

# Mark Scheme (Results)

Summer 2017

Pearson Edexcel International A Level in Further Pure Mathematics F2 (WFM02/01)



Summer 2017
Past Paper (Mark Scheme)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

**Mathematics F2** 

WFM02

# **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <a href="https://www.edexcel.com">www.edexcel.com</a> or <a href="https://www.edexcel.com">www.edexcel.com</a>, you can get in touch with us using the details on our contact us page at <a href="https://www.edexcel.com/contactus">www.edexcel.com/contactus</a>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2017
Publications Code WFM02\_01\_1706\_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

WFM02

### **General Marking Guidance**

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
   Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

WFM02

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

#### **EDEXCEL GCE MATHEMATICS**

#### **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

## **General Principles for Further Pure Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles).

### Method mark for solving 3 term quadratic:

#### 1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where  $|pq|=|c|$ , leading to  $x=...$ 

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where  $|pq| = |c|$  and  $|mn| = |a|$ , leading to  $x = ...$ 

#### 2. Formula

Attempt to use the correct formula (with values for a, b and c).

#### 3. Completing the square

Solving 
$$x^2 + bx + c = 0$$
:  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to  $x = ...$ 

#### Method marks for differentiation and integration:

#### 1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

#### 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

# www.mystudybro.com

This resource was created and owned by Pearson Edexcel

WFM02

**Mathematics F2** 

#### Use of a formula

Past Paper (Mark Scheme)

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

#### **Exact answers**

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

### **Answers without working**

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

**Mathematics F2** 

Past Paper (Mark Scheme)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

WFM02

| $ \begin{array}{ c c c }\hline \text{Number} & \text{Scheme} & \text{Notes} & \text{Marks} \\ \hline \textbf{1} & 2(\cos 0 + i \sin 0) \text{ or } 2 & (z =) 2 \cos 0 + i \sin 0 \\ & \cos 2\cos 0 + i \sin 0 \text{ or } 2 + 0 \text{ i} \\ & \text{Allow } 2(\cos 8\pi + i \sin 0\pi) & \text{B1} \\ \hline \textbf{2} \left(\cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}\right) & \text{This answer in this form.} \\ & 2\left(\cos \frac{2k\pi}{5} + i \sin \frac{2k\pi}{5}\right), (k = 2, 3, 4) & \text{This answer in this form.} \\ & 2\left(\cos \frac{2k\pi}{5} + i \sin \frac{2k\pi}{5}\right), (k = 2, 3, 4) & \text{Attempts at least 2 more solutions} \\ & \text{whose arguments are out of range. May be implied by their answers.} \\ \hline \textbf{Note that this answer in general solution form can score full marks if correct i.e. the A marks below can be implied.} \\ & E.g. & z = 2\left(\cos \frac{2k\pi}{5} + i \sin \frac{2k\pi}{5}\right), (k = 0, 1, 2, 3, 4) \text{ scores full marks} \\ & 2\left(\cos \frac{4\pi}{5} + i \sin \frac{6\pi}{5}\right) \\ & 2\left(\cos \frac{6\pi}{5} + i \sin \frac{6\pi}{5}\right) \\ & 2\left(\cos \frac{8\pi}{5} + i \sin \frac{6\pi}{5}\right) \\ & 2\left(\cos \frac{4\pi}{5} - i \sin \frac{4\pi}{5}\right) \text{ or } 2\left(\cos \left(-\frac{4\pi}{5}\right) + i \sin \left(-\frac{4\pi}{5}\right)\right) \text{ for } 2\left(\cos \frac{6\pi}{5} + i \sin \frac{6\pi}{5}\right) \\ & \text{Do not allow } 2\left(\cos \frac{2\pi}{5} - i \sin \frac{2\pi}{5}\right) \text{ or } 2\left(\cos \left(-\frac{2\pi}{5}\right) + i \sin \left(-\frac{2\pi}{5}\right)\right) \text{ for } 2\left(\cos \frac{8\pi}{5} + i \sin \frac{8\pi}{5}\right) \\ & \text{Ignore answers outside the range.} \\ & \text{For a fully correct solution that has extra solutions in range, deduct the final A mark.} \\ & \text{Answers in degrees: Penalise once the first time it occurs.} \\ & \text{Answers in degrees are: 0, 72, 144, 216, 288} \\ & & \text{Individed to the cours.} \\ & \text{Answers in degrees} & \text{This individed to the cours.} \\ & \text{Answers in degrees} & \text{This individed to the cours.} \\ & \text{Answers in degrees} & \text{This individed to the cours.} \\ & \text{Answers in degrees} & \text{This individed to the cours.} \\ & \text{Answers in degrees} & \text{This individed to the cours.} \\ & \text{Answers in degrees} & \text{This individed to the cours.} \\ & \text{Answers in degrees} & \text{This individed to the cours.} \\ & \text{Answers in degrees} & \text{This individed to the cours.} \\ & \text{Answers in degrees} & \text{This individed to the cours.} \\ & \text{Answers in degrees} & \text{This individed to the cours.} \\ & \text{Answers in degrees} & This individed to the cours$ |                                                                                                                                                                                                                            | Triper (Mark Scheme) Trips resource was created and owned by Fearson Edexcer                                         |                                                                                                                                 |                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| $2(\cos 0 + i \sin 0) \text{ or } 2$ $2\left(\cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}\right)$ $2\left(\cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}\right)$ $2\left(\cos \frac{2k\pi}{5} + i \sin \frac{2k\pi}{5}\right), (k = 2, 3, 4)$ This answer in this form.  Do not allow e.g. $2e^{\frac{2\pi}{5}}$ but allow $2\cos \frac{2\pi}{5} + 2i \sin \frac{2\pi}{5}$ Attempts at least 2 more solutions whose arguments differ by $\frac{2\pi}{5}$ . Allow this mark if the arguments are out of range. May be implied by their answers.  Note that this answer in general solution form can score full marks if correct i.e. the A marks below can be implied.  E.g. $z = 2\left(\cos \frac{2k\pi}{5} + i \sin \frac{2k\pi}{5}\right), (k = 0, 1, 2, 3, 4)$ scores full marks $2\left(\cos \frac{4\pi}{5} + i \sin \frac{4\pi}{5}\right)$ $2\left(\cos \frac{6\pi}{5} + i \sin \frac{6\pi}{5}\right)$ $2\left(\cos \frac{8\pi}{5} + i \sin \frac{4\pi}{5}\right)$ A1: One further correct answer, allow the brackets to be expanded.  A1: All correct, allow the brackets to be expanded.  A1: All correct, allow the brackets to be expanded.  A1: All correct, allow the brackets to be expanded.  Do not allow $2\left(\cos \frac{4\pi}{5} - i \sin \frac{4\pi}{5}\right)$ or $2\left(\cos \left(-\frac{4\pi}{5}\right) + i \sin \left(-\frac{4\pi}{5}\right)\right)$ for $2\left(\cos \frac{6\pi}{5} + i \sin \frac{6\pi}{5}\right)$ Do not allow $2\left(\cos \frac{2\pi}{5} - i \sin \frac{2\pi}{5}\right)$ or $2\left(\cos \left(-\frac{2\pi}{5}\right) + i \sin \left(-\frac{2\pi}{5}\right)\right)$ for $2\left(\cos \frac{8\pi}{5} + i \sin \frac{8\pi}{5}\right)$ Ignore answers outside the range.  For a fully correct solution that has extra solutions in range, deduct the final A mark.  Answers in degrees: Penalise once the first time it occurs.  Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Question<br>Number                                                                                                                                                                                                         | Scheme                                                                                                               | Notes                                                                                                                           | Marks                         |  |
| $2\left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right) \qquad \text{Do not allow e.g. } 2e^{\frac{2\pi}{5}} \text{ but allow} \\ 2\cos\frac{2\pi}{5} + 2i\sin\frac{2\pi}{5} \\ 2\left(\cos\frac{2k\pi}{5} + i\sin\frac{2k\pi}{5}\right), (k = 2, 3, 4) \qquad \text{Attempts at least 2 more solutions} \\ 2\left(\cos\frac{2k\pi}{5} + i\sin\frac{2k\pi}{5}\right), (k = 2, 3, 4) \qquad \text{M1 this mark if the arguments are out of range. May be implied by their answers.} \\ \text{Note that this answer in general solution form can score full marks if correct i.e. the A marks below can be implied.} \\ \text{E.g. } z = 2\left(\cos\frac{2k\pi}{5} + i\sin\frac{2k\pi}{5}\right), (k = 0, 1, 2, 3, 4) \text{ scores full marks} \\ 2\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right) \qquad \text{A1: One further correct answer, allow the brackets to be expanded.} \\ 2\left(\cos\frac{8\pi}{5} + i\sin\frac{6\pi}{5}\right) \qquad \text{A1: All correct, allow the brackets to be expanded.} \\ \text{Do not allow } 2\left(\cos\frac{4\pi}{5} - i\sin\frac{4\pi}{5}\right) \text{ or } 2\left(\cos\left(-\frac{4\pi}{5}\right) + i\sin\left(-\frac{4\pi}{5}\right)\right) \text{ for } 2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right) \\ \text{Do not allow } 2\left(\cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}\right) \text{ or } 2\left(\cos\left(-\frac{2\pi}{5}\right) + i\sin\left(-\frac{2\pi}{5}\right)\right) \text{ for } 2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right) \\ \text{Ignore answers outside the range.} \\ \text{For a fully correct solution that has extra solutions in range, deduct the final A mark.} \\ \text{Answers in degrees: Penalise once the first time it occurs.} \\ \text{Answers in degrees are: 0, 72, 144, 216, 288} \\                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                          | 2(cos 0+i sin 0) or 2                                                                                                | or $2\cos 0 + i\sin 0$ or $2 + 0i$                                                                                              | B1                            |  |
| $2\left(\cos\frac{2k\pi}{5}+i\sin\frac{2k\pi}{5}\right), (k=2,3,4)\right) \text{ whose arguments differ by } \frac{2\pi}{5}. \text{ Allow this mark if the arguments are out of range. May be implied by their answers.}$ $Note that this answer in general solution form can score full marks if correct i.e. the A marks below can be implied.$ $E.g. \ z=2\left(\cos\frac{2k\pi}{5}+i\sin\frac{2k\pi}{5}\right), (k=0,1,2,3,4) \text{ scores full marks}$ $2\left(\cos\frac{4\pi}{5}+i\sin\frac{6\pi}{5}\right)$ $2\left(\cos\frac{8\pi}{5}+i\sin\frac{6\pi}{5}\right)$ $2\left(\cos\frac{8\pi}{5}+i\sin\frac{8\pi}{5}\right)$ $A1: \text{ One further correct answer, allow the brackets to be expanded.}$ $A1: \text{ All correct, allow the brackets to be expanded.}$ $A1: \text{ All correct, allow the brackets to be expanded.}}$ $Do \text{ not allow } 2\left(\cos\frac{4\pi}{5}-i\sin\frac{4\pi}{5}\right) \text{ or } 2\left(\cos\left(-\frac{4\pi}{5}\right)+i\sin\left(-\frac{4\pi}{5}\right)\right) \text{ for } 2\left(\cos\frac{6\pi}{5}+i\sin\frac{6\pi}{5}\right)$ $Do \text{ not allow } 2\left(\cos\frac{2\pi}{5}-i\sin\frac{2\pi}{5}\right) \text{ or } 2\left(\cos\left(-\frac{2\pi}{5}\right)+i\sin\left(-\frac{2\pi}{5}\right)\right) \text{ for } 2\left(\cos\frac{8\pi}{5}+i\sin\frac{8\pi}{5}\right)$ $Ignore \text{ answers outside the range.}}$ For a fully correct solution that has extra solutions in range, deduct the final A mark.}  Answers in degrees: Penalise once the first time it occurs.  Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                            | $2\left(\cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}\right)$                                                             | Do not allow e.g. $2e^{\frac{2\pi}{5}i}$ but allow                                                                              | B1                            |  |
| correct i.e. the A marks below can be implied.  E.g. $z = 2\left(\cos\frac{2k\pi}{5} + i\sin\frac{2k\pi}{5}\right)$ , $(k = 0, 1, 2, 3, 4)$ scores full marks $2\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$ A1: One further correct answer, allow the brackets to be expanded. $2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$ A1: All correct, allow the brackets to be expanded.  Do not allow $2\left(\cos\frac{4\pi}{5} - i\sin\frac{4\pi}{5}\right)$ or $2\left(\cos\left(-\frac{4\pi}{5}\right) + i\sin\left(-\frac{4\pi}{5}\right)\right)$ for $2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$ Do not allow $2\left(\cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}\right)$ or $2\left(\cos\left(-\frac{2\pi}{5}\right) + i\sin\left(-\frac{2\pi}{5}\right)\right)$ for $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ Ignore answers outside the range.  For a fully correct solution that has extra solutions in range, deduct the final A mark.  Answers in degrees: Penalise once the first time it occurs.  Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                            | $2\left(\cos\frac{2k\pi}{5} + i\sin\frac{2k\pi}{5}\right), (k=2,3,4)$                                                | whose arguments differ by $\frac{2\pi}{5}$ . Allow this mark if the arguments are out of range. May be implied by their         | M1                            |  |
| E.g. $z = 2\left(\cos\frac{2k\pi}{5} + i\sin\frac{2k\pi}{5}\right)$ , $(k = 0, 1, 2, 3, 4)$ scores full marks $2\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$ A1: One further correct answer, allow the brackets to be expanded. $2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$ A1: All correct, allow the brackets to be expanded. $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ Do not allow $2\left(\cos\frac{4\pi}{5} - i\sin\frac{4\pi}{5}\right)$ or $2\left(\cos\left(-\frac{4\pi}{5}\right) + i\sin\left(-\frac{4\pi}{5}\right)\right)$ for $2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$ Do not allow $2\left(\cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}\right)$ or $2\left(\cos\left(-\frac{2\pi}{5}\right) + i\sin\left(-\frac{2\pi}{5}\right)\right)$ for $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ Ignore answers outside the range. For a fully correct solution that has extra solutions in range, deduct the final A mark.  Answers in <b>degrees</b> : Penalise once the first time it occurs. Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                            | Note that this answer in general se                                                                                  | olution form can score full marks if                                                                                            |                               |  |
| $2\left(\cos\frac{4\pi}{5} + i\sin\frac{4\pi}{5}\right)$ $2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$ $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ A1: One further correct answer, allow the brackets to be expanded.  A1: All correct, allow the brackets to be expanded.  Do not allow $2\left(\cos\frac{4\pi}{5} - i\sin\frac{4\pi}{5}\right) \text{ or } 2\left(\cos\left(-\frac{4\pi}{5}\right) + i\sin\left(-\frac{4\pi}{5}\right)\right) \text{ for } 2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$ Do not allow $2\left(\cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}\right) \text{ or } 2\left(\cos\left(-\frac{2\pi}{5}\right) + i\sin\left(-\frac{2\pi}{5}\right)\right) \text{ for } 2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ Ignore answers outside the range.  For a fully correct solution that has extra solutions in range, deduct the final A mark.  Answers in <b>degrees</b> : Penalise once the first time it occurs.  Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                            |                                                                                                                      |                                                                                                                                 |                               |  |
| the brackets to be expanded. $2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$ $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ A1: All correct, allow the brackets to be expanded.  Do not allow $2\left(\cos\frac{4\pi}{5} - i\sin\frac{4\pi}{5}\right)$ or $2\left(\cos\left(-\frac{4\pi}{5}\right) + i\sin\left(-\frac{4\pi}{5}\right)\right)$ for $2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$ Do not allow $2\left(\cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}\right)$ or $2\left(\cos\left(-\frac{2\pi}{5}\right) + i\sin\left(-\frac{2\pi}{5}\right)\right)$ for $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ Ignore answers outside the range.  For a fully correct solution that has extra solutions in range, deduct the final A mark.  Answers in <b>degrees</b> : Penalise once the first time it occurs.  Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                            | E.g. $z = 2\left(\cos\frac{2k\pi}{5} + i\sin\frac{2k\pi}{5}\right)$ ,                                                | (k = 0, 1, 2, 3, 4) scores full marks                                                                                           |                               |  |
| $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ A1: All correct, allow the brackets to be expanded.  Do not allow $2\left(\cos\frac{4\pi}{5} - i\sin\frac{4\pi}{5}\right)$ or $2\left(\cos\left(-\frac{4\pi}{5}\right) + i\sin\left(-\frac{4\pi}{5}\right)\right)$ for $2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$ Do not allow $2\left(\cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}\right)$ or $2\left(\cos\left(-\frac{2\pi}{5}\right) + i\sin\left(-\frac{2\pi}{5}\right)\right)$ for $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ Ignore answers outside the range.  For a fully correct solution that has extra solutions in range, deduct the final A mark.  Answers in <b>degrees</b> : Penalise once the first time it occurs.  Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |                                                                                                                      | · ·                                                                                                                             |                               |  |
| Do not allow $2\left(\cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}\right)$ or $2\left(\cos\left(-\frac{2\pi}{5}\right) + i\sin\left(-\frac{2\pi}{5}\right)\right)$ for $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ Ignore answers outside the range.  For a fully correct solution that has extra solutions in range, deduct the final A mark.  Answers in <b>degrees</b> : Penalise once the first time it occurs.  Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                            |                                                                                                                      |                                                                                                                                 | A1 A1                         |  |
| Ignore answers outside the range.  For a fully correct solution that has extra solutions in range, deduct the final A mark.  Answers in <b>degrees</b> : Penalise once the first time it occurs.  Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Do n                                                                                                                                                                                                                       | ot allow $2\left(\cos\frac{4\pi}{5} - i\sin\frac{4\pi}{5}\right)$ or $2\left(\cos\left(\frac{4\pi}{5}\right)\right)$ | $\left(-\frac{4\pi}{5}\right) + i\sin\left(-\frac{4\pi}{5}\right)$ for $2\left(\cos\frac{6\pi}{5} + i\sin\frac{6\pi}{5}\right)$ | $\left(\frac{6\pi}{5}\right)$ |  |
| For a fully correct solution that has extra solutions in range, deduct the final A mark.  Answers in <b>degrees</b> : Penalise once the first time it occurs.  Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Do not allow $2\left(\cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}\right)$ or $2\left(\cos\left(-\frac{2\pi}{5}\right) + i\sin\left(-\frac{2\pi}{5}\right)\right)$ for $2\left(\cos\frac{8\pi}{5} + i\sin\frac{8\pi}{5}\right)$ |                                                                                                                      |                                                                                                                                 |                               |  |
| Answers in <b>degrees</b> : Penalise once the first time it occurs.  Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ignore answers outside the range.                                                                                                                                                                                          |                                                                                                                      |                                                                                                                                 |                               |  |
| Answers in degrees are: 0, 72, 144, 216, 288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For a fully correct solution that has extra solutions in range, deduct the final A mark.                                                                                                                                   |                                                                                                                      |                                                                                                                                 |                               |  |
| ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                            | e e e e e e e e e e e e e e e e e e e                                                                                |                                                                                                                                 |                               |  |
| Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                            | 3                                                                                                                    |                                                                                                                                 | (5)                           |  |
| 1 Otal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                            |                                                                                                                      |                                                                                                                                 | Total 5                       |  |

WFM02

| Question<br>Number | Scheme                                                      | Notes                                                                                                                     | Marks   |
|--------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------|
| 2.                 | $\frac{x-4}{(x+3)} \le$                                     | $\leq \frac{5}{x(x+3)}$                                                                                                   |         |
|                    | $\frac{x-4}{(x+3)} - \frac{5}{x(x+3)} \left( \le 0 \right)$ | Collects expressions to one side                                                                                          | M1      |
|                    | $\frac{x^2 - 4x - 5}{x(x+3)} \left( \le 0 \right)$          | M1: Attempt common denominator                                                                                            | M1A1    |
|                    | x(x+3)                                                      | A1: Correct single fraction                                                                                               | WIIAI   |
|                    | x = 0, -3                                                   | Correct critical values                                                                                                   | B1      |
|                    | $x^2 - 4x - 5 \Rightarrow (x - 5)(x + 1) = 0$               | Attempt to solve their quadratic as far as $x =$ to obtain the <b>other</b> 2 critical                                    | M1      |
| Way 1              | $\Rightarrow x = \dots$                                     | values                                                                                                                    |         |
| \ \tag{1}          | x = -1,5                                                    | Correct critical values                                                                                                   | A1      |
|                    | $-3 < x \le -1, \ 0 < x \le 5$                              | M1: Attempts two inequalities using their 4 critical values in ascending order. E.g. $a * x * b$ , $c * x * d$ where * is |         |
|                    | or e.g. $(-3,-1] \cup (0,5]$                                | "<" or " $\leq$ " and $a < b < c < d$ or equivalent inequalities. Dependent on at                                         | dM1A1A1 |
|                    | $(-3,-1] \cup (0,3]$                                        | least one earlier M mark. A1: All 4 cv's in the inequalities correct                                                      | A1      |
|                    | N                                                           | A1: Both intervals fully correct                                                                                          |         |

#### Notes

Intervals may be separated by commas, written separately,  $\cup$  or "or" or "and" may be used but not  $\cap$  All marks are available for correct work if "=" is used instead of " $\leq$ " for the first 6 marks

|       |                                                               |                                                                                                                                                                                                                                                                                                                     | (9)     |
|-------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|       |                                                               |                                                                                                                                                                                                                                                                                                                     | Total 9 |
|       | Multiplies l                                                  | $\log x^2 \left(x+3\right)^2$                                                                                                                                                                                                                                                                                       |         |
|       |                                                               | Multiplies both sides by $x^2(x+3)^2$ .                                                                                                                                                                                                                                                                             |         |
|       | $x^{2}(x+3)(x-4) \le 5x(x+3)$                                 | May multiply by more terms but must be a positive multiplier containing                                                                                                                                                                                                                                             | M1      |
|       |                                                               | $x^2(x+3)^2$                                                                                                                                                                                                                                                                                                        |         |
|       | $x^{3}(x+3) - 4x^{2}(x+3) - 5x(x+3) \le 0$                    | M1: Collects expressions to one side A1: Correct inequality (or equation)                                                                                                                                                                                                                                           | M1A1    |
|       | x = 0, -3                                                     | Correct critical values                                                                                                                                                                                                                                                                                             | B1      |
| Way 2 | $x(x+3)(x-5)(x+1) = 0 \Longrightarrow x = \dots$              | Attempt to solve their quartic as far as $x =$ to obtain the <b>other</b> 2 critical values. Allow the $x$ and $x + 3$ to be "cancelled" to obtain the other critical values so may end up solving a cubic or even a quadratic.                                                                                     | M1      |
|       | x = -1,5                                                      | Correct critical values                                                                                                                                                                                                                                                                                             | A1      |
|       | $-3 < x \le -1, \ 0 < x \le 5$ or e.g. $(-3, -1] \cup (0, 5]$ | M1: Attempts two inequalities using their 4 critical values in ascending order. E.g. $a * x * b$ , $c * x * d$ where * is "< " or " $\leq$ " and $a < b < c < d$ or equivalent inequalities. Dependent on at least one earlier M mark.  A1: All 4 cv's in the inequalities correct A1: Both intervals fully correct | dM1A1A1 |
|       |                                                               |                                                                                                                                                                                                                                                                                                                     | (9)     |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

WFM02

|       | 5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                       | Draws a sketch of graphs $y = \frac{x-4}{x+3} \text{ and } y = \frac{5}{x(x+3)}$                                                                                                                                                                                                   |        |
|-------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Way 3 | x = 0, -3                                                     | Correct critical values (vertical asymptotes)                                                                                                                                                                                                                                      | B1     |
|       | $\frac{x-4}{(x+3)} = \frac{5}{x(x+3)}$                        | Eliminate y                                                                                                                                                                                                                                                                        | M1     |
|       | x(x-4)=5                                                      | M1: Obtains quadratic equation A1: Correct quadratic equation                                                                                                                                                                                                                      | M1A1   |
|       | $x^2 - 4x - 5 = 0 \Rightarrow x = -1,5$                       | M1: Solves their quadratic equation as far as $x =$ A1: Correct critical values                                                                                                                                                                                                    | M1A1   |
|       | $-3 < x \le -1, \ 0 < x \le 5$ or e.g. $(-3, -1] \cup (0, 5]$ | M1: Attempts two inequalities using their 4 critical values in ascending order. E.g. $a * x * b$ , $c * x * d$ where * is "< " or " $\leq$ " and $a < b < c < d$ or equivalent inequalities. Dependent on at least one earlier M mark.  A1: All 4 cv's in the inequalities correct | M1A1A1 |
|       |                                                               | A1: Both intervals fully correct                                                                                                                                                                                                                                                   |        |

If the candidate takes the above approach and there is no sketch e.g. just cross multiplies to obtain the critical values -1 and 5 then no marks are available i.e. the cv's 0 and -3 must be stated somewhere to give access to subsequent marks in this case.

|       | Considers                                                                                                                                                                                                                                                                                                                                                                                  | s Regions:                                                                                                                                                                                           |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Way 4 | Considers $x < -3 \Rightarrow x(x+3) > 0$<br>$x(x-4) \le 5 \Rightarrow -1 \le x \le 5$<br>But $x < -3$ so no solution<br>Considers $-3 < x < 0 \Rightarrow x(x+3) < 0$<br>$x(x-4) \ge 5 \Rightarrow x \ge 5$ or $x \le -1$<br>But $-3 < x < 0$ so $-3 < x \le -1$<br>Considers $x > 0 \Rightarrow x(x+3) > 0$<br>$x(x-4) \le 5 \Rightarrow -1 \le x \le 5$<br>But $x > 0$ so $0 < x \le 5$ | Can be marked as: B1: Critical values 0 and -3 M1: Considers 3 regions M1: Obtains quadratic equation A1: Correct quadratic M1: Solves quadratic A1: cv's -1 and 5 Final 3 marks as already defined. |
|       |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                      |

Summer 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

| Question     | Scheme                                                                                                                                                                                                                         | Notes                                                                                                                                                                                                                                                                                                                                                   | Marks   |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Number 3.(a) | $r^3 - (r-1)^3 \equiv r^3 - (r^3 - 3r^2 + 3r - 1)$                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                         |         |
| 3.(a)        | $r - (r-1) \equiv r - (r - 3r + 3r - 1)$ or $r^3 - \left(r^3 + \binom{3}{1}r^2(-1) + \binom{3}{2}r(-1)^2 + (-1)^3\right)$ $\equiv 3r^2 - 3r + 1 *$ or $r^3 - (r-1)^3 \equiv (r^2 + r(r-1) + (r-1)^2)$ $\equiv 3r^2 - 3r + 1 *$ | Shows a correct expansion of $(r-1)^3$ or uses $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$ and achieves the printed answer with no errors.                                                                                                                                                                                                                      | B1*     |
| (7.)         |                                                                                                                                                                                                                                | ** 1 0 100                                                                                                                                                                                                                                                                                                                                              | (1)     |
| (b)          | $n^{3} - (n-1)^{3}$ $(n-1)^{3} - (n-2)^{3}$ $(n-2)^{3} - (n-3)^{3}$ $3^{3} - 2^{3}$ $2^{3} - 1^{3}$ $1^{3} - 0^{3}$                                                                                                            | Uses the method of differences. Must include at least $r = 1, 2,, n$ or $r = 1,, (n-1)$ , $n$ . But may implied by sight of $\sum r^3 - (r-1)^3 = n^3$ if insufficient terms shown. If method is clearly other than differences (see note below), then score M0. The final A mark can be witheld if differences not shown i.e. just writes down $n^3$ . | M1      |
|              | $n^{3} = \sum_{r=1}^{n} (3r^{2} - 3r + 1) = \sum_{r=1}^{n} (3r^{2} - 3r + 1)$ Sets $n^{3} = \sum_{r=1}^{n} (3r^{2} - 3r + 1)$ and                                                                                              | r=1 r=1 r=1                                                                                                                                                                                                                                                                                                                                             | M1      |
|              | $\sum_{r=1}^{n} 1 = n$                                                                                                                                                                                                         | $\sum_{r=1}^{n} 1 = n \text{ seen or implied}$                                                                                                                                                                                                                                                                                                          | B1      |
|              | $3\sum_{r=1}^{n} r^2 = n(n-1)(n+1) + \frac{3}{2}n(n+1)$                                                                                                                                                                        | Rearranges to make $k \sum_{r=1}^{n} r^2$ the subject and substitutes for $\sum_{r=1}^{n} r$ . <b>Dependent on the first method</b> mark.                                                                                                                                                                                                               | dM1     |
|              | $\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1) **$                                                                                                                                                                             | Completely correct solution with no errors seen.                                                                                                                                                                                                                                                                                                        | A1*     |
|              | Allow e.g. $\frac{2n^3 + 3n^2 + n}{6}$                                                                                                                                                                                         | $= \frac{1}{6}n(n+1)(2n+1)$                                                                                                                                                                                                                                                                                                                             |         |
|              | Note: May be s                                                                                                                                                                                                                 | een in (h):                                                                                                                                                                                                                                                                                                                                             | (5)     |
|              | $\sum_{r=1}^{n} r^3 - (r-1)^3 = \frac{1}{4} n^2 (n+1)$ Scores a maximum M0M1B1dM                                                                                                                                               | $n^2 - \frac{1}{4}n^2(n-1)^2 = n^3$ etc.                                                                                                                                                                                                                                                                                                                |         |
|              | Generally, there are no mark                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                         |         |
|              |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                         | Total 6 |

WFM02

| Question<br>Number                           | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Notes                                                                                                                         | Marks        |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------|
| 4(a)                                         | $y = 3e^{-x}\cos 3x + Ae^{-x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sin 3x$                                                                                                                     |              |
|                                              | $\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -3\mathrm{e}^{-x}\cos 3x - 9\mathrm{e}^{-x}\sin 3x - 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |              |
|                                              | $(=(-3+3A)e^{-x}\cos 3x + (-9-x)\cos 3x + (-9-x)\cos$ | $-A)e^{-x}\sin 3x$                                                                                                            | -M1          |
|                                              | Attempts to differentiate the given express                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                               |              |
|                                              | $3e^{-x}\cos 3x$ to give $\alpha e^{-x}\cos 3x + \beta e^{-x}\sin 3x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                               |              |
|                                              | $Ae^{-x}\sin 3x$ to give $\alpha Ae^{-x}\cos \alpha A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                             |              |
|                                              | $\frac{d^2y}{dx^2} = (-24 - 6A)e^{-x}\cos 3x +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               |              |
|                                              | (Terms may be unco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                             | <b>-d</b> M1 |
|                                              | Uses the product rule again on an expression of give $\alpha e^{-x} \cos 3x + \beta e^{-x} \sin 3x$ . <b>Depende</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                               |              |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               |              |
|                                              | $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 10y = (12 - 12A)e^{-x} \cot \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                               | -M1          |
|                                              | Substitute their results into the differentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | al equation. (May be implied)  Compares coefficients of                                                                       |              |
|                                              | $12-12A = 0$ or $36+4A = 40 \Rightarrow A =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e <sup>-x</sup> sin $3x$ or e <sup>-x</sup> cos $3x$ and attempts to find $A$ . <b>Dependent on the previous method mark.</b> | <b>-d</b> M1 |
|                                              | $\Rightarrow A=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cao                                                                                                                           | A1           |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               | (5)          |
| (b) Marks for (b)                            | $m^2 - 2m + 10 = 0 \Rightarrow m = 1 \pm 3i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1: Forms and attempts to solve the Auxiliary Equation. See General Principles.  A1: Correct solution for the AE              | M1 A1        |
| can score<br>anywhere<br>in their<br>answer. | $(y =) e^{x} (C \cos 3x + D \sin 3x)$ or $(y =) C e^{(1+3i)x} + D e^{(1-3i)x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Correct form for CF using their complex roots from the AE                                                                     | M1           |
|                                              | $y = e^{x}(C\cos 3x + D\sin 3x) + 3e$<br>GS = their CF + their PI ( <b>Allow</b> for Must start $y = \dots$ and depends on at least one to been using a PI of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | t on their CF and PI ) he M's being scored and must have                                                                      | A1ft         |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | August 1 Control                                                                                                              | (4)          |
| (c)                                          | $x = 0, y = 3 \Rightarrow 3 = C + 3 \Rightarrow C = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Attempts to substitute $x = 0$ and $y = 3$ into their answer to (b)                                                           | M1           |
|                                              | $\frac{\mathrm{d}y}{\mathrm{d}x} = (C+3D)\mathrm{e}^x \cos 3x + (-3C+D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                               | M1           |
|                                              | Attempt to differentiate their GS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | with or without their $C$ Attempt to substitute $x = 0$ and                                                                   |              |
|                                              | 3 = C + 3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{dy}{dx} = 3 \text{ into their } \frac{dy}{dx}$                                                                         | M1           |
|                                              | $y = e^{x} \sin 3x + 3e^{-x} \cos 3x + e^{-x} \sin 3x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Correct answer. Must start $y =$                                                                                              | A1cao        |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               | (4)          |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                               | Total 13     |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Marks          |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 5                  | y =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $e^{\cos^2 x}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| (a)                | $\frac{dy}{dx} = -2\sin x \cos x e^{\cos^2 x} = -\sin 2x e^{\cos^2 x}$ M1: Differentiates using the chain rule to obtain an expression of the form $\alpha \sin x \cos x e^{\cos^2 x} \text{ or } \beta \sin 2x e^{\cos^2 x}$ A1: Correct derivative  Note that candidates may use $\frac{1}{2}(1+\cos 2x)$ instead of $\cos^2 x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -M1A1          |
|                    | Correct use of the Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{d^2y}{dx^2} = -\sin 2x(-2\sin x\cos xe^{\cos^2 x}) - 2\cos 2xe^{\cos^2 x}$ Correct use of the Product Rule on their first derivative <b>Dependent on the first method mark.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
|                    | $\frac{d^2 y}{dx^2} = e^{\cos^2 x} (\sin^2 2x - 2\cos 2x)^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Achieves the printed answer with no errors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A1*            |
|                    | M1: $\frac{1}{y} \frac{dy}{dx} = k \sin x \cos x$ or $k \sin x \cos x$ | $x \Rightarrow \frac{1}{y} \frac{dy}{dx} = -2\sin x \cos x$ $\sin 2x \text{ A1: } \frac{1}{y} \frac{dy}{dx} = -2\sin x \cos x$ $= -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $= \text{of product rule}$ $x^2 2x - 2\cos 2x = 2\cos 2x$ $x^3 = 2\sin x \cos x$ $= -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $= \cos x \cos x = \cos x$ $= -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $= \cos x \cos x = \cos x$ $= -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $= \cos x \cos x = \cos x$ $= -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $= \cos x \cos x = \cos x = \cos x$ $= -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $= \cos x \cos x = \cos x = \cos x$ $= -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $= \cos x \cos x = \cos x = \cos x$ $= -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $= \cos x \cos x = \cos x = \cos x$ $= -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $= -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $= -\frac{dy}{dx} \cos x = \cos x = \cos x$ $= -\frac{dy}{dx} \sin 2x - 2y \cos 2x$ $= -\frac{dy}{dx} \cos x = \cos x = \cos x$ $= -\frac{dy}{dx} \sin x = -\frac{dy}{dx}$ | (4)            |
| (b)                | $\frac{\mathrm{d}y}{\mathrm{d}x} = 0, \ \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2\mathrm{e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Both seen, can be implied by subsequent work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B1             |
|                    | Applies the <b>correct</b> Maclaurin expansion be no <i>x</i> 's in the This can be implied by their expansion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(0) + \frac{x^2}{2}f''(0) +$<br>$\cos^{20}(\sin^2 0 - 2\cos 0)x^2 +$<br>on, the " $\frac{1}{2}$ " is required and there must the derivatives. On but if the expansion in incorrect for all is not quoted, score M0.  Or exact equivalent e.g. $e - ex^2$ (i.e. all trig. evaluated)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M1 A1          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (3)<br>Total 7 |

**Mathematics F2** 

WFM02

Summer 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

| Question<br>Number | Scheme                                                                                        | Notes                                                                                                                                                                                                                                                              | Marks   |
|--------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 6.                 | $\cos x \frac{\mathrm{d}y}{\mathrm{d}x} + y \sin x$                                           | $x = (\cos^2 x) \ln x$                                                                                                                                                                                                                                             |         |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} + y \frac{\sin x}{\cos x} = \cos x \ln x$                    | Attempt to divide through by cos <i>x</i> . If the intention is not clear, must see at least 2 terms divided by cos <i>x</i> .                                                                                                                                     | M1      |
|                    | $I = e^{\int \frac{\sin x}{\cos x} dx} = e^{-\ln \cos x}$                                     | M1: $e^{\int \pm their P(x) (dx)}$ . Dependent on the first method mark.  A1: $e^{-ln\cos x}$ or $e^{ln\sec x}$                                                                                                                                                    | dM1A1   |
|                    | $=\frac{1}{\cos x}$                                                                           | $\frac{1}{\cos x} \operatorname{or} (\cos x)^{-1} \operatorname{or} \sec x$                                                                                                                                                                                        | A1      |
|                    | $\frac{y}{\cos x} = \int \ln x  dx$ or $\frac{d}{dx} \left( \frac{y}{\cos x} \right) = \ln x$ | M1: $y \times \text{their } I = \int Q(x) \times \text{their } I  dx \text{ or}$ $\frac{d}{dx} (y \times \text{their } I) = Q(x) \times \text{their } I$ A1: $\frac{y}{\cos x} = \int \ln x  dx \text{ or}$ $\frac{d}{dx} \left( \frac{y}{\cos x} \right) = \ln x$ | · M1A1  |
|                    | $\frac{y}{\cos x} = x \ln x - x + C$                                                          | Attempts $\int \ln x  dx$ by parts correctly (correct sign needed unless correct formula quoted and used).                                                                                                                                                         | M1      |
|                    | $y = (x \ln x - x + C)\cos x$                                                                 | Any equivalent with the constant correctly placed and " $y = \dots$ " must appear at some stage.                                                                                                                                                                   | A1      |
|                    | Note: Failure to divide by cos x at th                                                        |                                                                                                                                                                                                                                                                    | Total 8 |
|                    | Method mark                                                                                   | is available.                                                                                                                                                                                                                                                      |         |

**Mathematics F2** 

Past Paper (Mark Scheme)

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

WFM02

| Question<br>Number | Scheme                                                                    | Notes                                                                                                                                                                                                                                                                                                                                                                                                  | Marks |
|--------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 7                  | 5 Initial line                                                            |                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| (a)                | $y = r\sin\theta = 4\cos 2\theta\sin\theta$                               | Attempts to use $r \sin \theta$                                                                                                                                                                                                                                                                                                                                                                        | M1    |
|                    | $y = 4(1 - 2\sin^2\theta)\sin\theta = 4\sin\theta$                        | Attempts to use $r \sin \theta$ $\frac{dy}{d\theta} = 4 \cos 2\theta \cos \theta - 8 \sin 2\theta \sin \theta$ or $\sin \theta = 4 \sin \theta - 8 \sin^3 \theta \Rightarrow \frac{dy}{d\theta} = 4 \cos \theta - 24 \sin^2 \theta \cos \theta$ ect expression for $\frac{dy}{d\theta}$ or any multiple of $\frac{dy}{d\theta}$                                                                        |       |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}\theta} = 0 \Longrightarrow \theta = \dots$ | Set their $\frac{dy}{d\theta} = 0$ and attempt to solve to obtain a value for $\theta$                                                                                                                                                                                                                                                                                                                 | M1    |
|                    | $r = \frac{8}{3}$ , $\theta = 0.421$ , $\theta = 2.72$                    | Any one of: $r = \frac{8}{3}$ (or awrt 2.7)<br>or $\theta = 0.421$ or $\theta = 2.72$                                                                                                                                                                                                                                                                                                                  | A1    |
|                    | $r = \frac{8}{3}$ $\theta = 0.421, \ 2.72$                                | Correct value for $r$ and both angles correct. May be seen as $\left(\frac{8}{3}, 0.421\right)$ , $\left(\frac{8}{3}, 2.72\right)$ . Allow $\left(0.421, \frac{8}{3}\right)$ , $\left(2.72, \frac{8}{3}\right)$ but coordinates do not have to be paired and accept awrt 0.421, 2.72 and allow awrt 2.7 for $\frac{8}{3}$ . Ignore any other coordinates given once the correct values have been seen. | A1    |
|                    |                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                        | (5)   |

Past Paper (Mark Scheme)

# www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics F2

**(b)** Indication that the integration of  $(4\cos 2\theta)^2$  $A = \dots \int (4\cos 2\theta)^2 d\theta$ M1is required. Ignore any limits and ignore any constant factors at this stage.  $\cos^2 2\theta = \frac{1}{2}(1 + \cos 4\theta)$ **A**1 A correct identity seen or implied. Integrates to obtain an expression of the form  $\alpha\theta + \beta \sin 4\theta$ . Ignore any limits and ignore  $A = ... [\alpha \theta + \beta \sin 4\theta]$ dM1any constant factors. Dependent on the first method mark. A fully correct method that if evaluated correctly would give the answer  $4\pi$ . Note that the correct "constant factor" may only be  $=16\left[\theta+\frac{1}{4}\sin 4\theta\right]^{\frac{1}{4}}$ ddM1 applied at the very last stage of their working and this method mark would only be awarded at that point. Dependent on all previous method marks. **Examples that could score the final M1 (following correct work):**  $16 \left[ \theta + \frac{1}{4} \sin 4\theta \right]_{0}^{\frac{\pi}{4}}, 8 \left[ \theta + \frac{1}{4} \sin 4\theta \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}}, 8 \left[ \theta + \frac{1}{4} \sin 4\theta \right]_{0}^{\frac{\pi}{2}}, 16 \left[ \theta + \frac{1}{4} \sin 4\theta \right]_{\frac{3\pi}{4}}^{\frac{\pi}{4}}$  $=4\pi$ **A**1 **(5)**  Past Paper (Mark Scheme)

# www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics F2
WFM02

Correct expression or value for *PQ* or *PQ*/2. **(c)** E.g.  $2\left(\frac{8}{3}\right)\frac{1}{\sqrt{6}}$ ,  $2\left(\frac{8}{3}\right)\sin 0.421$ ,  $PQ = 2r\sin\theta = \frac{16}{3\sqrt{6}}$ B1  $2\left(\frac{8}{3}\right)\sin 2.72, \frac{8\sqrt{6}}{9}$  or half of these. May be implied by awrt 2.2 or awrt 1.1 SP = 8 or  $\frac{SP}{2} = 4$ Correct value for SP or SP/2 **B**1 Area  $PQRS = \frac{16}{3\sqrt{6}} \times 8 \left( = \frac{64\sqrt{6}}{9} \right)$ Their  $PQ \times SP$ . Must be the complete M1rectangle here. M1: Their rectangle area – their answer to Required area =  $\frac{128}{3\sqrt{6}} - 4\pi$ A1: Correct exact answer or equivalent exact M1A1 form e.g.  $\frac{64\sqrt{6}}{9}$   $-4\pi$  or allow awrt 4.8 or 4.9 **(5) Total 15** 

| <del>imer 201</del><br>Ouestion  | 7 www.mystudybro.com Matl                                                                                                                                                                                      | nematics |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Question<br>aper (Mark<br>Number | Scheme) This resolution was created and owned by Pearson Edgrecel                                                                                                                                              | Marks    |
| 8(a)(i)                          | $\cos 5\theta + i\sin 5\theta = (c + is)^5 = c^5 + 5c^4is + 10c^3i^2s^2 + 10c^2i^3s^3 + 5ci^4s^4 + i^5s^5$                                                                                                     |          |
|                                  | _                                                                                                                                                                                                              | M1       |
|                                  | Attempts to expand $(c+is)^3$ including binomial coefficients (NB may only see real                                                                                                                            | IVII     |
|                                  | terms here)                                                                                                                                                                                                    |          |
|                                  | $\cos 5\theta = \text{Re}(c+is)^5 = c^5 + 10c^3i^2s^2 + 5ci^4s^4 = c^5 - 10c^3s^2 + 5cs^4$                                                                                                                     | M1       |
|                                  | Extracts real terms and uses $i^2 = -1$ to eliminate i.                                                                                                                                                        |          |
|                                  | $\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta^*$                                                                                                                  | A1*      |
|                                  | Achieves the printed result with no errors seen.                                                                                                                                                               | 111      |
|                                  | Alternative:                                                                                                                                                                                                   |          |
|                                  | $\left(z = \cos\theta + i\sin\theta, \ z^{-1} = \cos\theta - i\sin\theta, \ z^{n} = \cos n\theta + i\sin n\theta\right)$                                                                                       |          |
|                                  | $\left(z + \frac{1}{z}\right)^5 = z^5 + 5z^4 \left(\frac{1}{z}\right) + 10z^3 \left(\frac{1}{z^2}\right) + 10z^2 \left(\frac{1}{z^3}\right) + 5z \left(\frac{1}{z^4}\right) + \frac{1}{z^5}$                   |          |
|                                  | $(2\cos\theta)^5 = 2\cos 5\theta + 10\cos 3\theta + 20\cos\theta$                                                                                                                                              |          |
|                                  | <b>M1:</b> Expands $\left(z + \frac{1}{z}\right)^5$ including binomial coefficients and uses $z^n + \frac{1}{z^n} = 2\cos n\theta$                                                                             |          |
|                                  | at least once to obtain an equation in cos                                                                                                                                                                     |          |
|                                  | $\cos 5\theta = 16\cos^5\theta - 5\cos 3\theta - 10\cos\theta$                                                                                                                                                 |          |
|                                  | $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta \Rightarrow \cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 15\cos \theta - 10\cos \theta$                                                                    |          |
|                                  | <b>M1:</b> Uses <b>correct</b> identity for $\cos 3\theta$ to obtain $\cos 5\theta$ in terms of single angles                                                                                                  |          |
|                                  | $=\cos^5\theta + 15\cos\theta \left(1-\sin^2\theta\right)^2 - 20\cos^3\theta + 5\cos\theta$                                                                                                                    |          |
|                                  | $= \cos^5 \theta - 10\cos\theta \sin^2 \theta + 15\cos\theta \sin^4 \theta$                                                                                                                                    |          |
|                                  | $= \cos^5 \theta + 5\cos \theta \sin^4 \theta + 10\cos \theta \sin^2 \theta (\sin^2 \theta - 1)$                                                                                                               |          |
|                                  | ,                                                                                                                                                                                                              |          |
|                                  | $\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta^*$                                                                                                                  |          |
| (::)                             | <b>A1:</b> Achieves the printed result with no errors seen (may need careful checking)                                                                                                                         |          |
| (ii)                             | $\sin 5\theta = 5\cos^4 \theta \sin \theta - 10\cos^2 \theta \sin^3 \theta + \sin^5 \theta$ This expression (or equivalent) with no i's seen.                                                                  | B1       |
|                                  | Note that some candidates may re-start and expand here as above.                                                                                                                                               |          |
|                                  |                                                                                                                                                                                                                | (4)      |
| (b)                              | $\sin 5\theta = 5\cos^4\theta \sin\theta - 10\cos^2\theta \sin^3\theta + \sin^5\theta$                                                                                                                         |          |
|                                  | $\tan 5\theta = \frac{\sin 5\theta}{\cos 5\theta} = \frac{5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta + \sin^5\theta}{\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos\theta\sin^4\theta}$           | M1       |
|                                  | Uses $\tan 5\theta = \frac{\sin 5\theta}{50}$ and substitutes the results from part (a)                                                                                                                        | IVII     |
|                                  | $\cos 5\theta$                                                                                                                                                                                                 |          |
|                                  | $= \frac{5 \tan \theta - 10 \tan^3 \theta + \tan^5 \theta}{1 - 10 \tan^2 \theta + 5 \tan^4 \theta} = \frac{t^5 - 10t^3 + 5t}{5t^4 - 10t^2 + 1} *$                                                              |          |
|                                  |                                                                                                                                                                                                                | A1*      |
|                                  | Achieves the printed result with no errors seen.  Note that a minimum could be:                                                                                                                                |          |
|                                  |                                                                                                                                                                                                                |          |
|                                  | $\tan 5\theta = \frac{5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta + \sin^5\theta}{\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos\theta\sin^4\theta} = \frac{t^5 - 10t^3 + 5t}{5t^4 - 10t^2 + 1} *$ |          |
|                                  | Note that some candidates may work backwards which is acceptable:                                                                                                                                              |          |
|                                  | <u> </u>                                                                                                                                                                                                       |          |
|                                  | E.g. $\frac{t^5 - 10t^3 + 5t}{5t^4 - 10t^2 + 1} = \frac{\tan^5 \theta - 10\tan^3 \theta + 5\tan \theta}{5\tan^4 \theta - 10\tan^2 \theta + 1}$                                                                 |          |
|                                  |                                                                                                                                                                                                                |          |
|                                  | $= \frac{5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta + \sin^5\theta}{\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos\theta\sin^4\theta} = \tan 5\theta$                                             |          |
|                                  | $\cos^{3}\theta - 10\cos^{3}\theta\sin^{2}\theta + 5\cos\theta\sin^{4}\theta$                                                                                                                                  |          |

(2)

| Summer 201       |                                                                                                                                                                                                                                                                                          | ro.com Mat                                                                                                                                                                                                                   | hematics F      |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Past Paper (Mark | Scheme) This resource was created and owr $\tan 5\theta = 0 \text{ or } \frac{\tan^5 \theta - 10 \tan^3 \theta + 5 \tan \theta}{5 \tan^4 \theta - 10 \tan^2 \theta + 1} = 0$ or $\frac{t^5 - 10t^3 + 5t}{5t^4 - 10t^2 + 1} = 0$                                                          | ed by Pearson Edexter $\theta = 0$ .<br>This may be implied by $\tan^5 \theta - 10 \tan^3 \theta + 5 \tan \theta = 0$<br>or $t^5 - 10t^3 + 5t = 0$ or $\tan^4 \theta - 10 \tan^2 \theta + 5 = 0$<br>or $t^4 - 10t^2 + 5 = 0$ | WFM             |
|                  | $\tan^5 \theta - 10 \tan^3 \theta + 5 \tan \theta = 0$<br>or $t^5 - 10t^3 + 5t = 0$                                                                                                                                                                                                      | Equate numerator to 0<br>This may be implied by $\tan^4 \theta - 10 \tan^2 \theta + 5 = 0$<br>or $t^4 - 10t^2 + 5 = 0$                                                                                                       | M1              |
|                  | $\tan^4 \theta - 10 \tan^2 \theta + 5 = 0$<br>or $t^4 - 10t^2 + 5 = 0$                                                                                                                                                                                                                   | Correct quartic                                                                                                                                                                                                              | A1              |
|                  | $x^2 - 10x + 5 = 0$                                                                                                                                                                                                                                                                      | $x^2 - 10x + 5 = 0 \text{ or equivalent}$                                                                                                                                                                                    | A1              |
| (d)              | Product of roots: $\tan^2 \frac{\pi}{5} \tan^2 \frac{2\pi}{5} = 5$<br>Or solves " $x^2 - 10x + 5 = 0$ " and attempts to multiply roots together e.g. $x = \frac{10 \pm \sqrt{100 - 20}}{2} = 5 \pm 2\sqrt{5} \text{ and}$ $\left(5 + 2\sqrt{5}\right)\left(5 - 2\sqrt{5}\right) = \dots$ | Must clearly state product of roots or e.g. $\alpha\beta = 5$ or $x_1x_2 = 5$ and uses their constant in (c) or solves their quadratic and attempts product of roots.                                                        | (4)<br>M1       |
|                  | $\left(5+2\sqrt{5}\right)\left(5-2\sqrt{5}\right) = \dots$ $\tan^2\frac{\pi}{5}\tan^2\frac{2\pi}{5} = 5 \Rightarrow \tan\frac{\pi}{5}\tan\frac{2\pi}{5} = \sqrt{5} *$                                                                                                                    | Shows the given result with no errors.                                                                                                                                                                                       | A1              |
|                  |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              | (2)<br>Total 12 |