

Mark Scheme (Results)

Summer 2015

Pearson Edexcel International A Level in Further Pure Mathematics F2 (WFM02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code IA041576 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term guadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1.(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Answers without working

The rubric says that these may not gain full credit. Individual mark schemes will give details of what happens in particular cases. General policy is that if it could be done "in your head", detailed working would not be required.

www.mystudybro.com This resource wage മൂറ്റിന്റെ owned by Pearson Edexcel

WFM02 Further Pure Mathematics F2 Mark Scheme

Question Number	Scheme		Notes	Marks
1.	$\frac{x}{x^2} < \frac{2}{x^2}$			
	$\frac{x+2}{2}$ Critical Values -2 and -5	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	x+5 Seen anywhere in solution Both correct B1B1; one correct B1B0	
	$\frac{x}{x+2} - \frac{2}{x+5} < 0$			
	$\frac{\frac{x}{x+2} - \frac{2}{x+5} < 0}{\frac{x^2 + 3x - 4}{(x+2)(x+5)} < 0}$			
	$\frac{(x+4)(x-1)}{(x+2)(x+5)} < 0$		Attempt single fraction and factorise numerator or use quad formula	
-	Critical values -4 and 1	Correct critic graph or num	al values May be seen on a ber line.	A1
	$-5 < x < -4, -2 < x < 1$ $(-5, -4) \cup (-2, 1)$	 dM1: Attempt an interval inequality using one of -2 or -5 with another cv A1, A1: Correct intervals Can be in set notation One correct scores A1A0 Award on basis of the inequalities seen - ignore any and/or between them Set notation answers do not need the union sign. 		dM1A1,A1
			· • •	(7)
ALT	Critical Values $-2 \text{ and } -5$ $\frac{x}{x+2} < \frac{2}{x+5} \Rightarrow x(x+5)^2(x+2) < 2(x+5)^2(x+5) < 2(x+5)^2(x+5)^2(x+5) < 2(x+5)^2(x+5)^2(x+5) < 2(x+5)^2(x+5)^2(x+5) < 2(x+5)^2(x+5)^2(x+5) < 2(x+5)^2(x$	Critical Values $-2 \text{ and } -5$ Seen anywhere in solution $\frac{x}{x+2} < \frac{2}{x+5} \Rightarrow x(x+5)^2(x+2) < 2(x+2)^2(x+5)$ $\Rightarrow (x+5)(x+2)[x(x+5)-2(x+2)] < 0$		B1, B1
	$\Rightarrow (x+5)(x+2)\lfloor (x-1)(x+4) \rfloor < 0$ and attempt to factorise a		Multiply by $(x+5)^2(x+2)^2$ and attempt to factorise a quartic or use quad formula	M1
	Critical values -4 and 1		Correct critical values	A1
	-5 < x < -4, -2 < x < 1 (-5,-4) \cup (-2,1) inequality using one of -2 or -5 with another cv A1, A1: Correct intervals Can be in set notation		or -5 with another cv A1, A1: Correct intervals	dM1A1,A1
				(7)

Any solutions with no algebra (eg sketch graph followed by critical values with no working) scores max B1B1

Summer		,	hematics F2
Quetstion (Number	Mark Scheme) This resource Scheme	was created and owned by Pearson Edexcel Notes	WFM02 Marks
		$\frac{1}{(r+6)(r+8)}$	
2(a)	$\frac{1}{2(r+6)} - \frac{1}{2(r+8)}$	oe Correct partial fractions, any equivalent form	B1
			(1)
(b)	$= \left(2 \times \frac{1}{2}\right) \left(\frac{1}{7} - \frac{1}{9} + \frac{1}{8} - \frac{1}{10} + \frac{1}{9} - \frac{1}{11} \dots + \frac{1}{n+5} - \frac{1}{n+7} + \frac{1}{n+6} - \frac{1}{n+8}\right)$ Expands at least 3 terms at start and 2 at end (may be implied) The partial fractions obtained in (a) can be used without multiplying by 2. Fractions may be $\frac{1}{2} \times \frac{1}{7} - \frac{1}{2} \times \frac{1}{9}$ etc These comments apply to both M1 and A1		M1
	$=\frac{1}{7}+\frac{1}{8}-\frac{1}{n+7}-\frac{1}{n}$	$\frac{1}{1+8}$ Identifies the terms that do not cance	1 A1
	$=\frac{15(n+7)(n+8)-56(n+7)(n+8)-56(n+7)(n+8)}{56(n+7)(n+8)}$		M1
	$=\frac{n(15n+113)}{56(n+7)(n+8)}$	3)	A1cso
			(4)
			Total 5

Summer 2015 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel

WFM02

Question Number	Scheme	Notes	Marks	
3	$\frac{\mathrm{d}y}{\mathrm{d}x} + 2xy =$	$= x \mathrm{e}^{-x^2} y^3$		
(a)	$z = y^{-2} \Longrightarrow y = z^{-\frac{1}{2}}$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2} z^{-\frac{3}{2}} \frac{\mathrm{d}z}{\mathrm{d}x}$	M1: $\frac{\mathrm{d}y}{\mathrm{d}x} = kz^{-\frac{3}{2}}\frac{\mathrm{d}z}{\mathrm{d}x}$	M1A1	
	$dx = \int dx dx$	A1: Correct differentiation		
	$-\frac{1}{2}z^{-\frac{3}{2}}\frac{\mathrm{d}z}{\mathrm{d}x} + \frac{2x}{z^{\frac{1}{2}}} = x\mathrm{e}^{-x^{2}}z^{-\frac{3}{2}}$	Substitutes for dy/dx	M1	
	$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} *$	Correct completion to printed answer with no errors seen	Alcso	
			(4)	
	(a) Alt	ernative 1		
	$\frac{\mathrm{d}z}{\mathrm{d}y} = -2y^{-3} \text{oe}$	$M1: \frac{dz}{dy} = ky^{-3}$	M1A1	
		A1: Correct differentiation		
	$-\frac{1}{2}y^{3}\frac{dz}{dx} + 2xy = xe^{-x^{2}}y^{3}$	Substitutes for dy/dx	M1	
	$\frac{\mathrm{d}z}{\mathrm{d}x} - 4xz = -2x\mathrm{e}^{-x^2} *$	Correct completion to printed answer with no errors seen	r A1	
	(a) Alternative 2			
	$\frac{\mathrm{d}z}{\mathrm{d}x} = -2y^{-3}\frac{\mathrm{d}y}{\mathrm{d}x}$	M1: $\frac{dz}{dx} = ky^{-3} \frac{dy}{dx}$ inc chain rule A1: Correct differentiation	M1A1	
	$-\frac{1}{2}y^{3}\frac{dz}{dx} + 2xy = xe^{-x^{2}}y^{3}$	Substitutes for dy/dx	M1	
	$-\frac{1}{2}y^{3}\frac{dz}{dx} + 2xy = xe^{-x^{2}}y^{3}$ $\frac{dz}{dx} - 4xz = -2xe^{-x^{2}} *$	Correct completion to printed answer with no errors seen	A1	
(b)	$I = \mathrm{e}^{\int -4x \mathrm{d}x} = \mathrm{e}^{-2x^2}$	$M1: I = e^{\int \pm 4x dx}$ A1: e^{-2x^2}	- M1A1	
	$ze^{-2x^2} = \int -2xe^{-3x^2} dx$	$z \times I = \int -2x \mathrm{e}^{-x^2} I \mathrm{d}x$	dM1	
	$\frac{1}{3}e^{-3x^2}(+c)$	$\int x \mathrm{e}^{q x^2} \mathrm{d}x = p \mathrm{e}^{q x^2} \left(+ c \right)$	M1	
	$z = ce^{2x^2} + \frac{1}{3}e^{-x^2}$	Or equivalent	A1	
			(5)	
(c)	$\frac{1}{y^2} = ce^{2x^2} + \frac{1}{3}e^{-x^2} \implies y^2 = \frac{1}{ce^{2x^2} + \frac{1}{3}e^{-x^2}}$	$y^{2} = \frac{1}{(b)} \left(= \frac{3e^{x^{2}}}{1 + ke^{3x^{2}}} \right)$	B1ft	
			(1)	
			Total 10	

PastaPaper	r 2015www.mystudybro.comMathe(Mark Scheme)This resource was created and dwned by Pearson Edexcel		matics F2 WFM02	
Number	Scheme Notes			
	z – 1	[
	$w = \frac{z-1}{z+1}$	-		
4 (a)	$w = \frac{z - 1}{z + 1} \Longrightarrow wz + w = z - 1 \Longrightarrow z = \dots$	Attempt to make z the subject	M1	
	$z = \frac{w+1}{1-w}$	Correct expression in terms of <i>w</i>	A1	
	$=\frac{u+iv+1}{1-u-iv}\times\frac{1-u+iv}{1-u+iv}$	Introduces " $u + iv$ " and multiplies top and bottom by the complex conjugate of the bottom	M1	
	$x = \frac{-u^2 - v^2 + 1}{v^2}, y = \frac{2v}{v^2}$			
	$y = 2x \Longrightarrow 2v = -2u^2 - 2v^2 + 2$	Uses real and imaginary parts and $y = 2x$ to obtain an equation connecting " <i>u</i> " and " <i>v</i> " Can have the 2 on the wrong side.	M1	
	$u^{2} + \left(v + \frac{1}{2}\right)^{2} - \frac{1}{4} = 1$ Processes their equation to a form that is recognisable as a circle ie coefficients of u^{2} and v^{2} are the same and no uv terms		M1	
	Centre (0, $-\frac{1}{2}$), radius $\frac{\sqrt{5}}{2}$	A1: Correct centre (allow -½i) A1: Correct radius	A1,A1	
	2		(7	
	Special Case:			
	$w = \frac{x + iy - 1}{x + iy + 1} = \frac{(x - 1) + 2xi}{(x + 1) + 2xi} \times \frac{(x + 1) - 2xi}{(x + 1) - 2xi}$	M1: rationalise the denominator, may have $2x$ or y		
	$=\frac{(x^{2}-1)+4x^{2}+2xi(x+1-(x-1))}{(x+1)^{2}+4x^{2}}$	A1: Correct result in terms of <i>x</i> only. Must have rational denominator shown, but no other simplification needed		
(b)		B1ft: Their circle correctly positioned provided their equation does give a circle	– B1ft B1	
	R	B1: Completely correct sketch and shading		
			(2	
			Total 9	
		I		

Summer Past Paper (ed and owned by Pearson Edexcel Mathe	matics F2 WFM02	
Question Number	Scheme	Notes	Marks	
5	у	$y = \cot x$		
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{cosec}^2 x$			
-	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = (-2\mathrm{cosec}x)(-\mathrm{cosec}x\cot x)$	M1: Differentiates using the chain rule or product/quotient rule A1: Correct derivative	M1A1	
-	$= 2\operatorname{cosec}^2 x \cot x = 2\cot x + 2\cot^3 x^*$	A1: Correct completion to printed answer $1 + \cot^2 x = \csc^2 x$ or $\cos^2 x + \sin^2 x = 1$ must be used Full working must be shown	A1cso*	
	۸Jt	ernative:	(1	
		$\frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x}$		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\left(-2\right)$	$2\sin^{-3}x\cos x\Big) = \dots$	M1A1	
	A1: Correct completion	n to printed answer see above	A1	
(b)	$\frac{d^3 y}{dx^3} = -2\csc^2 x - 6\cot^2 x \csc^2 x$	Correct third derivative	B1	
	$= -2(1 + \cot^2 x) - 6\cot^2 x(1 + \cot^2 x)$	$-2(1 + \cot^{2} x) - 6\cot^{2} x(1 + \cot^{2} x) \qquad \text{Uses } 1 + \cot^{2} x = \csc^{2} x$		
	$=-6\cot^4 x-8\cot^2 x-2$	CSO	A1	
(c)		$\frac{1}{5}, f''\left(\frac{\pi}{3}\right) = \frac{8}{3\sqrt{3}}, f'''\left(\frac{\pi}{3}\right) = -\frac{16}{3}$ at $\frac{\pi}{3}$ No working need be shown	(M1	
	M1: Correct application of Taylor usi A1: Correct expression f(x) allowed provided defined Decimal equivalents allowed (min 2)	$+\frac{4}{3\sqrt{3}}\left(x-\frac{\pi}{3}\right)^2 -\frac{8}{9}\left(x-\frac{\pi}{3}\right)^3$ ng their values. Must be up to and including $x-\frac{\pi}{3}\right)^3$ on Must start $y = \dots$ or $\cot x$ here or above as $f(x) = \cot x$ or y 3 sf apart from 0.77), 0.578, 1.33, 0.770, accept 0.77) 0.889	M1A1	
			(1	
			Total 9	

Summer Past Paper (udybro.com Mathe	wFM02
Question Number	Scheme	Notes	Marks
6(a)	$\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} - 3y = 2\sin x$		
	AE: $m^2 - 2m - 3 = 0$		
-	$m^2 - 2m - 3 = 0 \Longrightarrow m = \dots (-1, 3)$	Forms Auxiliary Equation and attempts to solve (usual rules)	M1
	$(y=)Ae^{3x}+Be^{-x}$	Cao	A1
	$PI: (y =) p \sin x + q \cos x$	Correct form for PI	B1
	$(y' =) p \cos x - q \sin x$		
	$(y'' =) - p \sin x - q \cos x$		
	$-p\sin x - q\cos x - 2(p\cos x - q\sin x) - 3p\sin x - 3q\cos x = 2\sin x$ Differentiates twice and substitutes		
	2q - 4p = 2, 4q + 2p = 0	Correct equations	A1
	$p = -\frac{2}{5}, \ q = \frac{1}{5}$	A1A1 both correct A1A0 one correct	A1A1
	$y = \frac{1}{5}\cos x - \frac{2}{5}\sin x$		
	$y = \frac{1}{5}\cos x - \frac{2}{5}\sin x$ $y = Ae^{3x} + Be^{-x} + \frac{1}{5}\cos x - \frac{2}{5}\sin x$	Follow through their p and q and their CF	B1ft
			(8)
(b)	$y' = 3Ae^{3x} - Be^{-x} - \frac{1}{5}\sin x - \frac{2}{5}\cos x$	Differentiates their GS	M1
	$0 = A + B + \frac{1}{5}, \ 1 = 3A - B - \frac{2}{5}$	M1: Uses the given conditions to give two equations in A and B A1: Correct equations	M1A1
	$A = \frac{3}{10}, \ B = -\frac{1}{2}$	Solves for <i>A</i> and <i>B</i> Both correct	A1
-	$A = \frac{3}{10}, \ B = -\frac{1}{2}$ $y = \frac{3}{10}e^{3x} - \frac{1}{2}e^{-x} + \frac{1}{5}\cos x - \frac{2}{5}\sin x$	Sub their values of <i>A</i> and <i>B</i> in their GS	A1ft
			(5)
			Total 13

Summer 2015 Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics F2

WFM02

	(Mark Scheme) This resource was created and owned by rearson Edexcer			
Question Number	Scheme	Notes	Marks	
7(a)	$\theta = \frac{\pi}{3} \Longrightarrow r = \sqrt{3}\sin\left(\frac{\pi}{3}\right) = \frac{3}{2}$	Attempt to verify coordinates in at least one of the polar equations	M1	
	$\theta = \frac{\pi}{3} \Longrightarrow r = 1 + \cos\left(\frac{\pi}{3}\right) = \frac{3}{2}$	Coordinates verified in both curves (Coordinate brackets not needed)	A1	
			(2)	
	Alternat	ive:		
	Equate rs: $\sqrt{3}\sin\theta = 1 + \cos\theta$ and verify (by or solve by using $t = \tan\frac{\theta}{2}$	substitution) that $\theta = \frac{\pi}{3}$ is a solution	M	
	2		M1	
	or writing $\frac{\sqrt{3}}{2}\sin\theta - \frac{1}{2}\cos\theta = \frac{1}{2}$ $\sin\left(\theta - \frac{\pi}{6}\right)$			
	Squaring the original equation allowed as θ is	known to be between 0 and π		
	Use $\theta = \frac{\pi}{3}$ in either equation to obtain $r = \frac{3}{2}$			
(b)	$\frac{1}{2}\int (\sqrt{3}\sin\theta)^2 \mathrm{d}\theta, \frac{1}{2}\int (1+\cos\theta)^2 \mathrm{d}\theta$	Correct formula used on at least one curve (1/2 may appear later) Integrals may be separate or added or subtracted.	M1	
	$=\frac{1}{2}\int 3\sin^2\theta \mathrm{d}\theta, \qquad \frac{1}{2}\int (1+2\cos\theta+\cos^2\theta)\mathrm{d}\theta$			
	$= \left(\frac{1}{2}\right) \int \frac{3}{2} (1 - \cos 2\theta) d\theta, \left(\frac{1}{2}\right) \int (1 + 2\cos \theta + \frac{1}{2} (1 + \cos 2\theta)) d\theta$			
	Attempt to use $\sin^2 \theta$ or $\cos^2 \theta = \pm \frac{1}{2} \pm \frac{1}{2} \cos 2\theta$ on either integral			
	Not dependent 1/2 may be missing			
	$=\frac{3}{4}\left[\theta-\frac{1}{2}\sin 2\theta\right]_{(0)}^{\left(\frac{\pi}{3}\right)}, \frac{1}{2}\left[\frac{3}{2}\theta+2\sin \theta+\frac{1}{4}\sin 2\theta\right]_{\left(\frac{\pi}{3}\right)}^{\left(\pi\right)}$			
	Correct integration (ignore limits) A1A1 or A1A0			
	$R = \frac{3}{4} \left[\frac{\pi}{3} - \frac{\sqrt{3}}{4} \left(-0 \right) \right] + \frac{1}{2} \left[\frac{3\pi}{2} - \left(\frac{\pi}{2} + \sqrt{3} + \frac{\sqrt{3}}{8} \right) \right]$	Correct use of limits for both integrals Integrals must be added. Dep on both previous M marks	dd M1	
	$=\frac{3}{4}\left(\pi-\sqrt{3}\right)$	Cao No equivalents allowed	A1	
			(6)	
			Total 8	

Summer 2	Www.mystudybro.com Mathem rk Scheme) This resource was created and gwned by Pearson Edexcel		matics F2	
Question Number	Scheme	Notes		Marks
8(a)	$\left(z + \frac{1}{z}\right)^{3} \left(z - \frac{1}{z}\right)^{3} = \left(z^{2} - \frac{1}{z^{2}}\right)^{3}$ $= z^{6} - 3z^{2} + \frac{3}{z^{2}} - z^{-6}$			
	N		npt to expand ct expansion	M1A1
	$= z^6 - \frac{1}{z^6} - 3\left(z^2 - \frac{1}{z^2}\right)$	Correct ar	swer with no errors seen	A1
				(3)
(a) ALT	$\left(z+\frac{1}{z}\right)^3 = z^3 + 3z + \frac{3}{z} + \frac{1}{z^3}, (z)$	$\left(z - \frac{1}{z}\right)^3 = z^3$	$-3z+\frac{3}{z}-\frac{1}{z^3}$	M1A1
	M1: Attempt to expand both cubic br	ackets A1:	Correct expansions	
	$= z^6 - \frac{1}{z^6} - 3\left(z^2 - \frac{1}{z^2}\right)$	Correct a	answer with no errors	A1
				(3)
(b)(i)(ii)	$z^n = \cos n\theta + i\sin n\theta$		application of de Moivre	B1
	$z^{-n} = \cos(-n\theta) + i\sin(-n\theta) = \pm \cos n\theta \pm \sin n$ but must be different from their z^n	θ Attempt	z^{-n}	M1
	$z^n + \frac{1}{z^n} = 2\cos n\theta^*, \ z^n - \frac{1}{z^n} = 2i\sin n\theta^*$	$z^{-n} = co$	$sn\theta - i\sin n\theta$ must be seen	A1*
(a)				(3)
(c)	$\left(z+\frac{1}{z}\right)^{3}\left(z-\frac{1}{z}\right)^{3} = \left(2\cos\theta\right)^{3}\left(2i\sin\theta\right)^{3}$			B1
	$z^{6} - \frac{1}{z^{6}} - 3\left(z^{2} - \frac{1}{z^{2}}\right) = 2i\sin 6\theta - 6i\sin 2\theta$	Follow t	hrough their k in place of 3	B1ft
	$-64i\sin^3\theta\cos^3\theta = 2i\sin 6\theta - 6i\sin 2\theta$	simplify	g right hand sides and ing $2^3 \times (2i)^3$ (B mark or each side to gain M	M1
	$\cos^3\theta\sin^3\theta = \frac{1}{32}(3\sin 2\theta - \sin 6\theta) *$			A1cso
				(4)
(d)	$\int_{0}^{\frac{\pi}{8}} \cos^{3}\theta \sin^{3}\theta \mathrm{d}\theta = \int_{0}^{\frac{\pi}{8}} \frac{1}{32}$	$-(3\sin 2\theta -$	$\sin 6 heta)d heta$	
	_ π		M1: $p\cos 2\theta + q\cos 6\theta$	
	$=\frac{1}{32}\left[-\frac{3}{2}\cos 2\theta+\frac{1}{6}\cos 6\theta\right]_{0}^{\overline{8}}$		A1: Correct integration Differentiation scores M0A0	M1A1
	$=\frac{1}{32}\left[\left(-\frac{3}{2\sqrt{2}}-\frac{1}{6\sqrt{2}}\right)-\left(-\frac{3}{2}+\frac{1}{6}\right)\right]=\frac{1}{32}\left(\frac{3}{2}\right)$	$\left(\frac{4}{3}-\frac{5\sqrt{2}}{6}\right)$	dM1: Correct use of limits – lower limit to have non-zero result. Dep on previous M mark A1: Cao (oe) but must be exact	dM1A1
				(4)
				Total 14

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom