

# Mark Scheme (Results)

## October 2017

Pearson Edexcel International A-Level In Core Mathematics C12 (WMA01)



#### Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

October 2017 Publications Code WMA01\_01\_1710\_MS All the material in this publication is copyright © Pearson Education Ltd 2017

#### General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

www.mystudybro.com This resource was created and owned by Pearson Edexcel

#### PEARSON EDEXCEL IAL MATHEMATICS

#### General Instructions for Marking

- 1. The total number of marks for the paper is 125
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper or ag- answer given
- \_ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

### **General Principles for Core Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles).

#### Method mark for solving 3 term quadratic:

#### 1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$ , where |pq| = |c|, leading to  $x = \dots$ 

 $(ax^2 + bx + c) = (mx + p)(nx + q)$ , where |pq| = |c| and |mn| = |a|, leading to x = ...

#### 2. Formula

Attempt to use the correct formula (with values for a, b and c).

#### 3. Completing the square

Solving 
$$x^2 + bx + c = 0$$
:  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to  $x = \dots$ 

#### Method marks for differentiation and integration:

#### 1. Differentiation

Power of at least one term decreased by 1. (  $x^n \rightarrow x^{n-1}$  )

#### 2. Integration

Power of at least one term increased by 1. ( $x^n \rightarrow x^{n+1}$ )

#### <u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

#### Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

| Question<br>Number | Scheme                                                        | Marks        |
|--------------------|---------------------------------------------------------------|--------------|
| 1.                 | The line $l_1$ has equation $8x + 2y - 15 = 0$                |              |
| (a)                | Gradient is -4                                                | B1<br>[1]    |
| (b)                | Gradient of parallel line is equal to their previous gradient | M1           |
|                    | Equation is $y - 16 = "-4"(x - (-\frac{3}{4}))$               | M1           |
|                    | So $y = -4x + 13$                                             | A1           |
|                    |                                                               | [3]          |
|                    |                                                               | (4<br>marks) |

B1 Gradient, m,  $\frac{dy}{dx}$  given as -4 FINAL ANSWER Do not allow  $-\frac{8}{2}$  or  $-\frac{4}{1}$  or  $-4 \rightarrow \frac{1}{4}$  in part (a). Do not allow if left as y = -4x + ...(b) M1 Gradient of lines are the same. This may be implied by sight of their '-4' in a gradient equation. For example you may see candidates state y = '-4'x + ... in (a) and then write y = '-4'x + c in (b) M1 For an attempt to find an equation of a line using  $\left(-\frac{3}{4}, 16\right)$  and a numerical gradient (which may

be different to the gradient used in part (a)). For example they may try to find a normal! Condone a sign error on one of the brackets. If the form y = mx + c is used they must proceed as far as finding c.

A1 cao 
$$y = -4x + 13$$
 Allow  $m = -4, c = 13$ 

| Question<br>Number | Scheme               | Marks     |
|--------------------|----------------------|-----------|
| <b>2.</b> (a)      | (0,3)                | B1        |
| (b)                | (2, -3)              | B1        |
| (c)                | (2,1.5) oe<br>(2,-1) | B1        |
| ( <b>d</b> )       | (2, -1)              | B1        |
|                    |                      | [4]       |
|                    |                      | (4 marks) |

Condone the omission of the brackets. Eg Condone 0,3 for (0,3)

Allow  $x = \dots y = \dots$ 

If options are given, Attempt one =(0,3), Attempt two = (2,5), Award B0.

If there is no labelling mark (a) as the first one seen, (b) as the second one seen etc unless it is obvious.

Autumn 2017www.mystudybro.comPast Paper (Mark Scheme)This resource was created and owned by Pearson Edexcel

| Question<br>Number | Scheme                                                                                                               | Marks                  |
|--------------------|----------------------------------------------------------------------------------------------------------------------|------------------------|
| <b>3.</b> (a)      | $\frac{x^3 + 4}{2x^2} = \frac{x^3}{2x^2} + \frac{4}{2x^2} = \frac{1}{2}x + 2x^{-2}$                                  | M1A1A1<br>[ <b>3</b> ] |
| (b)                | $\int \frac{x^3 + 4}{2x^2}  \mathrm{d}x = \int \frac{1}{2} x + 2x^{-2}  \mathrm{d}x = \frac{1}{4} x^2 - 2x^{-1} + c$ | M1A1A1                 |
|                    |                                                                                                                      | [3]<br>(6 marks)       |

| (a) |                                                                                                                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|
| M1  | For an attempt to divide by $2x^2$ . It may be implied if either index or either coefficient is correct.                                      |
| A1  | One correct term. Either $\frac{1}{2}x$ or $+2x^{-2}$ . Allow $\frac{1}{2}x^{1} = 0.5x$ or, for this mark only, $+2x^{-2} = +\frac{2}{x^{2}}$ |
| A1  | $\frac{1}{2}x + 2x^{-2}$ or $0.5x + 2x^{-2}$ Accept $x^{1} = x$ A final answer of $\frac{1}{2}x + \frac{2}{x^{2}}$ is M1 A1 A0                |
| (b) |                                                                                                                                               |
| M1  | Raises any of the indices by one for their $Ax^p + Bx^q$                                                                                      |
| A1  | One term both correct and simplified. Accept either $\frac{1}{4}x^2/0.25x^2$ or $-2x^{-1}/-\frac{2}{x}/-\frac{2}{x^1}$                        |
| A1  | $\frac{1}{4}x^2 - 2x^{-1} + c$ including the +c. Accept equivalents such as $0.25x^2 - \frac{2}{x^1} + c$ or $\frac{x^3 - 8}{4x} + c$         |
|     | Do not accept expressions like $\frac{1}{4}x^2 + -2x^{-1} + c$                                                                                |

Autumn 2017 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel

WMA01

| n Seleme                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scheme                                                                                                                                                                                     | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Attempts Area = $\frac{1}{2}ab\sin C \Rightarrow 24\sqrt{3} = \frac{1}{2}3x \times x\sin 60^{\circ}$                                                                                       | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Uses $\sin 60^\circ = \frac{\sqrt{3}}{2}$ oe $\Rightarrow x^2 = 32 \Rightarrow x = 4\sqrt{2}$                                                                                              | dM1A1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $H = DC^{2} - (12 \sqrt{2})^{2} + (4 \sqrt{2})^{2} - 2(12 \sqrt{2})(4 \sqrt{2}) = (02)$                                                                                                    | [3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                            | M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\Rightarrow BC = 224 \Rightarrow BC = 4\sqrt{14}$                                                                                                                                         | A1,A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                            | (6 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Attempts to use Area = $\frac{1}{2}ab\sin C$ Score for sight of $24\sqrt{3} = \frac{1}{2}3x \times x\sin 60^\circ$                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Either using $24\sqrt{3} = \frac{1}{2}3x \times x \sin 60^\circ$ with $\sin 60^\circ = \frac{\sqrt{3}}{2}$ (which may be implied) to reach a                                               | a form $x^2 = k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| So sight of $x^2 = \frac{16\sqrt{3}}{\sin 60^\circ}$ or $\Rightarrow x = 4\sqrt{2}$ would imply $\sin 60^\circ = \frac{\sqrt{3}}{2}$ and $x^2 = k$                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Or sight of a correct simplified intermediate line followed by the correct answer.                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Eg. $24\sqrt{3} = \frac{1}{2}3x \times x \sin 60^\circ \Rightarrow 3x^2 = 96 \Rightarrow x = 4\sqrt{2}$                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| It cannot be awarded for $24\sqrt{3} = \frac{1}{2}3x \times x \times \frac{\sqrt{3}}{2} \Longrightarrow x = 4\sqrt{2}$                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1* This is a show that and you must see $x = 4\sqrt{2}$ following $x^2 = 32$ OR $x^2 = 16 \times 2$ or $x = \sqrt{32}$ for th A1* to be scored                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| If you see a candidate start $41.57 = \frac{1}{2}3x \times x \times 0.866 \Rightarrow x^2 = 32 \Rightarrow x = 4\sqrt{2}$ award M1, dN                                                     | /11, A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\frac{1}{2}4\sqrt{2} \times 12\sqrt{2}\sin 60^\circ \text{ for M1}, \ \frac{1}{2}4\sqrt{2} \times 12\sqrt{2} \times \frac{\sqrt{3}}{2} = 24\sqrt{2} \text{ for dM1 and make a statement}$ | for A1*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Uses the cosine rule $BC^2 = (4\sqrt{2})^2 + (12\sqrt{2})^2 - 2(4\sqrt{2})(12\sqrt{2})\cos 60^\circ$ Condone missing                                                                       | brackets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Can be scored for $BC^2 = (3x)^2 + (x)^2 - 2(3x)(x)\cos 60^\circ$ It can be awarded for an atten                                                                                           | pt with their x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $(12\sqrt{2})^2 + (4\sqrt{2})^2 - BC^2$                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $(12\sqrt{2}) + (4\sqrt{2}) - BC$                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Also accept the form $\cos 60^\circ = \frac{(12\sqrt{2})^2 + (4\sqrt{2})^2 - BC^2}{2(12\sqrt{2})(4\sqrt{2})}$                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                            | Attempts Area = $\frac{1}{2}ab\sin C \Rightarrow 24\sqrt{3} = \frac{1}{2}3x \times x\sin 60^{\circ}$<br>Uses $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ oe $\Rightarrow x^{2} = 32 \Rightarrow x = 4\sqrt{2}$<br>Uses $BC^{2} = (12\sqrt{2})^{2} + (4\sqrt{2})^{2} - 2(12\sqrt{2})(4\sqrt{2})\cos 60^{\circ}$<br>$\Rightarrow BC^{2} = 224 \Rightarrow BC = 4\sqrt{14}$<br>Attempts to use Area = $\frac{1}{2}ab\sin C$ Score for sight of $24\sqrt{3} = \frac{1}{2}3x \times x\sin 60^{\circ}$<br>Either using $24\sqrt{3} = \frac{1}{2}3x \times x\sin 60^{\circ}$ with $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ (which may be implied) to reach a So sight of $x^{2} = \frac{16\sqrt{3}}{\sin 60^{\circ}}$ oe $\Rightarrow x = 4\sqrt{2}$ would imply $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ and $x^{2} = k$<br>Or sight of a correct simplified intermediate line followed by the correct answer.<br>Eg. $24\sqrt{3} = \frac{1}{2}3x \times x\sin 60^{\circ} \Rightarrow 3x^{2} = 96 \Rightarrow x = 4\sqrt{2}$<br>It cannot be awarded for $24\sqrt{3} = \frac{1}{2}3x \times x \times \frac{\sqrt{3}}{2} \Rightarrow x = 4\sqrt{2}$<br>This is a show that and you must see $x = 4\sqrt{2}$ following $x^{2} = 32$ OR $x^{2} = 16 \times 2$ or $x = \sqrt{4}$<br>Alt* to be scored<br>If you see a candidate start $41.57 = \frac{1}{2}3x \times x \times 0.866 \Rightarrow x^{2} = 32 \Rightarrow x = 4\sqrt{2}$ award M1, dN<br>Alternatively candidate can assume that $x = 4\sqrt{2}$ and attempt<br>$\frac{1}{2}4\sqrt{2} \times 12\sqrt{2}\sin 60^{\circ}$ for M1, $\frac{1}{2}4\sqrt{2} \times 12\sqrt{2} \times \frac{\sqrt{3}}{2} = 24\sqrt{2}$ for dM1 and make a statement<br>Uses the cosine rule $BC^{2} = (4\sqrt{2})^{2} + (12\sqrt{2})^{2} - 2(4\sqrt{2})(12\sqrt{2})\cos 60^{\circ}$ Condone missing |

## Autumn 2017www.mystudybro.comPast Paper (Mark Scheme)This resource was created and owned by Pearson Edexcel

### Mathematics C12

| WMA01 |
|-------|
|-------|

| Question<br>Number | Scheme                                                                                                 | Marks                  |
|--------------------|--------------------------------------------------------------------------------------------------------|------------------------|
|                    | $y = 27x^{0.5} - 2x^2 \Longrightarrow \frac{dy}{dx} = \frac{27}{2}x^{-0.5} - 4x$                       | M1A1A1<br>[ <b>3</b> ] |
| (b)                | Sets their $\frac{dy}{dx} = 0$                                                                         | M1                     |
|                    | $\frac{27}{2}x^{-0.5} - 4x = 0 \Longrightarrow x^{1.5} = \frac{27}{8} \Longrightarrow x = \frac{9}{4}$ | dM1,A1                 |
|                    | $x = \frac{9}{4} \Longrightarrow y = \frac{243}{8}$                                                    | dM1A1                  |
|                    |                                                                                                        | [5]                    |
|                    |                                                                                                        | (8 marks)              |

(a)

- M1 Uses  $x^n \to x^{n-1}$  at least once. So sight of either index  $x^{-0.5} / x^{-\frac{1}{2}}$  or  $x = x^1$
- A1 Either term correct (may be unsimplified). Eg.  $2 \times 2x^1$  is acceptable. The indices must be tidied up however so don't allow  $2 \times 2x^{2-1}$
- A1  $\frac{dy}{dx} = \frac{27}{2}x^{-0.5} 4x$  or exact equivalent such as  $\frac{dy}{dx} = 13.5 \times \frac{1}{\sqrt{x}} 4x$ . It must be all tidied up for this mark so do not allow  $2 \times 2x$

(b)

- M1 States or sets their  $\frac{dy}{dx} = 0$  This may be implied by subsequent working.
- dM1 Dependent upon the previous M and correct indices in (a). It is awarded for correct index work leading

to 
$$x^{\pm 1.5} = k$$
 Also allow squaring  $27x^{-0.5} = 8x \Rightarrow \frac{27^2}{x} = 64x^2 \Rightarrow x^3 =$ 

- A1  $x = \frac{9}{4}$  or exact equivalent. A correct answer following a correct derivative can imply the previous mark
- provided you have not seen incorrect work. dM1 Dependent upon the first M1 in (b). For substituting their value of x into y to find the maximum point. There is no need to check this with a calculator (u appearing from an x found from  $\frac{dy}{dy} = 0$  is fine).

There is no need to check this with a calculator. (y appearing from an x found from  $\frac{dy}{dx} = 0$  is fine.)

A1  $y = \frac{243}{9}$  or exact equivalent (30.375). You do not need to see the coordinates for this award.

Ignore any other solutions outside the range. If extra solutions are given within the range withhold only this final mark.

Note: This question requires differentiation in (a) and minimal working in (b). A correct answer without any differentiation will not score any marks.

Allow (a)  $\frac{dy}{dx} = \frac{27}{2}x^{-0.5} - 4x$  (b)  $0 = \frac{27}{2}x^{-0.5} - 4x \Rightarrow x = \frac{9}{4}, y = \frac{243}{8}$  for all marks Whereas (a)  $\frac{dy}{dx} = \frac{27}{2}x^{-0.5} - 4x$  (b)  $x = \frac{9}{4}, y = \frac{243}{8}$  scores (a) 3 (b) 0 marks

| Question<br>Number | Scheme                                                                    | Marks                 |
|--------------------|---------------------------------------------------------------------------|-----------------------|
| <b>6.</b> (a)      | Uses $1000 = 600 + 80(N-1) \Longrightarrow N = 6$                         | M1,A1<br>[ <b>2</b> ] |
| (b)                | Uses $\frac{15}{2} (2 \times 600 + (15 - 1) \times 80) = (\pounds) 17400$ | M1 A1<br>[2]          |
| (c)                | Total for Saima = $\frac{15}{2}(2A+14A) = (120A)$                         | B1                    |
|                    | Sets $120A = 17400 \Longrightarrow A = 145$                               | M1A1 [3]              |
|                    |                                                                           | (7 marks)             |

M1 Attempts to use the formula u<sub>n</sub> = a + (n-1)d to find the value of 'n'. Evidence would be 1000 = 600 + 80(N-1) Alternatively attempts 1000 - 600/80 + 1 or repeated addition of £80 onto £600 until £1000 is reached
A1 N = 6 or accept the 6th year (or similar). The answer alone would score both marks.
(b)

M1 Uses a correct sum formula  $S = \frac{n}{2} (2a + (n-1)d)$  with n = 15, a = 600, d = 80

Alternatively uses  $S = \frac{n}{2}(a+l)$  with  $n = 15, a = 600, l = 600 + 14 \times 80$  or 1720

Accept the sum of 15 terms starting  $600 + 680 + 760 + 840 + \dots$ 

A1 cao (£)17400

(c)

B1 Finds the sum for Saima.

Accept unsimplified forms such as  $\frac{15}{2}(2A+14A)$  or  $\frac{15}{2}(A+15A)$  or the simplified answer of 120A Remember to isw following a correct answer

- M1 Sets their 120*A* equal to their answer to (b) and proceeds to find a value for *A*. They must be attempting to calculate sums rather than terms to score this mark. Condone slips on the sum of an AP formula and award for a valid attempt from GP formula.
- A1 cao A = 145

| WMA01 |
|-------|
|-------|

| Question<br>Number | Scheme                                                                     | Marks     |
|--------------------|----------------------------------------------------------------------------|-----------|
| 7.                 | $g(x) = 2x^3 + ax^2 - 18x - 8$                                             |           |
| (a)                | $g(\pm 2) = 0 \Longrightarrow 2(\pm 2)^3 + a(\pm 2)^2 + 18(\pm 2) - 8 = 0$ | M1        |
|                    | $\Rightarrow 4a = -12 \Rightarrow a = -3$                                  | A1* [2]   |
| (b)                | $g(x) = 2x^{3} - 3x^{2} - 18x - 8 = (x+2)(2x^{2} - 7x - 4)$                | M1 A1     |
|                    | =(x+2)(2x+1)(x-4)                                                          | M1A1      |
|                    |                                                                            | [4]       |
| (c)                | $\sin\theta = -\frac{1}{2}$ only                                           | B1ft      |
|                    | $\theta = \frac{7}{6}\pi, \frac{11}{6}\pi$                                 | M1A1      |
|                    |                                                                            | [3]       |
|                    |                                                                            | (9 marks) |

M1 Attempts  $g(\pm 2) = 0$  This can be implied by subsequent working Alternatively divides by (x + 2) and sets the remainder equal to 0 For division look for a minimum of

$$\frac{2x^{2} + (a...)x + (...a)....}{2x^{3} + ax^{2} - 18x - 8}$$

(...*a*)+....

followed by the remainder (involving a) set equal to 0

A1\* a = -3 or equivalent following a correct linear equation in 4a that is readily solvable.

(As a rule accept 4a = -12 or similar such as 4a = 8-36+16 or 4a+12=0 I am classing as readily solvable)

Note that this is a given answer and so the candidate **must** proceed from -16+4a+36-8=0 oe to score this mark. Expect to see (as a bare minimum) one calculation/process that makes it more solvable. So  $-16+4a+36-8=0 \Rightarrow 4a+20-8=0$  could be seen as the bare minimum. (b)

M1 Attempts to divide g(x) by (x+2) to produce the quadratic factor. For division look for the first two terms

$$\frac{2x^{2} - 7x + \dots}{x + 2)2x^{3} - 3x^{2} - 18x - 8}$$

$$\frac{2x^{3} + 4x^{2}}{-7x^{2}}$$

For factorisation/inspection look for the first and last terms  $2x^3 - 3x^2 - 18x - 8 = (x+2)(2x^2 - 4)$ .

- A1 The correct quadratic factor  $(2x^2 7x 4)$
- M1 Attempts to factorise the quadratic factor using usual rules. This must appear in part (b)

A1 
$$g(x) = (x+2)(2x+1)(x-4)$$
. Accept  $g(x) = 2(x+2)\left(x+\frac{1}{2}\right)(x-4)$ 

All factors must appear on the same line.

Note: the question asks the candidate to use algebra to factorise g(x)

## Candidates who write down $g(x) = 0 \Rightarrow x = -2, -\frac{1}{2}, 4 \Rightarrow g(x) = (x+2)\left(x+\frac{1}{2}\right)(x-4)$ score 0000 Candidates who write down $g(x) = 0 \Rightarrow x = -2, -\frac{1}{2}, 4 \Rightarrow g(x) = (x+2)(2x+1)(x-4)$ oe score 1000

(c)

- B1ft States or implies that  $\sin \theta = -\frac{1}{2}$  only. Follow through on all roots  $-1 \le \sin \theta \le 1$ As long as they don't find values from  $\sin \theta = 4$  or  $\sin \theta = -2$  that implies they have "chosen"  $\sin \theta = -\frac{1}{2}$
- M1 Uses a correct method to solve an equation of the form  $\sin \theta = k, -1 \le k \le 1$  by 'arcsin' You may need to check this using a calculator.

This may be implied by  $\sin \theta = -\frac{1}{2} \Rightarrow \theta = -30^{\circ}$ 

A1  $\theta = \frac{7}{6}\pi, \frac{11}{6}\pi$  or exact equivalent only......within the given range. Ignore answers outside this range. Condone 1.16 for  $\frac{7}{6}$  and 1.83 for  $\frac{11}{6}$ 

#### Autumn 2017 www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

### **Mathematics C12**

| WMA01 |  |
|-------|--|
|-------|--|

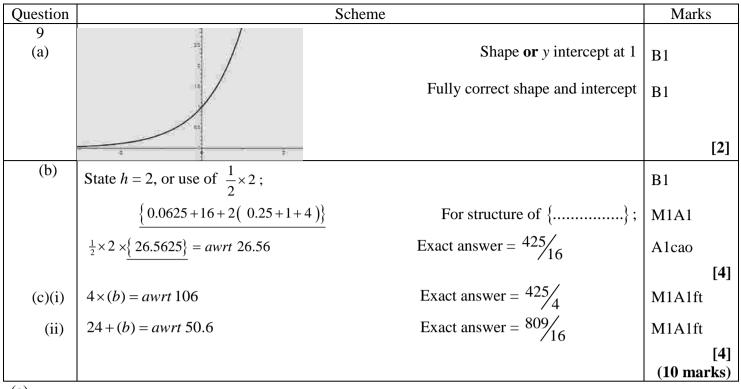
| Question<br>Number | Scheme                                                                                           | Marks        |
|--------------------|--------------------------------------------------------------------------------------------------|--------------|
| <b>8.</b> (a)      | $r\theta = 6$ and $\frac{1}{2}r^2\theta = 20$                                                    | B1 B1<br>[2] |
| (b)                | Substitute $r\theta = 6$ into $\frac{1}{2}r^2\theta = 20 \Rightarrow \frac{1}{2} \times 6r = 20$ | M1           |
|                    | $\Rightarrow r = \frac{20}{3}$                                                                   | A1           |
|                    | Substitutes $r = \frac{20}{3}$ in $r\theta = 6 \implies \theta = \frac{9}{10}$                   | dM1A1        |
|                    |                                                                                                  | [4]          |
|                    |                                                                                                  | (6 marks)    |

This may be marked as one complete question. Eg they may just give the equations  $s = r\theta$  and  $A = \frac{1}{2}r^2\theta$  in (a) Don't penalise this sort of error.

(a)

Either  $r\theta = 6$  or  $\frac{1}{2}r^2\theta = 20$  (or exact equivalents) **B**1 Allow  $\frac{\theta}{2\pi} \times 2\pi r = 6$  or  $\frac{\theta}{2\pi} \times \pi r^2 = 20$  but not  $\frac{\theta}{360} \times 2\pi r = 6$  or  $\frac{\theta}{360} \times \pi r^2 = 20$ Both  $r\theta = 6$  and  $\frac{1}{2}r^2\theta = 20$  (or exact equivalents) B1 Allow  $\frac{\theta}{2\pi} \times 2\pi r = 6$  and  $\frac{\theta}{2\pi} \times \pi r^2 = 20$  but not  $\frac{\theta}{360} \times 2\pi r = 6$  and  $\frac{\theta}{360} \times \pi r^2 = 20$ (b)

M1 Combines two equations in r and  $\theta$  producing an equation in one unknown.


 $r = \frac{20}{3}$  or  $\theta = \frac{9}{10}$  or exact equivalents. A1

You may just see answers following correct equations. This is fine for all the marks This is dependent upon having started with two equations with correct expressions in r and  $\theta$ dM1 Look for  $..r\theta = ...$  and  $..r^2\theta = ...$ .

It is awarded for correctly substituting their value of r or  $\theta$  into one of the equations to find the second unknown.

A1 
$$r = \frac{20}{3}$$
 and  $\theta = \frac{9}{10}$  or exact equivalents. Condone 6.6 for  $\frac{20}{3}$  Do not allow 6.67





#### B1 Score for either

- a correct shape for the curve. It must lie only in quadrants 1 and 2 and have a positive and increasing gradient from left to right. The gradient must be approximately 0 at the left hand end. Condone the curve appearing to be a straight line on the rhs. See Practice/Qualification items for clarification. Do not be concerned if it does not appear to be asymptotic to the *x*-axis at the LHS
- intercept at (0,1). Allow 1 being marked on the y axis. Condone (1,0) on the correct axis.
- B1 Fully correct. As a guide the gradient of the curve must appear to be 0 at the lh end and it must reach a level that is more than half way below the level of the intercept at (0,1). Allow x = 0, y = 1 in the text, it does not need to be on the sketch. Do not condone (1,0) even on the correct axis for this mark.
- (b)

B1 For using a strip width of 2. This may appear in a trapezium rule as  $\frac{1}{2} \times 2$  or 1 or equivalent

- M1 Scored for the correct  $\{\dots, \}$  outer bracket structure. It needs to contain first *y* value plus last *y* value and the inner bracket to be multiplied by 2 and to be the summation of the remaining *y* values in the table with no additional values. If the only mistake is a copying error or is to omit one value from inner bracket this may be regarded as a slip and the M mark can be allowed (An extra repeated term forfeits the M mark however). M0 if values used in brackets are *x* values instead of *y* values
- A1 For the correct bracket {.....}
- A1 For awrt 26.56. Accept 425/16

NB: Separate trapezia may be used: B1 for h = 1, M1 for 1/2 h(a + b) used 3 or 4 times (and A1 if it is all correct) Then A1 as before.

Note: As h = 1 the expression  $1 \times (16 + 0.0625) + 2(0.25 + 1 + 4)$  will scores B1 M1 A1 with awrt 26.56 scoring the final A1.

(c)(i)

- M1 For an attempt at finding  $4 \times (b)$ . Also allow repeating the trapezium rule with each value  $\times 4$
- A1ft For either awrt 106 or ft on the answer to  $4 \times (b)$  You may see 425/4 following 425/16 in (b) (c)(ii)
- M1 For an attempt at 24 + (b) or  $[3x]_{-4}^4 + (b)$  Also allow repeating the trapezium rule with each value +3
- A1ft For either awrt 50.6 or ft on the answer to 24+(b) You may see 809/16

| Question<br>Number | Scheme                                                                                                            | Marks            |
|--------------------|-------------------------------------------------------------------------------------------------------------------|------------------|
| <b>10.</b> (a)     | p = 13, q = 13                                                                                                    | B1 B1 [2]        |
| <b>(b)</b>         | Gradient $AD/AC/DC = \frac{5-(-3)}{10-7} = \left(\frac{8}{3}\right)$                                              | M1               |
|                    | Gradient $DE = -\frac{3}{8}$                                                                                      | M1, A1           |
|                    | Equation of <i>l</i> is $(y-5) = "-\frac{3}{8}"(x-10) \Longrightarrow 3x + 8y = 70$                               | M1A1             |
|                    |                                                                                                                   | [5]              |
| (c)                | Sub $x = 7$ into $3x + 8y = 70 \Rightarrow y = \frac{49}{8}$ . Hence $C = \left(7, \frac{49}{8}\right)$           | M1A1             |
|                    |                                                                                                                   | [2]<br>(9 marks) |
| (a)                |                                                                                                                   |                  |
|                    | r either $p = 13$ or $q = 13$ . Score within a coordinate (13,) or (,13) Just 13 scores B1E                       | 30               |
| B1 Fo              | r both $p = 13$ and $q = 13$ . Allow (13,13) for both marks.                                                      |                  |
| (b)                |                                                                                                                   |                  |
| M1 Fo              | r an attempt at the gradient of AD or AC using their coordinates for C                                            |                  |
| Lo                 | ok for an attempt at $\frac{\Delta y}{\Delta x}$ There must be an attempt to subtract on both the numerator and t | the              |
| de                 | nominator. It can be implied by their attempt to find the equation of line $AC$                                   |                  |

M1 For an attempt at using  $m_2 = -\frac{1}{m_1}$  or equivalent to find the gradient of the perpendicular  $m_2$ 

- A1 Gradient of *DE* is  $-\frac{3}{8}$  or equivalent
- M1 It is for the method of finding a line passing though (10, 5) with a changed gradient. Eg  $\frac{8}{3} \rightarrow \frac{3}{8}$ Look for (y-5) = changed  $m_1(x-10)$  Both brackets must be correct Alternatively uses the form y = mx + c AND proceeds as far as c = ...

A1 3x+8y=70 or exact equivalent. Accept  $\pm A(3x+8y=70)$  where  $A \in \mathbb{N}$ 

(c)

M1 Substitutes x = 7 in their  $3x + 8y = 70 \Rightarrow y = ...$ 

A1  $C = \left(7, \frac{49}{8}\right)$  or exact equivalent. Allow this mark when x and y are written separately.

Do not allow this A1 if other answers follow x = 7  $y = \frac{49}{8}$ 

Autumn 2017 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel

| WMA01 |
|-------|
|-------|

| Question<br>Number | Scheme                                                                                                 | Marks      |
|--------------------|--------------------------------------------------------------------------------------------------------|------------|
| 11.(a)             | $(3+ax)^5 = 3^5 + {5 \choose 1} 3^4 \cdot (ax) + {5 \choose 2} 3^3 \cdot (ax)^2 + \dots$               | M1         |
|                    | $= 243, +405ax + 270a^2x^2 + \dots$                                                                    | B1, A1, A1 |
|                    |                                                                                                        | [4]        |
| (b)                | $f(x) = (a - x)(3 + ax)^5 = (a - x)(243 + 405ax + 270a^2x^2 +)$                                        |            |
|                    | $-243 + 405a^2 = 0 \Rightarrow a^2 = \frac{243}{405} \Rightarrow a = \sqrt{\frac{3}{5}}$ or equivalent | M1,dM1A1   |
|                    |                                                                                                        | [3]        |
|                    |                                                                                                        | (7 marks)  |

**(a)** 

M1 This method mark is awarded for an attempt at a Binomial expansion to get the second and/or third term – it requires a correct binomial coefficient combined with correct power of 3 and the correct power of x. Ignore bracketing errors. Accept any notation for  ${}^{5}C_{1}$ ,  ${}^{5}C_{2}$ , e.g. as on scheme or 5, and 10 from Pascal's triangle. This mark may be given if no working is shown, if either or both of the terms including x is correct.

An alternative is 
$$(3+ax)^5 = 3^5 \left\{ 1 + \frac{ax}{3} \right\}^5 = 3^5 \left\{ 1 + 5 \times \frac{ax}{3} + \frac{5 \times 4}{2(!)} \times \left( \frac{ax}{3} \right)^2 \right\}$$

In this method it is scored for the correct attempt at a binomial expansion to get the second and/or third

}

term in the bracket of 
$$3^n \left\{ 1 + 5 \times \frac{ax}{3} + \frac{5 \times 4}{2(!)} \times \left(\frac{ax}{3}\right)^2 \dots \right\}$$

Score for binomial coefficient with the correct power of  $\left(\frac{x}{3}\right)$  Eg.  $5 \times \frac{..x}{3}$  or  $10 \times \left(\frac{..x}{3}\right)^2$ 

- B1 Must be simplified to 243 (writing just  $3^5$  is B0).
- A1 cao and is for one correct from 405ax, and  $270a^2x^2$  Also allow  $270(ax)^2$  with the bracket
- A1 cao and is for both of 405a x, and  $270a^2x^2$ .

Allow  $270(ax)^2$  with the bracket correct (ignore extra terms). Allow listing for all marks It is possible to score 1011 in (a)

There are a minority of students who attempt this in (a)

 $f(x) = (a-x)(3+ax)^5 = (a-x)(243+405ax+270a^2x^2+...)$  and go on to expand this.

They can have all the marks in part (a)

(b)

M1 Attempt to set the coefficient of x in the expansion of  $(a - x)(3 + ax)^5$  equal to 0

$$(a-x)(3+ax)^5 = (a-x)(P+Qax+Ra^2x^2+...) = aP+(a^2Q-P)x+...$$

For this to be scored you must see an equation of the form  $\pm P \pm Qa^2 = 0$  You are condoning slips/ sign errors

dM1 For  $\pm P \pm Qa^2 = 0 \Rightarrow a = ...$  using a correct method. This cannot be scored for an attempt at sq rooting a negative number

A1 
$$a = \sqrt{\frac{3}{5}}$$
 or exact equivalent such as  $a = \frac{\sqrt{15}}{5}$  You may ignore any reference to  $a = -\sqrt{\frac{3}{5}}$ 

WMA01

Autumn 2017

Past Paper (Mark Scheme)

| Question                  | Scheme                                                                                                                                                                            | Marks      |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 12. (i)                   | $3\sin(\theta + 30^\circ) = 2\cos(\theta + 30^\circ) \Rightarrow \tan(\theta + 30^\circ) = \frac{2}{3}$                                                                           | M1         |
|                           | $\Rightarrow \theta + 30^\circ = \arctan\left(\frac{2}{3}\right) = 33.69^\circ, 213.69^\circ \Rightarrow \theta =$                                                                | dM1        |
|                           | $\Rightarrow \theta = 3.69^{\circ}, 183.69^{\circ}$                                                                                                                               | A1, A1 [4] |
| Alt (i)                   | $3\sin(\theta + 30^\circ) = 2\cos(\theta + 30^\circ) \Longrightarrow 3(\sin\theta\cos 30^\circ + \cos\theta\sin 30^\circ) = 2(\cos\theta\cos 30^\circ - \sin\theta\sin 30^\circ)$ |            |
|                           | $\div \cos\theta \Rightarrow 3\tan\theta \cos 30^\circ + 3\sin 30^\circ = 2\cos 30^\circ - 2\tan\theta \sin 30^\circ$                                                             | M1         |
|                           | $\Rightarrow \tan \theta = \frac{2\cos 30^\circ - 3\sin 30^\circ}{3\cos 30^\circ + 2\sin 30^\circ} (= \text{awrt } 0.0645)$                                                       | dM1        |
|                           | $\Rightarrow \theta = 3.69^{\circ}, 183.69^{\circ}$                                                                                                                               | A1 A1 [4]  |
| (ii)(a)                   | $\cos^2 r + 2\sin^2 r$ $\cos^2 r + 2\sin^2 r$                                                                                                                                     | ["]        |
| () ()                     | $\frac{\cos^2 x + 2\sin^2 x}{1 - \sin^2 x} = 5 \Longrightarrow \frac{\cos^2 x + 2\sin^2 x}{\cos^2 x} = 5$                                                                         | M1         |
|                           | $\Rightarrow$ 1+2 tan <sup>2</sup> x = 5                                                                                                                                          | M1         |
|                           | $\Rightarrow \tan^2 x = 2$                                                                                                                                                        | A1         |
| ( <b>ii</b> )( <b>b</b> ) | $\tan^2 x = 2 \Longrightarrow \tan x = \pm \sqrt{2}$                                                                                                                              | M1         |
|                           | $\Rightarrow x = 0.955, 2.186, 4.097, 5.328$                                                                                                                                      | M1 A1,A1   |
|                           |                                                                                                                                                                                   | [7]        |
|                           |                                                                                                                                                                                   | (11 marks) |

(i)

M1 For stating that  $\tan(\theta + 30^\circ) = k$ ,  $k \neq 0$  Allow even where the candidate writes  $\tan(\theta + 30^\circ) = \frac{3}{2}$ 

dM1 For taking 'arctan' subtracting 30 and proceeding to  $\theta = ..$  Do not allow mixed units For  $\tan(\theta + 30^\circ) = \frac{3}{2}$  it is scored when they reach  $\theta = 26.3^\circ$ 

A1  $\theta = 3.69^{\circ} \text{ or } 183.69^{\circ}$ 

A1  $\theta = 3.69^{\circ}$  and 183.69° only in the range  $0 \rightarrow 360$ 

(ii)(a)

M1 For use of  $1 - \sin^2 x = \cos^2 x$  or equivalent.

This may be scored either by setting  $\frac{\cos^2 x + 2\sin^2 x}{1 - \sin^2 x} = \frac{\cos^2 x + 2\sin^2 x}{\cos^2 x}$  or  $\frac{\cos^2 x + 2\sin^2 x}{1 - \sin^2 x} = \frac{1 + \sin^2 x}{1 - \sin^2 x}$ M1 For dividing **both terms** by  $\cos^2 x$  and using  $\frac{\sin^2 x}{\cos^2 x} = \tan^2 x$  leading to  $\tan^2 x = k$ 

In the alternative  $\sin^2 x = c \Rightarrow \tan^2 x = k$  can be done on a calculator  $\tan^2 x = 2$ 

A1 tar (ii)(b)

- M1 For taking the square root and stating that  $\tan x = \sqrt{k}$  (or  $\tan x = -\sqrt{k}$ ). Accept decimals here. One correct angle would imply this. Allow a solution from  $\sin^2 x = c$
- M1 For taking arctan and finding two of the 4 angles for their  $\tan x = \sqrt{k}$  (or  $\tan x = -\sqrt{k}$ ) (Alt for taking arcsin or arcos and finding 2 angles) Condone slips here. For example,  $\tan^2 x = 2 \Rightarrow \tan x = \pm 2 \operatorname{can}$  score M0 M1 if two angles are found. BUT for example  $\tan^2 x = 2 \Rightarrow \tan x = 2$  leading to two answers scores M0 M0

A1 Two of awrt 
$$x = 0.96, 2.19, 4.10, 5.33$$
.  
Accept degrees here ie accept two of  $54.7^{\circ}, 125.3^{\circ}, 234.7^{\circ}, 305.3^{\circ}$ 

A1 All four angles in radians (and no extra's within the range) awrt x = 0.955, 2.186, 4.097, 5.328

|                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks               |
| 13 (a)(i)          | (3,-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B1                  |
| (a)(ii)            | $\sqrt{30}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B1                  |
| ( <i>a)</i> (II)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2                  |
| <b>(b)</b>         | Attempts $(6-3)^2 + (k+4)^2$ , < 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1,M1               |
|                    | $k^2 + 8k - 5 < 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1*                 |
| (c)                | Solves quadratic by formula or completion of square to give $k =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [3<br>M1            |
| (•)                | $k = -4 \pm \sqrt{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A1                  |
|                    | Chooses region between two values and deduces $-4 - \sqrt{21} < k < -4 + \sqrt{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1<br>A1 <b>cao</b> |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [4                  |
| (a)(i)(ii)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (9 marks            |
| B1                 | (3,-4) Accept as $x = , y = $ or even without the brackets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| B1                 | $\sqrt{30}$ Do not accept decimals here but remember to isw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| (b)                | This is scored M1 A1 A1 on e -pen. We are marking it M1 M1 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| M1                 | Attempts to find the length or length <sup>2</sup> from $P(6,k)$ , to the centre of $C(3,-4)$ following through on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
|                    | their <i>C</i> . Look for, using a correct <i>C</i> , either $(6 - '3')^2 + (k + '4')^2$ or $\sqrt{(6 - '3')^2 + (k + '4')^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
|                    | Another way is to substitute $(6, k)$ into $(x-3)^2 + (y+4)^2 = 30$ but it is very difficult to see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ore either          |
| M1                 | of the other two marks using this method.<br>Forms an inequality by using the length from $P$ to the centre of $C <$ the radius of $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
|                    | $(6-3)^2 + (k+4)^2 < 30$ . In almost all cases I would expect to see < 30 before < 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
|                    | Using the alternative method, they would also need the line $(6-3)^2 + (k+4)^2 < 30$ . (As if the second se | the point           |
| A 1 ¥              | lies on another circle, the radius/distance would need to be smaller than 30) $l^2 + 8l = 5 + 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| A1*                | $k^2 + 8k - 5 < 0$<br>This is a given answer and you must check that all aspects are correct. In most cases y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | you should          |
| (c)                | expect to see an intermediate line (with < 30) before the final answer appear with < 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| (C)<br>M1          | Solves the equation $k^2 + 8k - 5 = 0$ by formula or completing the square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
|                    | Factorisation to integer roots is not a suitable method in this case and scores M0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                   |
|                    | The answers could just appear from a graphical calculator. Accept decimals for the M's only $-8 \pm \sqrt{84}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lý                  |
| A1                 | Accept $k = -4 \pm \sqrt{21}$ or exact equivalent $k = \frac{-8 \pm \sqrt{84}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| M1                 | <b>Do not accept decimal equivalents</b> $k = -8.58$ , (+)0.58 2dp for this mark<br>Chooses inside region from their two roots. The roots could just appear or have been derive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ad by               |
| 1411               | Chooses inside region from their two roots. The roots could just appear or have been derive factorisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | cu by               |
| A1                 | cao $-4 - \sqrt{21} < k < -4 + \sqrt{21}$ Accept equivalents such as $(-4 - \sqrt{21}, -4 + \sqrt{21})$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
|                    | $k > -4 - \sqrt{21}$ and $k < -4 + \sqrt{21}$ , even $k > -4 - \sqrt{21}$ , $k < -4 + \sqrt{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
|                    | Accept for 3 out of 4 $\begin{bmatrix} -4 - \sqrt{21}, -4 + \sqrt{21} \end{bmatrix}$ , $k > -4 - \sqrt{21}$ or $k < -4 + \sqrt{21}$ , $-4 - \sqrt{21} \le k \le -4 + \sqrt{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
|                    | Do not accept $-4 - \sqrt{21} < x < -4 + \sqrt{21}$ for this final mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |

| Question<br>Number | Scheme                                                                                                                                        | Marks             |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 14 (a)             | $u_6 = 8000 \times (0.85)^5 = 3549.6 \approx 3550$                                                                                            | M1, A1            |
| (b)                | States $ r  < 1$ or $0.85 < 1$ and makes no reference to terms                                                                                | [2]<br>B1<br>[1]  |
| (c)                | $S_{\infty} = \frac{a}{1-r} = \frac{8000}{1-0.85} = \text{awrt } 53333  53334  \frac{160000}{3}$                                              | M1A1              |
| (d)                | Uses $S_N = \frac{8000(1-0.85^N)}{1-0.85}$                                                                                                    | [2]<br>M1         |
|                    | $\frac{8000(1-0.85^{N})}{1-0.85} = 40000 \Rightarrow 0.85^{N} = 0.25$ $\Rightarrow N = \frac{\log 0.25}{\log 0.85} (=8.53) \Rightarrow N = 9$ | dM1 A1<br>M1 A1   |
|                    | log 0.85                                                                                                                                      | [5]<br>[10 marks] |

- M1 Attempts  $u_6 = 8000 \times (r)^5$  with r = 0.85 or 85% or 1-0.15 or 1-15%
- A1\* Completes proof. States  $u_6 = 8000 \times (0.85)^5$  oe (see above) and shows answer is awrt 3549.6 or 3550

(b)

B1 States |r| < 1 or 0.85 < 1 and makes no reference to terms Allow r < 1 -1 < r < 1 and makes no reference to terms Allow for an understanding of why  $S_{\infty}$  exists. Accept  $0.85^n \rightarrow 0$  as  $n \rightarrow \infty$  or  $r^n \rightarrow 0$  as  $n \rightarrow \infty$ Do not allow from an incorrect statement... if they give r = 0.15Do not allow on an explanation that is based around terms. Eg Do not allow  $8000 \times 0.85^{n-1} \rightarrow 0$  as  $n \rightarrow \infty$ Do not allow as  $r < 1 u_n \rightarrow 0$  and so a limit exists Do not allow if they state 85% is less than 100% If you feel that a candidate deserves this mark then please seek advice.

(c)

M1 Attempts  $S_{\infty} = \frac{8000}{1-r}$  with r = 0.85 oe A1  $\frac{8000}{1-0.85}$  with an answer of awrt 53333 or 53334 or  $\frac{160\,000}{3}$  (d)

M1 Uses 
$$S_N = \frac{8000(1-r^N)}{1-r}$$
 with  $r = 0.85$  oe and  $S_N = 40000$   
Condone for this mark  $r = 0.15$  oe  
dM1 Rearranges  $\frac{8000(1-r^N)}{1-r} = 40000$  to  $r^N = k$  with  $r = 0.85$  or 0.15 oe  
A1  $0.85^N = 0.25$   
M1 Uses logs to solve an equation of the form  $a^N = b$   $(a, b > 0)$  It must be a correct method and  
reach  $N = ...$   
If you see just the answer from  $a^N = b$  look for accuracy of at least 1 dp  
This can be scored starting from  $40000 = 8000 \times ('r')^{N-1}$  but must proceed to  $N = ...$   
A1 cso 9

Note: All marks in this part can be scored using inequalities as long as the final answer is 9. You may withhold the last mark if there are inconsistent inequality signs.

Accept trial and improvement. 1st M1 as above, 2nd M1 either sight of using N=8 or N=9, A1 correct, 3rd M1 for both N=8 and N=9, A1 correct answer.

FYI 
$$S_8 = \frac{8000(1-0.85^8)}{1-0.85} = 38800 \text{ AND } S_9 = \frac{8000(1-0.85^9)}{1-0.85} = 40980$$

As the question does not have the magic phrase, we must also allow  $\frac{8000(1-r^N)}{1-r} = 40000 \rightarrow N = 8.5 \Rightarrow N = 9$  for all marks. If the candidate just writes out line one and puts N = 9 we will allow special case 1 1 000

| Question           |                                                                                                                                                                                      |                                                                                                                         |                      |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------|
| Number             | Scheme                                                                                                                                                                               |                                                                                                                         | Marks                |
| 15. (a)(i)<br>(ii) | 18<br>3                                                                                                                                                                              |                                                                                                                         | B1<br>B1<br>[2]      |
| (b)                | $\frac{(x-3)^2 (x+4)}{2} = '18'$<br>(x <sup>2</sup> -6x+9)(x+4) = 36<br>$\Rightarrow x^3 - 2x^2 - 15x + 36 = 36$<br>$\Rightarrow x^3 - 2x^2 - 15x = 0 \Rightarrow x^2 - 2x - 15 = 0$ |                                                                                                                         | M1                   |
|                    | $\Rightarrow x^3 - 2x^2 - 15x + 36 = 36$ $\Rightarrow x^3 - 2x^2 - 15x = 0 \Rightarrow x^2 - 2x - 15 = 0$                                                                            |                                                                                                                         | dM1<br>A1*<br>[3]    |
| (c)                | <i>x</i> = 5                                                                                                                                                                         |                                                                                                                         | B1                   |
|                    | $y = \frac{(5-3)^2 (5+4)}{2} \implies (5,18)$                                                                                                                                        |                                                                                                                         | M1A1<br>[ <b>3</b> ] |
|                    | Method 1                                                                                                                                                                             | Method 2                                                                                                                |                      |
| (d)                | $\int \left(\frac{1}{2}x^3 - x^2 - \frac{15}{2}x + 18\right) dx = \frac{1}{8}x^4 - \frac{1}{3}x^3 - \frac{15}{4}x^2 + 18x$                                                           | OR<br>$\int \left(-\frac{1}{2}x^3 + x^2 + \frac{15}{2}x\right) dx = -\frac{1}{8}x^4 + \frac{1}{3}x^3 + \frac{15}{4}x^2$ | M1A1                 |
|                    | Uses their 5 as the upper limit (and subtracts 0) to obtain an area                                                                                                                  | Uses their 5 as the upper limit (and subtracts 0) to obtain area                                                        | M1                   |
|                    | Area of rectangle = 90                                                                                                                                                               | Implied by correct answer $57\frac{7}{24}$                                                                              | B1                   |
|                    | Use = Area of rectangle – Area beneath curve                                                                                                                                         | Implied by subtraction in the integration                                                                               | dM1                  |
|                    | $=90-32\frac{17}{24}=57\frac{7}{24}\left(\frac{1375}{24}\right)$                                                                                                                     | $=57\frac{7}{24}$ $\left(\frac{1375}{24}\right)$                                                                        | A1cso                |
|                    |                                                                                                                                                                                      |                                                                                                                         | [6]<br>(14 marks)    |

|            | I <b>mn 2017</b><br>Paper (Mark Scheme)   | www.mystudybro.com<br>This resource was created and owned by Pearson Edexcel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Mathematics C12<br>WMA01   |
|------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| (a)(i)     |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| B1         | 18                                        | P(0,18) or even $P = 18$ is fine but do not allow $P(18,0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| (a)(ii)    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| B1         | 3                                         | R(3,0) or even $R = 3$ is fine but do not allow $R(0,3)$ or if th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ey state 3 and $-4$        |
| (b)        |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| M1         |                                           | 18' It can be implied by sight of $(x-3)^2(x+4) = 2 \times \text{their } 18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| dM1        | Attempts to mul                           | tiply out $(x-3)^2(x+4)$ using a correct method. Accept work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ing for this expansion     |
|            |                                           | in the question. (It may be scribbled out which is fine BUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | f it must be seen)         |
|            | Expect to see $(x$                        | (x+4) "multiplied" out to a cubic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
| A1*        | Reaches the give                          | en answer of $x^2 - 2x - 15 = 0$ following $x^3 - 2x^2 - 15x = 0$ with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | no errors                  |
| (c)<br>B1  | States $x = 5$                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| M1         |                                           | he y coordinate of Q by substituting their 5 into $f(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
|            | Alternatively imp                         | lies the y coordinate by using the same value as their answer to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | o a(i)                     |
| A1         | cao $(5,18)$ Allow                        | w written as $x = 5$ , $y = 18$ It must be seen in part (c)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| (d)        | Decide the metho                          | d first:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
| Meth       | od one: Curve and                         | line separate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |
| <b>M</b> 1 |                                           | hat they think is their $f(x)$ which must be cubic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
|            | -                                         | be raised by one for this to be scored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| A1         | Correct $\frac{1}{8}x^4 - \frac{1}{3}x^3$ | $-\frac{15}{4}x^2 + 18x$ which may be unsimplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
| M1         | 11                                        | it of their 5 (and 0) in their integrated function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| <b>B</b> 1 | This may appear a Area of rectangle       | as two separate integrals 0 to 3 then 3 to 5<br>$x = 00 \text{ or } 18 \times 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |
| DI         |                                           | = 90 01 18×5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| M1         |                                           | ngle – area under curve (either way around). It is dependent u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | pon both previous M's      |
| A1         | $\cos 57\frac{7}{24}$ Note –              | $57\frac{7}{2}$ is A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |
|            | 24                                        | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
| Meth       | od two: Curve - lir                       | ne or line - curve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |
| M1         |                                           | hat they think is their $\pm (18 - f(x))$ which must be cubic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
|            | _                                         | be raised by one for this to be scored.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| A1         |                                           | $\frac{1}{3}x^3 + \frac{15}{4}x^2$ which may be unsimplified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| M1         |                                           | it of their 5 (and 0) in their integrated function.<br>as two separate integrals 0 to 3 then 3 to 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| <b>B</b> 1 | Area of rectangle                         | implied by $\pm 57 \frac{7}{24}$ There is no need to use a calculator on incomplete the second sec | rrect functions (score B0) |
| M1         | Uses area of recta<br>Can be awarded o    | ngle – area under curve (either way around). It is dependent u<br>on line 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| A1         | $\cos 57\frac{7}{24}$ Note –              | $57\frac{7}{24}$ is A0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |
|            |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |

Special case: There will be quite a few candidates who believe that the equation is  $y = x^3 - 2x^2 - 15x + 36$ 

...

.....

| WMA01 |  |
|-------|--|
|-------|--|

|     | Method 1                                                                                    | Method 2                                                                                            |      |
|-----|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------|
| (d) | $\int (x^3 - 2x^2 - 15x + 36) dx = \frac{1}{4}x^4 - \frac{2}{3}x^3 - \frac{15}{2}x^2 + 36x$ | OR<br>$\int (-x^3 + 2x^2 + 15x - 18) dx = -\frac{1}{4}x^4 + \frac{2}{3}x^3 + \frac{15}{2}x^2 - 18x$ | M1A0 |
|     | Uses their 5 as the upper limit (and subtracts 0) to obtain an area                         | Uses their 5 as the upper limit (and subtracts 0) to obtain area                                    | M1   |
|     | Area of rectangle = 90                                                                      | Implied by answer $\pm 24\frac{7}{12}$                                                              | B1   |
|     | Use = Area of rectangle – Area beneath curve                                                | Implied by subtraction in the integration                                                           | M1   |
|     | $=90-65\frac{10}{24}=24\frac{7}{12}$                                                        | $=24\frac{7}{12}$                                                                                   | A0   |
|     |                                                                                             |                                                                                                     | 4/6  |

For answers without working which seem to be quite common

Eg. Area =  $90 - \int_{0}^{5} \frac{(x-3)^{2}(x+4)}{2} dx = \frac{1375}{24}$  score M0 A0 M1 (limits) B1 (90) M0 (Both M's needed) A0 for 2/6

.....

Handy Marking guide for 15 d,

|        | For integrating a cubic that resulted from<br>Multiplying out $\frac{(x-3)^2(x+4)}{2}$ , $(x-3)^2(x+4)$ or solving $\frac{(x-3)^2(x+4)}{2} = "18"$                                            |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ist M1 | Don't worry if there are errors. Score for a cubic going to a quartic with all powers being raised by one                                                                                     |
|        | Can only be scored for:<br>Method one $\frac{1}{8}x^4 - \frac{1}{3}x^3 - \frac{15}{4}x^2 + 18x$                                                                                               |
| A1     | Method two $\pm \left(-\frac{1}{8}x^4 + \frac{1}{3}x^3 + \frac{15}{4}x^2\right)$                                                                                                              |
| M1     | Uses their 5 as the upper limit (and subtracts 0) to obtain an area                                                                                                                           |
| B1     | Method One for sight of 90 or $18 \times 5$<br>Method Two for a (correct) answer of $\pm 57 \frac{7}{24} = \frac{1375}{24}$ or $\pm 24 \frac{7}{12} = \pm \frac{295}{12}$ in the special case |
|        | It is dependent upon both previous M's                                                                                                                                                        |
| dM1    | Method OneRectangle - area under curveMethod TwoAwarded on line 1 for integral (curve-18) either way around                                                                                   |
| A1     | Cso $57\frac{7}{24}$ or $\frac{1375}{24}$                                                                                                                                                     |

| Question<br>Number | Scheme                                                                                                   | Marks     |
|--------------------|----------------------------------------------------------------------------------------------------------|-----------|
| 16.                | $\frac{\mathrm{d}y}{\mathrm{d}x} = 3ax^2 + 2bx + 2$                                                      | B1        |
|                    | Sub $x = 1, y = 4 \Rightarrow y = ax^3 + bx^2 + 2x - 5$ or $x = 1$ into $ax^3 + bx^2 + 2x - 5 = 12x - 8$ | M1        |
|                    | Sub $x = 1, \frac{dy}{dx} = 12 \Longrightarrow 3a + 2b + 2 = 12$                                         | M1        |
|                    | Solves simultaneously $a+b=7, 3a+2b=10 \Rightarrow a=-4, b=11$                                           | dM1A1     |
|                    |                                                                                                          | [5]       |
|                    |                                                                                                          | (5 marks) |

B1 States or uses 
$$\frac{dy}{dx} = 3ax^2 + 2bx + 2$$

M1 Attempts to substitute x = 1, y = 4 in  $y = f(x) \Rightarrow a+b+2-5=4$ This also can be scored by to substituting x = 1 into  $ax^3 + bx^2 + 2x - 5 = 12x - 8 \Rightarrow a+b+2-5 = 12-8$ 

M1 Attempts to substitute 
$$x = 1$$
,  $\frac{dy}{dx} = 12$  in their  $\frac{dy}{dx} = 3ax^2 + 2bx + 2$ 

dM1 Solves simultaneously to find both *a* and *b*. Both M's must have been awarded. Allow from a graphical calculator. Sight of both values is sufficient.

A1 
$$a = -4, b = 11$$

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom