication of scale or coordinates stated with at least one pair of roots symmetrical about the real axis 	B1ft B1ft	2) 8	
			Qu	nestion 5 Notes			
5. (a)	Note	Give B1B0 for w	vriting down a corr	ect $(z^2 - 6z + 25)$, followed by $a = 25, b = -6$			
	Note		a and b are not state				
		• give B1B1 fo	or writing down a c	orrect $(z^2 - 6z + 25)$,			
			_	$a^2 + \text{their } a^2 + \text{their } b^2$, with exactly one			
		of their a or t	their b correct				
(b)	Note	No working lead	ling to z = 3i, -3i	is 1 st M1 1 st A1			
	Note	$z = \pm \sqrt{9i}$ unles	s recovered is 1st M	10 1 st A0			
	Note You can assume $x \equiv z$ for solutions in this question						
	 Note Give 2nd M1 2nd A1 for z² -6z + 25 = 0 ⇒ z = 3 + 4i, 3 - 4i with no intermediate working. Give 2nd M1 2nd A1 for z = 3 + 4i, 3 - 4i with no intermediate working having stated a = -6, b = 25 in part (a) or part (b). 						
		• Otherwise, give 2^{nd} M0 2^{nd} A0 for $z = 3 + 4i$, $3 - 4i$ with no intermediate working.					

Mathematics F1
WFM01

Summer 2018 www.mystudybro.com

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Past Paper	(Mark Scher	me) I his resource was created and owned by Pearson Edexcei	WEMO			
		Question 5 Notes Continued				
5. (b)	Note	Note Special Case: If their 3-term quadratic factor $z^2 + "a"z + "b"$ can be factorised then give Special Case 2^{nd} M1 for correct factorisation leading to $z =$				
	Note Otherwise, give 2 nd M0 for applying a method of factorisation to solve their 3TQ.					
	Note	Reminder: Method Mark for solving a 3TQ, " $az^2 + bz + c = 0$ "				
		Formula: Attempt to use the correct formula (with values for a , b and c)				
		Completing the square: $\left(z \pm \frac{b}{2}\right)^2 \pm q \pm c = 0, q \neq 0$, leading to $z =$				
5. (b)(c)	Note	You can mark part (b) and part (c) together				

Summer	2012
Summer	ZU 10

Mathematics F1

•	(Mark Scheme) This resource wa	as created and owned b	by Pearso	n Edexcel	WFM01		
Question Number	Scheme			Notes	Marks		
6.	Given $f(x) = \frac{2(x^3 + 3)}{\sqrt{x}} - 9$, $x > 0$; Roots α , β : $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $\begin{cases} f(x) = 2x^{\frac{5}{2}} + 6x^{-\frac{1}{2}} - 9 \Rightarrow \end{cases}$ Some evidence of $\pm \lambda x^n \to \pm \mu x^{n-1}$; λ , $\mu \neq 0$ $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $0.4 < \alpha < 0.5$ and $1.2 < \beta < 1.3$ $0.4 < \alpha < 0.5$ and						
(a)	$\int_{f(x)=2}^{\frac{5}{x^2}} \frac{-1}{6x^2} \frac{1}{6x^2} \frac{1}{6x$			M1			
	$\begin{cases} f(x) = 2x^2 + 6x^2 - 9 \Rightarrow \end{cases}$ Differentiates to give $\pm Ax^{\frac{3}{2}} \pm Bx^{-\frac{3}{2}}$; $A, B \neq 0$			M1			
				be simplified or un-simplified	A1		
	$\left\{\alpha \simeq 0.45 - \frac{f(0.45)}{f'(0.45)}\right\} \Rightarrow \alpha \simeq 0.45$	- 0.2159541693 -8.428734015		mpt at Newton-Raphson using alues of $f(0.45)$ and $f'(0.45)$	M1		
	$\{\alpha = 0.4756211869\} \Rightarrow \alpha = 0.476$	6 (3 dp)	-	dent on all 4 previous marks 0.476 on their first iteration nore any subsequent iterations)	A1 cso		
	Correct differentiation followed	by a correct answer of the body and the by a correct the			(
(a)	Alternative method 1 for the first	<u> </u>	S IIU IIIark	as iii part (a)	(5		
Alt 1	THE TANK THE MENT OF THE TANK THE		e evidence	of $\pm \lambda x^n \rightarrow \pm \mu x^{n-1}$; $\lambda, \mu \neq 0$	M1		
	$\begin{cases} u = 2x^3 + 6 & v = \sqrt{x} \\ u' = 6x^2 & v' = \frac{1}{2}x^{-\frac{1}{2}} \end{cases} \Rightarrow$		Differentiates to give $\frac{\pm Ax^2(\sqrt{x}) \pm Bx^{-\frac{1}{2}}(2x^3 + 6)}{x}; A, B \neq 0$		M1		
	$f'(x) = \frac{6x^2(\sqrt{x}) - \frac{1}{2}x^{-\frac{1}{2}}(2x^3 + 6)}{x}$		Corre	ct differentiation which can be simplified or un-simplified	A1		
(b)	Either • $\frac{\beta - 1.2}{"0.3678924937"} = \frac{1.3 - 1.3}{"0.116141}$	- β 10527. "		At least one of either \pm (awrt 0.37, trunc. 0.36, awrt 0.12, or trunc. 0.11) This mark may be implied.	B1		
	• $\frac{\beta - 1.2}{1.3 - \beta} = \frac{"0.3678924937"}{"0.1161410527"}$ • $\frac{\beta - 1.2}{"0.3678924937"} = \frac{"0.1161410527"}{"0.1161410527"}$		937"	A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.	M1		
	• $\beta = \left(\frac{(1.3)("0.3678924937") + (1.2)("0.1161410527")}{"0.1161410527" + "0.3678924937"}\right)$ $= \left(\frac{0.4782602418 + 0.1393692632}{0.4840335464}\right) = \left(\frac{0.617629505}{0.4840335464}\right)$ • $\beta = 1.2 + \left(\frac{"0.3678924937"}{"0.1161410527" + "0.3678924937"}\right)(0.1)$ • $\beta = 1.2 + \left(\frac{"-0.3678924937"}{"-0.1161410527" + "-0.3678924937"}\right)(0.1)$				dM1		
	$\{\beta = 1.276005578\} \Rightarrow \beta = 1.276$	(3 dp)	(Ior	1.276	A1 cao		
			(Ignore any subsequent iterations)				

Summer 2018 www.mystudybro.com **Mathematics F1** This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme) WFM01 Ouestion Marks Scheme Notes Number **6.** (b) At least one of either $\frac{x}{"0.3678924937..."} = \frac{0.1 - x}{"0.1161410527..."}$ Way 2 \pm (awrt 0.37, trunc. 0.36, **B**1 awrt 0.12, or trunc. 0.11) $x = \frac{(0.1)("0.3678924937...")}{0.4840335464...} = 0.0760055778...$ This mark may be implied. Finds x using a correct method of M1similar triangles and applies dM1 $\Rightarrow \beta = 1.2 + 0.0760055778...$ "1.5 + their x" $\{\beta = 1.276005578...\} \Rightarrow \beta = 1.276 \text{ (3 dp)}$ 1.276 A1 cao **(4)** (b) $\frac{0.1 - x}{"0.3678924937..."} = \frac{x}{"0.1161410527..."}$ At least one of either Wav 3 \pm (awrt 0.37, trunc. 0.36, **B**1 awrt 0.12, or trunc. 0.11) $x = \frac{(0.1)("0.1161410527...")}{0.4840335464...} = 0.0239944222...$ This mark may be implied. Finds x using a correct method of similar triangles and applies M1 dM1 $\Rightarrow \beta = 1.3 - 0.0239944222...$ "1.6 – their x" $\{\beta = 1.276005578...\} \Rightarrow \beta = 1.276 \text{ (3 dp)}$ 1.276 A1 cao **(4) Question 6 Notes** Incorrect differentiation followed by their estimate of α with no evidence of applying the **6.** (a) Note NR formula is final dM0A0. This mark can be implied by applying at least one correct *value* of either f(0.45) or f'(0.45)**M1** to 1 significant figure in $0.45 - \frac{f(0.45)}{f'(0.45)}$. So just $0.45 - \frac{f(0.45)}{f'(0.45)}$ with an incorrect answer and no other evidence scores final dM0A0. You can imply the M1A1A1 marks for algebraic differentiation for either Note • $f'(0.45) = 5(0.45)^{\frac{3}{2}} - 3(0.45)^{-\frac{3}{2}}$ • f'(1.5) applied correctly in $\alpha \approx 0.45 - \frac{\frac{2((0.45)^3 + 3)}{\sqrt{0.45}} - 9}{5(0.45)^{\frac{3}{2}} - 3(0.45)^{-\frac{3}{2}}}$

(a)	Alternative method 2 for the first 3 n	narks	
Alt 2		Some evidence of $\pm \lambda x^n \rightarrow \pm \mu x^{n-1}$; $\lambda, \mu \neq 0$	
	1	Note: Allow M1 for either	
	$u = 2x^3 + 6 \qquad v = x^{-\frac{1}{2}}$	$\pm Ax^2(x^{-\frac{1}{2}})$ or $\pm Bx^{-\frac{3}{2}}(2x^3+6)$	M1
	$\begin{cases} u = 2x^{3} + 6 & v = x^{-\frac{1}{2}} \\ u' = 6x^{2} & v' = -\frac{1}{2}x^{-\frac{3}{2}} \end{cases} \Rightarrow$	or $\pm Bx^{-\frac{3}{2}}(x^3+3)$; $A, B \neq 0$	
	2)	Differentiates to give) (1
	1 3 3	$\pm Ax^2(x^{-\frac{1}{2}}) \pm Bx^{-\frac{3}{2}}(2x^3+6); A, B \neq 0$	M1
	$f'(x) = 6x^{2}(x^{-\frac{1}{2}}) - \frac{1}{2}x^{-\frac{3}{2}}(2x^{3} + 6)$	Correct differentiation which can be simplified or un-simplified	A1

Summer 2018

Mathematics F1

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Past Paper	(Mark Scheme) This resource was created and owned by Pearson Edexcel Wil						
		Question 6 Notes Continued					
6. (b)	Note	Condone writing the symbol α in place of β in part (b)					
	Note	$\frac{\beta - 1.2}{1.3 - \beta} = \left \frac{\text{"- 0.3678924937"}}{\text{"0.1161410527"}} \right \text{ is a valid method for the first M mark}$					
	Note	Give 1 st M1 for either $\frac{-f(1.2)}{f(1.3)} = \frac{\beta - 1.2}{1.3 - \beta}$ or $\frac{ f(1.2) }{f(1.3)} = \frac{\beta - 1.2}{1.3 - \beta}$ or $\frac{ f(1.2) }{ f(1.3) } = \frac{\beta - 1.2}{1.3 - \beta}$					
	Note	Give M1M1 for the correct statement $\frac{1.3 f(1.2) + 1.2f(1.3)}{f(1.3) + f(1.2) }$					
	Note	Give M1M1 for the correct statement $\beta = \frac{1.3 + 1.2k}{k+1}$,					
		where $k = \frac{f(1.3)}{ f(1.2) } = \frac{0.116141}{0.367892} = 0.31569$					
	Note	$\frac{\beta - 1.2}{1.3 - \beta} = \frac{"0.3678924937"}{"0.1161410527"} \implies \beta = 1.276 \text{ with no intermediate working is B1 M1 dM1 A1}$					
	Note	$\frac{\beta - 1.2}{-0.3678924937} = \frac{1.3 - \beta}{0.1161410527} \implies \beta = 1.34613 = 1.346 (3 dp) \text{ is B1 M0 dM0 A0}$					
	Note	$\frac{\beta - 1.2}{-0.3678924937} = \frac{1.3 - \beta}{-0.1161410527} \implies \beta = 1.276 \text{ (3 dp) is B1 M1 dM1 A1}$					

Sum	-	204	0
Sumn	ner	Z U I	О

Mathematics F1

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

WFM01 **Ouestion** Scheme **Notes** Marks Number $5x^2 - 4x + 3 = 0$ has roots α , β 7. **Both** $\alpha + \beta = \frac{4}{5}$ and $\alpha\beta = \frac{3}{5}$, seen or implied $\alpha + \beta = \frac{4}{5}, \ \alpha\beta = \frac{3}{5}$ **B**1 (a) $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$ States or uses $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$ M1**Use** of the **correct** identity for $\alpha^2 + \beta^2$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \dots$ M1(May be implied by their work) Applies $\alpha^2 \beta^2 = (\alpha \beta)^2$ correctly in the denominator $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{\left(\frac{4}{5}\right)^2 - 2\left(\frac{3}{5}\right)}{\left(\frac{3}{5}\right)^2}$ of $\frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2}$ using their value of $\alpha \beta$ M1 dependent on ALL previous marks being awarded $=\frac{-\left(\frac{14}{25}\right)}{\left(\frac{9}{25}\right)}=-\frac{14}{9}$ $-\frac{14}{9}$ or $-1\frac{5}{9}$ or -1.5 from correct working A1 cso **(5)** Simplifies $\frac{3}{\alpha^2} + \frac{3}{\beta^2}$ to give $\left\{ \text{Sum} = \right\} \frac{3}{\alpha^2} + \frac{3}{\beta^2} = 3\left(-\frac{14}{9}\right) \left\{ = -\frac{14}{3} \text{ or } -\frac{42}{9} \right\}$ (b) M1 Way 1 3(their answer to (a)) Applies $\frac{9}{(\text{their }\alpha\beta)^2}$ $\left\{ \text{Product} = \right\} \left(\frac{3}{\alpha^2} \right) \left(\frac{3}{\beta^2} \right) = \frac{9}{\left(\frac{3}{2} \right)^2} \left\{ = 25 \right\}$ M1using their value of $\alpha\beta$ Applies $x^2 - (sum)x + product$ (can be implied), $x^2 + \frac{14}{3}x + 25 = 0$ where sum and product are numerical values. M1 **Note:** "=0" is not required for this mark Any integer multiple of $3x^2 + 14x + 75 = 0$, $3x^2 + 14x + 75 = 0$ A₁ including the =0**(4) Question 7 Notes** Writing a correct $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ without attempting to substitute at least one **7.** (a) Note of either their $\alpha + \beta$ or their $\alpha\beta$ into $(\alpha + \beta)^2 - 2\alpha\beta$ is 2^{nd} M0 Give B0M1M1M1A0 for $\alpha + \beta = -\frac{4}{5}$, $\alpha\beta = \frac{3}{5}$ leading to $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\left(-\frac{4}{5}\right)^2 - 2\left(\frac{3}{5}\right)}{\left(3\right)^2} = -\frac{14}{9}$ Note Writing down α , $\beta = \frac{2 + \sqrt{11}i}{5}$, $\frac{2 - \sqrt{11}i}{5}$ and then stating $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$ or applying Note $\alpha + \beta = \frac{2 + \sqrt{11}i}{5} + \frac{2 - \sqrt{11}i}{5} = \frac{4}{5}$ and $\alpha\beta = \left(\frac{2 + \sqrt{11}i}{5}\right)\left(\frac{2 - \sqrt{11}i}{5}\right) = \frac{3}{5}$ scores B0 Those candidates who then apply $\alpha + \beta = \frac{4}{5}$, $\alpha\beta = \frac{3}{5}$, having written down/applied Note α , $\beta = \frac{2 + \sqrt{11}i}{5}$, $\frac{2 - \sqrt{11}i}{5}$, can only score the M marks in part (a) Give B0M0M0M0A0 for $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{1}{\left(\frac{2+\sqrt{11}i}{5}\right)^2} + \frac{1}{\left(\frac{2-\sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$ Note

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WFI	M01
-----	-----

	Question 7 Notes Continued							
7. (a)	Note	Give B0M1M0M0A0 for $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{\alpha^2 + \beta^2}{\alpha^2 \beta^2} = \frac{\left(\frac{2+\sqrt{11}i}{5}\right)^2 + \left(\frac{2-\sqrt{11}i}{5}\right)^2}{\left(\frac{2+\sqrt{11}i}{5}\right)^2 \left(\frac{2-\sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$						
	Note	Give B0M1M0M0A0 for						
	$\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{(\alpha + \beta)^2 - 2\alpha\beta}{\alpha^2 \beta^2} = \frac{\left(\frac{2+\sqrt{11}i}{5} + \frac{2-\sqrt{11}i}{5}\right)^2 - 2\left(\frac{2+\sqrt{11}i}{5}\right)\left(\frac{2-\sqrt{11}i}{5}\right)}{\left(\frac{2+\sqrt{11}i}{5}\right)^2 \left(\frac{2-\sqrt{11}i}{5}\right)^2} = -\frac{14}{9}$							
	Note Allow B1 for both $S = \frac{4}{5}$ and $P = \frac{3}{5}$ or for $\sum = \frac{4}{5}$ and $\prod = \frac{3}{5}$							
	Note	Give final A0 for e.g. -1.55 or -1.5556 without reference to $-\frac{14}{9}$ or $-1\frac{5}{9}$ or -1.5						
	Note	Give 2^{nd} M1 for applying their $\alpha + \beta = \frac{4}{5}$ on						
		$5\alpha^2 - 4\alpha + 3 = 0, 5\beta^2 - 4\beta + 3 = 0 \Rightarrow 5(\alpha^2 + \beta^2) - 4(\alpha + \beta) + 6 = 0$						
		to give $5(\alpha^2 + \beta^2) - 4\left(\frac{4}{5}\right) + 6 = 0$ $\left\{ \Rightarrow \alpha^2 + \beta^2 = \frac{-6 + \frac{16}{5}}{5} = -\frac{14}{25} \right\}$						
(b)	(b) Note A correct method leading to $a = 3$, $b = 14$, $c = 75$ without writing a final answer							
		$3x^2 + 14x + 75 = 0 \text{ is final M1A0}$						
	Note	Using $\frac{2+\sqrt{11}i}{5}$, $\frac{2-\sqrt{11}i}{5}$ explicitly, to find the sum and product of $\frac{3}{\alpha^2}$ and $\frac{3}{\beta^2}$ to give						
	$x^2 + \frac{14}{3}x + 25 = 0 \implies 3x^2 + 14x + 75 = 0$ scores M0M0M1A0 in part (b)							
	Note	Using $\frac{2+\sqrt{11}i}{5}$, $\frac{2-\sqrt{11}i}{5}$ to find $\alpha+\beta=\frac{4}{5}$, $\alpha\beta=\frac{3}{5}$, $\frac{1}{\alpha^2}+\frac{1}{\beta^2}=-\frac{14}{9}$ and applying						
		$\left\{\alpha + \beta = \frac{4}{5}, \right\} \alpha \beta = \frac{3}{5}, \frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9}$ can potentially score full marks in part (b). E.g.						
		• Sum = $\frac{3}{\alpha^2} + \frac{3}{\beta^2} = 3\left(-\frac{14}{9}\right) = -\frac{14}{3}$						
		• Product $=$ $\left(\frac{3}{\alpha^2}\right)\left(\frac{3}{\beta^2}\right) = \frac{9}{\left(\frac{3}{5}\right)^2} = 25$						
		• $x^2 + \frac{14}{3}x + 25 = 0 \Rightarrow 3x^2 + 14x + 75 = 0$						
	Note	Finding $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = -\frac{14}{9}$ and correctly writing $x^2 - 3\left(\frac{1}{\alpha^2} + \frac{1}{\beta^2}\right)x + \frac{9}{(\alpha\beta)^2} = 0$ followed by						
		$x^{2} - \frac{14}{3}x + 25 = 0 \Rightarrow 3x^{2} - 14x + 75 = 0$ (incorrect substitution of $\frac{1}{\alpha^{2}} + \frac{1}{\beta^{2}} = -\frac{14}{9}$)						
		is M0M1M1A0						

Summer	2018
Oulling	2010

Mathematics F1

(4)

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 Question Scheme Notes Marks Number 7. $5x^2 - 4x + 3 = 0$ has roots α , β Substitutes $x^2 = \frac{3}{y}$ into $5x^2 - 4x + 3 = 0$ (b) M1 Way 2 dependent on the previous M mark Correct method for squaring dM1 both sides of their equation dependent on the previous M mark Obtains an expression of the form dM1 $ay^2 + by + c$, $a, b, c \neq 0$ $9y^2 + 42y + 225 = 0$ **Note:** " = 0" not required for this mark Any integer multiple of $3y^2 + 14y + 75 = 0$, **A**1 or $3x^2 + 14x + 75 = 0$, including the "=0"

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number		Scheme	Scheme Notes		Marks	
8.		$\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^n = \begin{pmatrix} a^n & 0 \\ \frac{a^n - b^n}{a - b} & b^n \end{pmatrix}; \ n \in \mathbb{Z}^+; \ a \neq b$				
	RH	$HS = \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix},$ $HS = \begin{pmatrix} a & 0 \\ \frac{a-b}{a-b} & b \end{pmatrix} = \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$	or LHS	either $S = \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} \text{ or } \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$	Shows or states that r LHS = RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$ $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^{1}$, RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$	B1
		the result is true for $n = k$) $a^{k} = \begin{pmatrix} a^{k} & 0 \\ \frac{a^{k} - b^{k}}{a - b} & b^{k} \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} \text{ or } \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$	$\binom{0}{b} \binom{a^k}{a^k - b}$	$\begin{bmatrix} 0 \\ \frac{a^k}{a} \\ \begin{pmatrix} a \\ 1 \end{pmatrix} \end{bmatrix}$	$ \begin{bmatrix} a^k & 0 \\ -b^k \\ -b \end{bmatrix} $ multiplied by $ \begin{bmatrix} 0 \\ b \end{bmatrix} $ (either way round)	M1
	= (_ <u>c</u>	$ \frac{a(a^{k+1} - 0)}{a - b} + b^{k} - b^{k+1} \qquad \text{or} \qquad \left(a^{k} + \frac{a^{k+1}}{a - b} + \frac{b^{k}(a - b)}{a - b} + \frac{b^{k}(a - b)}{(a - b)}\right) \\ = \begin{pmatrix} a^{k+1} - 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix} $	$\begin{bmatrix} a^{k+1} \\ \frac{b(a^k - b^k)}{a - b} \\ 0 \\ \frac{b}{b} \end{bmatrix} b^{k+1} $	$\begin{pmatrix} 0 \\ b^{k+1} \end{pmatrix}$	Multiplies out to give a correct un-simplified matrix	A1
		$= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix}$		dependent (on the previous A mark Achieves this result with no algebraic errors	A1
	If the re	sult is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true to}}$ true for $n = 1$, then the	for $n = k + 1$	1. As the result		A1 cso
				`	,	(5)
			Question	8 Notes		5
8.	Note	Final A1 is dependent on all previous It is gained by candidates conveying either at the end of their solution of	ous mark	s being scored. as of all four un	_	
	Note Give B0 for stating LHS = RHS by itself with no reference to LHS = RHS = $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$					
	Note	Give B0 for just stating $\begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}^1$	$= \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix}$			
	Note	E.g. $ \begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} a^k & 0 \\ 1 & b \end{pmatrix} $	a^{k+1} $a^{k+1} - b^{k+1}$ $a - b$	$\begin{pmatrix} 0 \\ b^{k+1} \end{pmatrix}$ with no	intermediate working is M	I1A0A0A0
	Note	E.g. $ \begin{pmatrix} a^k & 0 \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} \frac{a^k}{a^k} \\ \frac{a^k - b^k}{a - b} & b^k \end{pmatrix} \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} = \begin{pmatrix} a^k & 0 \\ 1 & b \end{pmatrix} = $	$\frac{a^{k+1}}{a(a^k - b^k)}$	$\frac{1}{1} + b^k \qquad b^{k+1}$	$= \begin{pmatrix} a^{k+1} & 0 \\ \frac{a^{k+1} - b^{k+1}}{a - b} & b^{k+1} \end{pmatrix} $ is	M1A1A1

Summer	2018
Julilie	2010

Mathematics F1

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 **Ouestion** Marks Scheme Notes Number (a) $\frac{z - ki}{z + 3i} = i$ (b)(i) k = 4 (ii) k = 19. $z - ki = i(z + 3i) \Rightarrow z - ki = iz - 3$ (a) Complete method of making z the subject M1Way 1 $\Rightarrow z - iz = -3 + ki \Rightarrow z(1 - i) = -3 + ki$ $\Rightarrow z = \frac{-3 + ki}{(1 - i)}$ Correct expression for z = ...**A**1 dependent on the previous M mark $z = \frac{(-3+ki)}{(1-i)} \frac{(1+i)}{(1+i)} \left\{ = \frac{(-3+ki)(1+i)}{2} \right\}$ Multiplies numerator and denominator dM1 by the conjugate of the denominator $z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i$ * Achieves the correct answer A1* cso with no errors seen **(4)** z - ki = i(z + 3i)(a) Multiplies both sides by (z + 3i), Way 2 (x + yi) - ki = i(x + yi + 3i)applies z = x + yi, o.e., multiplies out and M1x + (y-k)i = -y - 3 + xiattempts to equate both the real part and the imaginary part of the resulting equation $\{\text{Real} \Rightarrow \}$ x = -y - 3Both correct equations A₁ $\{\text{Imaginary} \Rightarrow \} \quad y - k = x$ which can be simplified or un-simplified dependent on the previous M mark $\begin{cases} x + y = -3 \\ x - y = -k \end{cases} \Rightarrow x = \frac{-k-3}{2}, y = \frac{k-3}{2}$ Obtains two equations both in terms of x and y dM1 and solves them simultaneously to give at least one of $x = \dots$ or $y = \dots$ Finds $x = \frac{-k-3}{2}, y = \frac{k-3}{2}$ $\Rightarrow z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i$ * A1* cso and writes down the given result **(4)** (b)(i) Some evidence of substituting z = 4 $\{k=4 \Rightarrow\}$ $z=-\frac{(4+3)}{2}+\frac{(4-3)}{2}i$ $\{=-\frac{7}{2}+\frac{1}{2}i\}$ into the given expression for zM1and a full attempt at applying Pythagoras to find |z|Correct exact answer A₁ (ii) Some evidence of substituting z = 1 into the given expression for z and uses trigonometry $\{k=1 \Rightarrow\}$ $z=-\frac{(1+3)}{2}+\frac{(1-3)}{2}i \{=-2-i\}$ to find an expression for $\arg z$ in the range M1(-3.14..., -1.57...) or $(-180^{\circ}, -90^{\circ})$ $\arg z = -\pi + \tan^{-1}\left(\frac{1}{2}\right)$ or (3.14..., 4.71...) or (180°, 270°) $\{\arg z = -\pi + 0.463647... \Rightarrow \}$ $\arg z = -2.677945... \{ = -2.678 (3 dp) \}$ awrt - 2.678**A**1 (4)

Summer	2018
Oulling	2010

(b)(ii)

Note

www.mystudybro.com

Mathematics F1

This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme) WFM01 Ouestion Marks Scheme Notes Number (a) $\frac{z - ki}{z + 3i} = i$ (b)(i) k = 4 (ii) k = 19. $\frac{z - ki}{i} = z + 3i \implies \frac{iz + k}{(-1)} = z + 3i$ (a) Complete method of making z the subject M1Way 3 \Rightarrow $-iz - k = z + 3i \Rightarrow -k - 3i = z + iz$ $\Rightarrow -k-3i = z(1+i)$ Correct expression for z = ...**A**1 $\Rightarrow z = \frac{-k - 3i}{(1+i)}$ dependent on the previous M mark $z = \frac{(-k-3i)}{(1+i)} \frac{(1-i)}{(1-i)}$ Multiplies numerator and denominator dM1 by the conjugate of the denominator $z = -\frac{(k+3)}{2} + \frac{(k-3)}{2}i *$ Achieves the correct answer A1* cso with no errors seen **(4) Question 9 Notes** Condone any of e.g. $z = -\frac{k+3}{2} + \frac{k-3}{2}i$ or $z = -\frac{(3+k)}{2} + \frac{(-3+k)}{2}i$ for the final A mark **9.** (a) Note M1 can be implied by awrt 3.54 or truncated 3.53 (b)(i) Note Give A0 for 3.5355... without reference to $\sqrt{\frac{50}{4}}$, $\sqrt{12.5}$, $\frac{\sqrt{50}}{2}$, $\frac{5}{2}\sqrt{2}$ or $\frac{5}{\sqrt{2}}$ or $\sqrt{\frac{25}{2}}$ Note

Allow M1 (implied) for awrt -2.7, truncated -2.6, awrt -153° or awrt 207° or awrt 3.6

Summer	2018
Jullillei	2010

www.mystudybro.com **Mathematics F1** Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel WFM01 **Ouestion** Scheme **Notes** Marks Number $H: xy = 144; \ P\left(12p, \frac{12}{p}\right), \ p \neq 0, \text{ lies on } H.$ 10. Normal to H at P crosses positive x-axis at Q and negative y-axis at R $y = \frac{144}{x} = 144x^{-1} \implies \frac{dy}{dx} = -144x^{-2} \text{ or } -\frac{144}{x^2}$ (a) Uses product rule to give $\pm x \frac{dy}{dx} \pm y$ $xy = 144 \implies x \frac{dy}{dx} + y = 0$ M1their $\frac{dy}{dt} \times \frac{1}{\text{their } \frac{dy}{dt}}$; Condone $t \equiv p$ x = 12t, $y = \frac{12}{t}$ $\Rightarrow \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = -\left(\frac{12}{t^2}\right)\left(\frac{1}{12}\right)$ So at *P*, $m_T = -\frac{1}{n^2}$ Correct calculus work leading to $m_T = -\frac{1}{r^2}$ A₁ Applies $m_N = \frac{-1}{m_T}$, where m_T is found using calculus So, $m_N = p^2$ M1 • $y - \frac{12}{p} = "p^2"(x - 12p)$ or Correct straight line method for an equation of a normal where $m_N (\neq m_T)$ is M1 • $\frac{12}{n} = p^2 (12p) + c \implies y = p^2 x + \text{their } c$ found by using calculus. Correct algebra leading to $y = p^2 x + \frac{12}{r^2} - 12p^3 *$ Correct solution only A1 * **Note:** m_N must be a function of p for the 2^{nd} M1 and 3^{rd} M1 mark **(5)** (b) $y=0 \Rightarrow x_Q=12p-\frac{12}{p^3}$ Puts y = 0 and finds xM1 or puts x = 0 and finds y $x = 0 \Rightarrow y_R = \frac{12}{p} - 12p^3$ At least one of x_Q or y_R correct, o.e. A1 $(12p - \frac{12}{n^3}, 0)$ and $(0, \frac{12}{n} - 12p^3)$ Both sets of coordinates correct. A₁ {Ignore labelling of coordinates} **(3)** $\frac{1}{2} \times (\pm \text{ their } x_Q)(\pm \text{ their } y_R) = 512$ M1 Area $OQR = \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512$ (c) Correct equation which can A1be un-simplified or simplified $144p^4 - 1312 + \frac{144}{p^4} = 0$ $144 p^8 - 1312 p^4 + 144 = 0$ Correct 3 term quadratic in p^4 A₁ $\left\{ \Rightarrow 9p^8 - 82p^4 + 9 = 0 \right\}$ **Note:** $144 p^8 + 144 = 1312 p^4$ is acceptable for this mark dependent on the previous M mark $(9p^4-1)(p^4-9)=0 \implies p^4=...$ Uses a 3TQ in p^4 (or an implied 3TQ in p^4) dM1 to find at least one value of $p^4 = ...$ Obtains both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only $p = \sqrt{3} \text{ and } p = -\frac{1}{\sqrt{3}}$ A₁

Note: Allow $p = -\frac{\sqrt{3}}{3}$ in place of $p = -\frac{1}{\sqrt{3}}$

(5)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	(Mark Scher	me) This resource was created and owned by Pearson Edexcel WFM0 ²				
Question Number		Scheme		Notes	Marks	
10. (c)	Area <i>OQI</i>	$R = \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right)$	= 512	$\frac{1}{2} \times \left(\pm \text{ their } x_Q\right) \left(\pm \text{ their } y_R\right) = 512$ Correct equation which can	M1 A1	
		2 (P) (P)		be un-simplified or simplified		
	144 (p -	$\frac{1}{p^3} \left(p^3 - \frac{1}{p} \right) = 1024 \implies p^4 - 2$	$+\frac{1}{p^4} = \frac{1024}{144}$			
	$\left(p^2 - \frac{1}{p^2}\right)$	$\int_{0}^{2} = \frac{64}{9} \implies p^{2} - \frac{1}{p^{2}} = \pm \frac{8}{3}$				
				Both correct 3 term quadratics in p^2		
	$3p^4 - 8p^2$	$a^2 - 3 = 0$ and $3p^4 + 8p^2 - 3 = 0$	Note:	Both $p^4 - 1 = \frac{8}{3}p^2$ and $3p^4 + 8p^2 = 3$	A1	
	(2.2)	2 2 2 2		is acceptable for this mark		
	` • •	$(p^2 - 3) = 0 \Rightarrow p^2 = \dots$	Uses a	dependent on the previous M mark 3TQ in p^2 (or an implied 3TQ in p^2)	dM1	
	$(3p^2-1)$	$(p^2+3)=0 \implies p^2=\dots$		to find at least one value of $p^2 =$	divii	
	$p = \sqrt{3}$ a	or $(p^2 + 3) = 0 \implies p^2 = \dots$ and $p = -\frac{1}{\sqrt{3}}$	0	Obtains both $p = \sqrt{3}$ and $p = -\frac{1}{\sqrt{3}}$ only		
		V		V	(5)	
			Question 10			
10. (a)	Note	Allow $y = p^2 x - 12p^3 + \frac{12}{p}$ {order of terms interchanged in $y =$ } for final A1				
(b)	Note	For the accuracy marks in part (b) allow equivalents such as				
		• $x = 12p - \frac{12}{p^3}$ or $x = \frac{12p^4 - 12}{p^3}$ or $x = \frac{12(p^2 - 1)(p^2 + 1)}{p^3}$				
		P P P				
		• $y = \frac{12}{p} - 12p^3$ or $y = \frac{12 - 12p^4}{p}$				
(c)	Note	Give 1st M1, 1st A1 for				
	$\bullet \frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512 \{\text{correct use of modulus}\}$					
	• $\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(12p^3 - \frac{12}{p} \right) = 512$ {modulus has been applied here} • $-\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512$ {modulus has been applied here} Note Give 1 st M1, 1 st A0 for $\frac{1}{2} \left(12p - \frac{12}{p^3} \right) \left(\frac{12}{p} - 12p^3 \right) = 512$ {modulus has not been applied here}					
	Note	Writing a correct $144p^4 - 1312$	$2 + \frac{144}{p^4} = 0$ o.e	. followed by a correct e.g. $p^4 = 9$ with	no	
		intermediate working is 2 nd A0, 2 nd M1				
	Note	Writing a correct $144p^4 - 1312 + \frac{144}{p^4} = 0$ o.e. followed by $p^4 = 9$ and $p^4 = \frac{1}{9}$ with no				
		intermediate working is 2 nd A1 (implied), 2 nd M1				

Summer 2018

Mathematics F1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel