		<i>y</i>		
This resource was crea	ted and	owned by	Pearson	Edexcel

Surname	Other	names
Pearson Edexcel	Centre Number	Candidate Number
Core Mat	hematic	:s C34
Advanced		
Advanced Tuesday 21 June 2016 – M Time: 2 hours 30 minute	5	Paper Reference

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 125.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P46714A ©2016 Pearson Education Ltd. 1/1/1/1/1/

Turn over 🕨

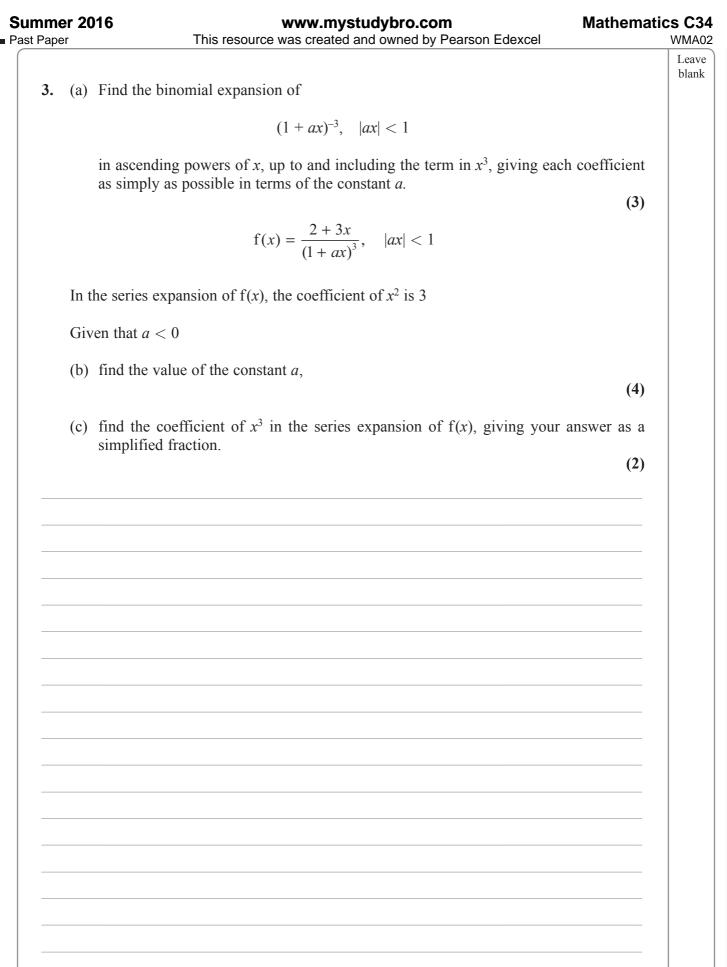
1. (a) Express $3\cos\theta + 5\sin\theta$ in the form $R\cos(\theta - a)$, where R and a are constants, $R > 0$ and $0 < a < 90^\circ$. Give the exact value of R and give the value of a to 2 decimal places. (a) (b) Hence solve, for $0 \le \theta < 360^\circ$, the equation $3\cos\theta + 5\sin\theta = 2$ (d) (c) Use your answers to one decimal place. (d) (e) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which $3\cos\theta - 5\sin\theta = 2$ (2) (a) (b) Hence solve, for $0 \le \theta < 360^\circ$, the equation $3\cos\theta - 5\sin\theta = 2$ (c) (b) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which $3\cos\theta - 5\sin\theta = 2$ (c) (c) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which $3\cos\theta - 5\sin\theta = 2$ (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c) <th>Summer Past Paper</th> <th>20</th> <th>016 www.mystudybro.com Mathemat This resource was created and owned by Pearson Edexcel</th> <th>tics C34 WMA02</th>	Summer Past Paper	20	016 www.mystudybro.com Mathemat This resource was created and owned by Pearson Edexcel	tics C34 WMA02
1. (a) Express $3\cos\theta + 5\sin\theta$ in the form $R\cos(\theta - a)$, where R and a are constants, $R > 0$ and $0 < a < 90^\circ$. Give the exact value of R and give the value of a to 2 decimal places. (3) (b) Hence solve, for $0 \le \theta < 360^\circ$, the equation $3\cos\theta + 5\sin\theta = 2$ (4) (c) Use your answers to one decimal place: (4) (c) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which $3\cos\theta - 5\sin\theta = 2$ (2) (a) (b) $3\cos\theta - 5\sin\theta = 2$ (b) (c) $3\cos\theta - 5\sin\theta = 2$ (c) (c) $3\cos\theta - 5\sin\theta = 2$ (c) $3\cos\theta - 5\sin\theta - 5\sin\theta = 2$ (c) $3\cos\theta - 5\sin\theta - 5\sin\theta = 2$ (c) $3\cos\theta - 5\sin\theta - 5\theta - 5$,	Leave
(3) (b) Hence solve, for $0 \le 0 < 360^\circ$, the equation $3\cos 0 + 5\sin 0 = 2$ (4) (c) Use your answers to one decimal place. (4) (c) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which $3\cos \theta - 5\sin \theta = 2$ (2) (2) (3) (4) (5) (2) (3) (4) (5) (2) (2) (3) (4) (5) (2) (3) (4) (5) (5) (6) (7) (7) (8) (9) (9) (9) (9) (9) (9) (9) (9	1. ((a)	$R > 0$ and $0 < \alpha < 90^{\circ}$. Give the exact value of <i>R</i> and give the value of α to 2 decimal	
$3\cos\theta + 5\sin\theta = 2$ Give your answers to one decimal place. (4) (•) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which $3\cos\theta - 5\sin\theta = 2$ (2) 0				
Give your answers to one decimal place. (4) (a) (b) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which $3\cos \theta - 5\sin \theta = 2$ (2) (b) (c) (c) (c)	((b)	Hence solve, for $0 \le \theta < 360^\circ$, the equation	
(4) (c) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which $3\cos\theta - 5\sin\theta = 2$ (2)			$3\cos\theta + 5\sin\theta = 2$	
(c) Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for which $3\cos\theta - 5\sin\theta = 2$ (2)				
3cos θ - 5 sin θ = 2 (2)		(c)	Use your solutions to parts (a) and (b) to deduce the smallest positive value of θ for	
2				
2				
2				
2				
2				
2				
2				
	2			

DO NOT WRITE IN THIS AREA

Past Paper (Mark Scheme)

W	MA	02
---	----	----

Question Number	Scheme	Notes	Marks
1. (a)		Must be exact but score when een and ignore decimal value))	B1
	$\tan \alpha = \pm \frac{5}{3}, \tan \alpha = \pm \frac{3}{5} \Rightarrow$		M1
	(Allow $\cos \alpha = \pm \frac{5}{\sqrt{34}}$ or $\pm \frac{3}{\sqrt{34}}$, $\sin \alpha = \pm \frac{5}{\sqrt{34}}$ or $\pm \frac{3}{\sqrt{34}} \Rightarrow \alpha =$) Where $\sqrt{34}$ is their R		1111
	$\alpha = 59.04^{\circ} \qquad \text{awrt 5}$		A1
			(3)
(b)	$\sqrt{34}\cos(\theta - 59.04) = 2 \Rightarrow \cos(\theta - 59.04)$	$(04) = \frac{2}{\sqrt{24}}(0.343)$	
	Attempts to use part (a) " $\sqrt{34}$ " cos(θ – "59.0"	V 34	
	$\cos(\theta \pm "59.04") = K, K $	-	M1
	May be implied by θ -"59.04" = 69.94° or θ .		
	The θ -"59.04" must be seen here of	or implied later	
	$\theta_1 - 59.04 = 69.94 \Rightarrow \theta_1 = awrt 129.0^\circ$		A1
	$\theta_2 \pm 59.04 = 360 - '69.94' \Longrightarrow \theta_2 = \dots$		
	Correct attempt at a second solutio	2	1) (1
	It is dependent upon having scored the previous M.		d M1
	Usually for θ – their 59.04 = 360 – their	ir '69.94' $\Rightarrow \theta = \dots$	
	$\theta_2 = 349.1^\circ$ awrt 3	49.1°	A1
	For solutions in (b) that are otherwise fully correct, if	there are extra answers in range,	
	deduct the final A mar	·k.	
			(4)
(c)	θ + their 59.04 = cos ⁻¹ $\left(\frac{2}{\text{their }\sqrt{3}}\right)$	• /	
	Allow θ - their 59.04 = cos ⁻¹ $\left(\frac{2}{\text{their }\sqrt{34}}\right) \Rightarrow \theta = \dots$ if they have θ + in (b)		M1
	Evidence that use is being made of parts (a) and (b) to obtain a value for θ . This can		
	be implied by the use of their answ		
	$\theta = 10.9^{\circ}$ awrt 1	0.9	A1
			(2)
			(9 marks)


Summe Past Pape		Mathematics C34 WMA02
		Leave
2.	The point <i>P</i> with coordinates $\left(\frac{\pi}{2}, 1\right)$ lies on the curve with equation	
	$4x\sin x = \pi y^2 + 2x, \qquad \frac{\pi}{6} \leqslant x \leqslant \frac{5\pi}{6}$	
	Find an equation of the normal to the curve at <i>P</i> .	(6)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question	Scheme	Notes	Marks
Number 2	$\frac{d(4x\sin x)}{dx} = 4x\cos x + 4\sin x$	Applies product rule to $4x \sin x$ to give $\frac{d(4x \sin x)}{dx} = \pm 4x \cos x + 4 \sin x$	M1
	$\frac{\mathrm{d}\left(\piy^{2}\right)}{\mathrm{d}y} = 2\piy\frac{\mathrm{d}y}{\mathrm{d}x}$	Applies chain rule to πy^2 to give $\frac{d(\pi y^2)}{dy} = Ay \frac{dy}{dx}$	M1
	•	s x + 4 sin x = $2\pi y \frac{dy}{dx} + 2$ ifferentiation. oe sin xdx = $2\pi y dy + 2 dx$	A1
	For the differentiation ign	nore any spurious " $\frac{dy}{dx} =$ "	
		using explicit differentiation: $x \sin x - 2x)^{\frac{1}{2}}$	
	M1: $\frac{d(4x \sin x)}{dx} = \pm 4x$	$x)^{-\frac{1}{2}} (4x \cos x + 4\sin x - 2)$ $\cos x + 4\sin x \text{ (as before)}$ $\rightarrow k (4x \sin x - 2x)^{-\frac{1}{2}}$	M1 M1
	Allow omission of π and sign error $\frac{dy}{dx} = \frac{1}{2\sqrt{\pi}} (4x \sin x - 2x)^{-1}$	A1	
	$x = \frac{\pi}{2}, y = 1$ $\Rightarrow 4 = 2\pi \frac{dy}{dx} + 2 \Rightarrow \frac{dy}{dx} = \dots \left(\frac{1}{\pi}\right)$	Uses $x = \frac{\pi}{2}$ and $y = 1$ to obtain a value for $\frac{dy}{dx}$ (may be implied). For implicit differentiation, there must be a dy/dx and there must be x's and y's. Explicit differentiation just requires use of $x = \frac{\pi}{2}$.	M1
	$y-1 = "-\pi"\left(x-\frac{\pi}{2}\right) \text{ or } y = "-\pi"x+c \Rightarrow c = 1+\frac{\pi^2}{2}$ Uses normal gradient $-1/\frac{dy}{dx}$ and $x = \frac{\pi}{2}, y = 1$ to find equation of normal. Must use $-1/\left(\text{their } \frac{dy}{dx}\right)$ and $x = \frac{\pi}{2}$ and $y = 1$ must be correctly placed. If using $y = mx + c$ must reach as far as $c =$		M1
	$y - 1 = -\pi \left(x - \frac{\pi}{2} \right) \text{ oe}$	Allow 3sf or more decimal equivalent answers e.g. y = -3.14x + 5.93, y - 1 = -3.14(x - 1.57) etc.	A1cso
			(6 marks)

Question Number	Scheme	Notes	Marks
3 (a)	$(1+ax)^{-3} = 1 + (-3)(ax) + (-3)(-4)(-4)(-4)(-4)(-4)(-4)(-4)(-4)(-4)(-4$		
	2! Uses the binomial expansion		
	Minimum for M1 is $1+(-3)(ax)$ but	M1	
	term e.g. $\frac{(-3)(-4)}{2!}(ax)$		
	$=1-3ax+6a^2x^2-10a^3x^3+$	A1: Three of the four terms correct and simplified	
	or	A1: All four terms correct and	A1A1
	$= 1 - 3ax + 6(ax)^2 - 10(ax)^3 + \dots$	simplified and seen in part (a).	
(b)	2+3r		(3)
(0)	$f(x) = \frac{2+3x}{(1+ax)^3} = (2+3x)$	$(1 - 3ax + 6a^2x^2 - 10a^3x^3)$	
	Writes $f(x) as (2+3x)(1-3ax+6a)$	$^{2}x^{2}-10a^{3}x^{3}$) using their expansion	
		by their expansion. Do not condone	M1
	implied by later work and allow to re	or part(a) unless their presence is cover in (b) from missing brackets in	
	(a) e.g. ax^2 now	becoming a^2x^2	
	NB f $(x) = 2 + (3 - 6a)x + (12)$		
		Multiplies out and sets their coefficient of x^2 (which comes from	
	$12a^2 - 9a = 3$	exactly 2 terms from their	dM1
		expansion – the two terms may have	
	$4a^2 - 3a - 1 = (4a)^2$	been combined earlier) = 3. +1)($a-1$) $\Rightarrow a =$	
		If working is shown see general	ddM1
	•	working is shown then you may need	duivii
		Cao. Accept equivalent answers but	
	$a = -\frac{1}{4}$	must come from the correct quadratic and must be clearly	A1
		identified.	
(c)		1	(4)
(0)	$(1)^2$ $(1)^3$	Subs their $a = -\frac{1}{4}$ (positive or	
	$18\left(-\frac{1}{4}\right)^2 - 20\left(-\frac{1}{4}\right)^3$	negative) into their coefficient of x^3	M1
		(which comes from exactly 2 terms from their expansion)	
	Coefficient of x^3 is $\frac{23}{16}$	Cao. Allow $\frac{23}{16}x^3$	A1
	10		(2)
			9 marks

WMA02 Leave

blank

DO NOT WRITE IN THIS AREA

4.

Past Paper

$$g(x) = \frac{x^4 + x^3 - 7x^2 + 8x - 48}{x^2 + x - 12}, \qquad x > 3, \quad x \in \mathbb{R}$$

(a) Given that

$$\frac{x^4 + x^3 - 7x^2 + 8x - 48}{x^2 + x - 12} \equiv x^2 + A + \frac{B}{x - 3}$$

find the values of the constants A and B.

- (4)
- (b) Hence, or otherwise, find the equation of the tangent to the curve with equation y = g(x) at the point where x = 4. Give your answer in the form y = mx + c, where *m* and *c* are constants to be determined.

(5)

DO NOT WRITE IN THIS AREA

Question Number	Scheme	Notes	Marks
4 (a)	$x^2 + x - 12 \overline{)}x^4 +$	$\frac{x^2 + 5}{x^3 - 7x^2 + 8x - 48}$	
		$\frac{x^3 - 12x^2}{5x^2 + 8x - 48}$	M1A1
		$\frac{5x^2+5x-60}{3x+12}$	
	and a remainder of the form αx -	by $x^2 + x - 12$ to get a quadratic quotient - β where α and β are not both zero ient and remainder	
	$\frac{x^4 + x^3 - 7x^2 + 8x - 48}{x^2 + x - 12} \equiv$ Writes the	$x^{2}+5+\frac{3(x+4) \text{ or } 3x+12}{(x+4)(x-3)}$ in answer as fir Quotient + $\frac{\text{Their Remainder}}{(x+4)(x-3)}$	M1
	$\equiv x^2 + 5 + \frac{3}{(x-3)}$	or states $A = 5$, $B = 3$	A1
			(

Alternatives to part (a) by dividing by linear factors	
M1: Divides by $(x - 3)$ first then divides by $(x + 4)$: $(x^4 + x^3 - 7x^2 + 8x - 48) \div (x - 3): Q_1 = x^3 + 4x^2 + 5x + 23, R_1 = 21$ $(x^3 + 4x^2 + 5x + 23) \div (x + 4): Q_2 = x^2 + 5, R_2 = 3$ For the M1, first division requires Q_1 to be a cubic and R_1 a constant and the second division to give a quadratic Q_2 and constant R_2 A1: Correct quotients and remainders	M1A1
$\frac{x^4 + x^3 - 7x^2 + 8x - 48}{(x+4)(x-3)} \equiv x^2 + 5 + \frac{3}{x+4} + \frac{21}{(x-3)(x+4)}$ Writes their answer as $Q_2 + \frac{R_2}{x+4} + \frac{R_1}{(x-3)(x+4)}$	M1
$\equiv x^2 + 5 + \frac{3}{(x-3)}$ or states $A = 5, B = 3$	A1
M1: Divides by $(x + 4)$ first then divides by $(x - 3)$: $(x^4 + x^3 - 7x^2 + 8x - 48) \div (x + 4) : Q_1 = x^3 - 3x^2 + 5x - 12, R_1 = 0$ $(x^3 - 3x^2 + 5x - 12) \div (x - 3) : Q_2 = x^2 + 5, R_2 = 3$ For the M1, first division requires Q_1 to be a cubic and R_1 a constant and the second division to give a quadratic Q_2 and constant R_2 A1: Correct quotients and remainders	M1A1
$\frac{x^4 + x^3 - 7x^2 + 8x - 48}{(x+4)(x-3)} \equiv x^2 + 5 + \frac{3}{x-3}(+0)$ Writes their answer as $Q_2 + \frac{R_2}{x-3} + \frac{R_1}{(x-3)(x+4)}$	M1
$\equiv x^2 + 5 + \frac{3}{(x-3)}$ or states $A = 5, B = 3$	A1

Alternative by com	paring coefficients	
$x^{4} + x^{3} - 7x^{2} + 8x - 48 \equiv (x^{2} + A)(x^{2} + x - 12) + B(x + 4)$		
Multiplies through by $(x^2 + x - 12)$ to obtain correct lhs and one of		
$(x^2 + A)(x^2 + x - 12)$	or $B(x+4)$ on the rhs	M1
If $(x^2 + A)(x^2 + x - 12)$ is	expanded, must see both	
$x^{2}(x^{2}+x-12)$	$+A(x^{2}+x-12)$	
e.g. $x^2 \Rightarrow A - 12 = -7$, $x \Rightarrow A + B$	-	A1
A = 5, B = 3 M1: Solves to obtain one of A or B A1: Both values correct		M1A1
Alternative by substitution		
$\frac{x^4 + x^3 - 7x^2 + 8x - 48}{x^2 + x - 12} \equiv x^2 + A + \frac{B}{x - 3}$ $x = 0 \Rightarrow 4 = A - \frac{B}{3}, x = 1 \Rightarrow \frac{45}{10} = 1 + A - \frac{B}{2}$ M1: Substitutes 2 values for x A1: 2 correct equations Multiplying through before substitution must satisfy the condition for multiplying through in the previous alternative.		M1A1
A = 5, B = 3	M1: Solves to obtain one of <i>A</i> or <i>B</i> A1: Both values correct	M1A1

		D D	<u> </u>
(b)	$g'(x) = 2x - \frac{3}{(x-3)^2}$	M1: $x^2 + A + \frac{B}{x-3} \rightarrow 2x \pm \frac{B}{(x-3)^2}$ A1: $x^2 + A + \frac{B}{x-3} \rightarrow 2x - \frac{B}{(x-3)^2}$	M1A1ft
		Follow through their <i>B</i> or the letter <i>B</i> or a made up <i>B</i> .	
	Specia	l Case:	
	If they write $g(x)$ as $x^2 + 5 + \frac{3x + 12}{(x-3)}$	and correctly attempt to differentiate	
	as $2x$ + the quotient rule on $\frac{3x+12}{(x-3)}$	then the M mark is available but not	
		ient rule and the numerator must be a pression.	
	$g'(4) = 2 \times 4 - \frac{3}{(4-3)^2} (=5)$		M1
	Uses $m = g'(4) = (5)$ with $(4, g(4))$	(4, 24) to form eqn of tangent	
	y-24=5(x-4)	Correct method of finding an equation of the tangent. The gradient must be $g'(4)$ and the point must be an attempt on $(4, g(4))$	M1
	y = 5x + 4	Cso. This mark may be withheld for an incorrect " <i>A</i> " earlier or any incorrect work leading to a correct gradient.	A1
			(5)
			(9 marks)
	Alternative to part	(b) for first 3 marks	
	$g'(x) = \frac{(x^2 + x - 12)(4x^3 + 3x^2 - 14x)}{(x^2 + 3x^2)(4x^2 - 14x)}$	$+8) - (x^{4} + x^{3} - 7x^{2} + 8x - 48)(2x + 1)$ $x^{2} + x - 12)^{2}$	
	M1: Correct use of the quotient ru	ale – there must be evidence of the formula quoted and attempted.	M1A1
	A1: Correc		
	$g'(4) = \frac{8 \times 256 - 192 \times 9}{8^2} (=5)$	Substitutes $x = 4$ into their derivative	M1

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Past Paper This resource was created and owned by Pearson Edexcel WMA02 Leave blank Use integration by parts to find the exact value of 5. $\int_0^2 x 2^x \mathrm{d}x$ Write your answer as a single simplified fraction. (6) 16

Question Number	Scheme	Notes	Marks
	Note that 2^x can be replaced by $e^{x \ln x}$	6	
5	"dx" thro	M1: Integrates by parts the right way around to obtain an expression	
		of the form $ax2^x - \int b2^x dx$.	
	$\int x 2^x dx = x \frac{2^x}{\ln 2} - \int \frac{2^x}{\ln 2} dx$	Allow $a = 1$ and/or $b = 1$.	M1A1
		A1: $x \frac{2^x}{\ln 2} - \int \frac{2^x}{\ln 2} dx$	
		(Does not need to be seen all on one line)	
		dM1: Completes to obtain an	
	$\int x 2^{x} dx = x \frac{2^{x}}{\ln 2} - \frac{2^{x}}{(\ln 2)^{2}}$	expression of the form $\dots -k2^x$	dM1A1
	$\int \frac{1}{2} \ln 2 (\ln 2)^2$	A1: $x \frac{2^x}{\ln 2} - \frac{2^x}{(\ln 2)^2}$	
	$\left[x\frac{2^{x}}{\ln 2} - \frac{2^{x}}{(\ln 2)^{2}}\right]_{0}^{2} = \left(\frac{2 \times 2^{2}}{\ln 2} - \frac{2^{2}}{(\ln 2)^{2}}\right) - \left(\frac{0 \times 2^{0}}{\ln 2} - \frac{2^{0}}{(\ln 2)^{2}}\right)$		
	Uses the limits 0 and 2 and subtracts the right way round.		
	F(0) may be implied by e.g. $\frac{1}{(\ln 2)^2}$		ddM1
	But $\left(\frac{2 \times 2^2}{\ln 2} - \frac{2^2}{(\ln 2)^2}\right) - (0)$ or ju	ast $\left(\frac{2 \times 2^2}{\ln 2} - \frac{2^2}{\left(\ln 2\right)^2}\right)$ is ddM0	
	$\left(=\frac{8}{\ln 2}-\frac{4}{(\ln 2)}\right)$	$\frac{1}{\left(\ln 2\right)^2} + \frac{1}{\left(\ln 2\right)^2}$	
		Correct simplified fraction. Allow equivalent simplified forms	
	$=\frac{8\ln 2-3}{\left(\ln 2\right)^2}$	e.g. $\frac{\ln 256 - 3}{(\ln 2)^2}, \frac{\ln 2^8 - 3}{(\ln 2)^2}$	A1
		Allow denominator as $(ln2)(ln2)$ and ln^22 but not as $ln2^2$	
		I	(6 marks)

Alternative by substitution:		
$u = 2^{x} \Longrightarrow \int x 2^{x} dx = \int \frac{\ln u}{\ln 2} \cdot u \cdot \frac{1}{u \ln 2} du = \int \frac{\ln u}{(\ln 2)^{2}} du$		
$\int \frac{\ln u}{\left(\ln 2\right)^2} \mathrm{d}u = \frac{1}{\left(\ln 2\right)^2} \left(u \ln u - \int \mathrm{d}u \right)$	M1: Integrates by parts the right way around to obtain an expression of the form $au \ln u - \int b du$. Allow $a = 1$ and/or $b = 1$. A1: $\frac{1}{(\ln 2)^2} \left(u \ln u - \int du \right)$	M1A1
$\int \frac{\ln u}{(\ln 2)^2} \mathrm{d}u = \frac{1}{(\ln 2)^2} (u \ln u - u)$	dM1: Completes to obtain an expression of the form ku A1: $\frac{1}{(\ln 2)^2}(u \ln u - u)$	dM1A1
$\left[\frac{1}{(\ln 2)^2}(u\ln u - u)\right]_1^4 = \frac{1}{(\ln 2)^2}(4\ln 4 - 4) - (\ln 1 - 1)$ Uses the limits 1 and 4 and subtracts the right way round.		M1
$=\frac{4\ln 4-3}{\left(\ln 2\right)^2}$	Correct simplified fraction. Allow equivalent simplified forms e.g. $\frac{\ln 256-3}{(\ln 2)^2}, \frac{\ln 2^8-3}{(\ln 2)^2},$ Allow denominator as (ln2)(ln2) and ln ² 2 but not as ln2 ²	A1

WMA02 Leave

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- 6. Given that *a* and *b* are constants and that a > b > 0
 - (a) on separate diagrams, sketch the graph with equation
 - (i) y = |x a|
 - (ii) y = |x a| b

Show on each sketch the coordinates of each point at which the graph crosses or meets the *x*-axis and the *y*-axis.

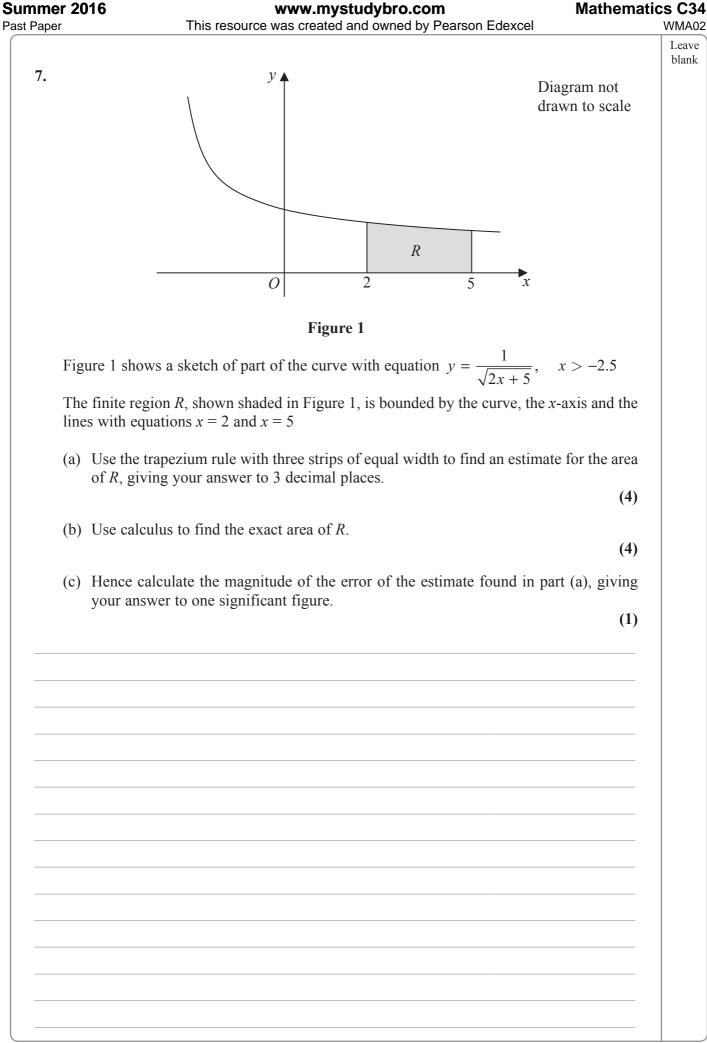
(5)

(b) Hence or otherwise find the complete set of values of x for which

$$|x-a| - b < \frac{1}{2}x$$

giving your answer in terms of *a* and *b*.

(4)


Question Number	Scheme		Notes	Marks
6(a)(i)			V shape with vertex on <i>x</i> -axis but not at the origin.	B1
	(0, <i>a</i>) (<i>a</i> , 0)		Correct V shape with $(0, a)$ or just a and $(a, 0)$ or just a marked in the correct places. Left branch must cross or touch the y-axis. Allow coordinates the wrong way round if marked in the correct place.	B1
				(2)
(a)(ii)			Their part (i) translated down (by any amount) but clearly not left or right, or the correct shape i.e. a V with the vertex in 4 th quadrant.	B1ft
(0,	(a-b) $(a+b)$ $(a+b)$		A <i>y</i> -intercept of $a - b$ on the positive <i>y</i> -axis or intercepts of a - b and $a + b$ on the positive <i>x</i> - axis with $a + b$ to the right of $a - b$	B1
			A fully correct diagram.	B1
				(3)
(b)	$x - a - b = \frac{1}{2}x \Longrightarrow x = \dots$		Solves $x - a - b = \frac{1}{2}x$ or solves	
	$\mathbf{or} \\ -x + a - b = \frac{1}{2}x \Longrightarrow x = .$		$-x + a - b = \frac{1}{2}x$ as far as $x = \dots$ Allow < or > for =.	M1
	$-x + a - b = \frac{1}{2}x \Longrightarrow x =$ $x - a - b = \frac{1}{2}x \Longrightarrow x =$		Solves $x - a - b = \frac{1}{2}x$ and solves	
	and		$-x+a-b = \frac{1}{2}x$ as far as $x = \dots$	M1
	$-x + a - b = \frac{1}{2}x \Longrightarrow x = .$		Allow $<$ or $>$ for $=$.	
			hooses inside region.	
			w alternatives e.g.	
		x < 2(a +	(b) and $x > \frac{2}{3}(a-b)$,	
	$\frac{2}{3}(a-b) < x < 2(a+b)$	x < 2(a +	$(b) \cap x > \frac{2}{3}(a-b),$	ddM1A1
), $2(a+b)$ but not	
		x < 2(a +	(b), $x > \frac{2}{3}(a-b)$	
				(4)
				(9 marks)

Attempts at squarin	ng in (b)	
$\left(x-a\right)^2 = \left(\frac{1}{2}x+a\right)^2$	$b\Big)^2$	
$(x-a)^{2} = \left(\frac{1}{2}x+b\right)^{2} \Rightarrow 3x^{2} - 4x(2a+b) + 4\left(a^{2} - b^{2}\right) = 0$ Squares both sides and obtains $3TQ = 0$		M1
$x = \frac{4(2a+b)\pm 4(a+2b)}{6}$ A	ttempt to solve 3TQ applying sual rules	M1
$\frac{2}{3}(a-b) < x < 2(a+b)$ $x < 2(a+b)$	dM1: Chooses inside region. Pependent on both previous M marks. 1: Allow alternatives e.g. $< 2(a+b)$ and $x > \frac{2}{3}(a-b)$, $\frac{2}{3}(a-b), 2(a+b)$ but not $< 2(a+b), x > \frac{2}{3}(a-b)$ xpressions must have just one erm in <i>a</i> and one term in <i>b</i> .	ddM1A1

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Question Number	Scheme	Notes	Marks
7 (a)	Strip width = 1	May be implied by their trapezium rule.	B1
	Area $\approx \frac{1}{2} \left(\frac{1}{\sqrt{9}} + \frac{1}{\sqrt{15}} + 2 \left(\frac{1}{\sqrt{11}} + \frac{1}{\sqrt{13}} \right) \right)$ $\approx \frac{1}{2} (0.33+0.25+2(0.30+0.27))$	M1: Correct structure for the y values. Look for $(y \text{ at } x = 2) + (y \text{ at } x = 5) + 2(\text{sum of other } y \text{ values}).$ A1: Correct numerical expression. If decimals are used, look for awrt 1dp initially, however a correct final answer would imply this mark.	M1 A1
	Awrt 0.875		A1
			(4)
	May use separate	trapezia:	
	Area $\approx \frac{1}{2} \left(\frac{1}{\sqrt{9}} + \frac{1}{\sqrt{11}} \right) + \frac{1}{2} \left(\frac{1}{\sqrt{11}} + \frac{1}{\sqrt{11}} \right)$	$-\frac{1}{\sqrt{13}}$ $+\frac{1}{2}\left(\frac{1}{\sqrt{11}}+\frac{1}{\sqrt{15}}\right)$	
	B1: Strip wid		
	M1: Correct structure for the <i>y</i> values as above		
	A1: Correct expression as A1: Awrt 0.		
(b)			
	$\int \frac{1}{\sqrt{2x+5}} dx = (2x+5)^{\frac{1}{2}}$	M1: $\int \frac{1}{\sqrt{2x+5}} dx = k(2x+5)^{\frac{1}{2}}$ A1: $\int \frac{1}{\sqrt{2x+5}} dx = (2x+5)^{\frac{1}{2}}$	M1A1
	$\int_{2}^{5} \frac{1}{\sqrt{2x+5}} dx = (2(5)+5)^{\frac{1}{2}} - (2(2)+5)^{\frac{1}{2}}$	Substitutes 5 and 2 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. 0.8729 and not by work in decimals e.g. 3.8723 unless the substitution of 5 and 2 is explicitly seen.	dM1
	$=\sqrt{15}-\sqrt{9}(=\sqrt{15}-3)$	$\sqrt{15} - \sqrt{9} \text{ or } \sqrt{15} - 3$	A1
			(4)

	Alternative to (b) by subs	titution $u = 2x + 5$	
	$u = 2x + 5 \Longrightarrow \int \frac{1}{\sqrt{2x+5}} dx = \int \frac{1}{\sqrt{u}} \frac{1}{2} du$	M1: $\int \frac{1}{\sqrt{2x+5}} dx = ku^{\frac{1}{2}}$ A1: $\int \frac{1}{\sqrt{2x+5}} dx = u^{\frac{1}{2}}$	M1A1
	$\int_{2}^{5} \frac{1}{\sqrt{2x+5}} dx = (15)^{\frac{1}{2}} - (9)^{\frac{1}{2}}$	Substitutes 15 and 9 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. 0.8729 and not by work in decimals e.g. 3.8723 unless the substitution of 15 and 9 is explicitly seen.	dM1
	$=\sqrt{15}-\sqrt{9}(=\sqrt{15}-3)$	$\sqrt{15} - \sqrt{9} \text{ or } \sqrt{15} - 3$	A1
	Alternative to (b) by substi	tution $u = (2x+5)^{\frac{1}{2}}$	
	$u = (2x+5)^{\frac{1}{2}} \Longrightarrow \int \frac{1}{u} \cdot u \mathrm{d}u = \int u \mathrm{d}u$	M1: $\int \frac{1}{\sqrt{2x+5}} dx = ku$ A1: $\int \frac{1}{\sqrt{2x+5}} dx = u$	M1A1
	$\int_{2}^{5} \frac{1}{\sqrt{2x+5}} dx = (15)^{\frac{1}{2}} - (9)^{\frac{1}{2}}$	Substitutes $\sqrt{15}$ and 3 and subtracts the right way round. May be implied by the correct exact answer but not by a decimal answer only e.g. 0.8729 and not by work in decimals e.g. 3.8723 unless the substitution of $\sqrt{15}$ and 3 is explicitly seen.	dM1
	$=\sqrt{15}-\sqrt{9}(=\sqrt{15}-3)$	$\sqrt{15} - \sqrt{9} \text{ or } \sqrt{15} - 3$	A1
(c)	$\pm (\operatorname{correct}(a) - \operatorname{correct}(b)) = \pm 0.002$ or $\pm \frac{\operatorname{correct}(a) - \operatorname{correct}(b)}{\operatorname{correct}(b)} \times 100 = \pm 0.2\%$	Finds the magnitude of the error and writes as ± 0.002 or $\pm 2 \times 10^{-3}$ or $\pm 0.2\%$ Or finds the percentage error and writes as $\pm 0.2\%$	B1
			(1) (9 marks)

(4)

(7)

WMA02 Leave

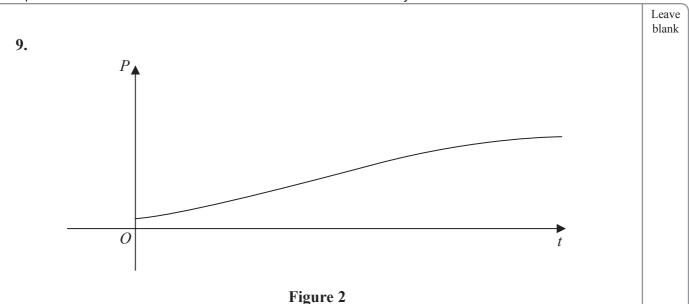
blank

DO NOT WRITE IN THIS AREA

www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper 8. (a) Prove that $\sin 2x - \tan x \equiv \tan x \cos 2x, \qquad x \neq \frac{(2n+1)\pi}{2}, \quad n \in \mathbb{Z}$ (b) Hence solve, for $0 \le \theta < \frac{\pi}{2}$ (i) $\sin 2\theta - \tan \theta = \sqrt{3} \cos 2\theta$ (ii) $\tan(\theta + 1)\cos(2\theta + 2) - \sin(2\theta + 2) = 2$ Give your answers in radians to 3 significant figures, as appropriate. (Solutions based entirely on graphical or numerical methods are not acceptable.)

Question Number	Scheme		Marks
8 (a)	$\sin 2x - \tan x \equiv 2\sin x \cos x - \frac{\sin x}{\cos x}$	Uses a correct identity for $\sin 2x$	M1
	$=\frac{2\sin x\cos x\cos x}{\cos x} - \frac{\sin x}{\cos x}$	Obtains common denominator. This is NOT dependent upon the previous M so accept expressions like, $\sin 2x - \tan x \equiv \sin 2x - \frac{\sin x}{\cos x}$ $= \frac{\sin 2x \cos x - \sin x}{\cos x}$	M1
	$\equiv \frac{2\cos^2 x \sin x - \sin x}{\cos x}$	Correct fraction with just $\sin x$ and $\cos x$	A1
	$\equiv \frac{(2\cos^2 x - 1)\sin x}{\cos x} \equiv \cos 2x \tan x^*$	Uses a correct identity for $\cos 2x$ and completes correctly with no errors. An error could be for example, mixed variables used or loss of an <i>x</i> along the way.	A1*
			(4)
	Alternative 1 f	for (a)	
	$\sin 2x - \tan x \equiv 2\sin x \cos x - \frac{\sin x}{\cos x}$	Uses a correct identity for $\sin 2x$	M1
	$\frac{\sin x}{\cos x} \left(2\cos^2 x - 1 \right)$	M1: Takes out a factor of $\frac{\sin x}{\cos x}$ A1: Correct expression	M1A1
	$\equiv \tan x \cos 2x^*$	Completes correctly with no errors.	A1*
	Alternative 2 f	for (a)	
	$2\sin x \cos x - \frac{\sin x}{\cos x} \equiv \frac{\sin x}{\cos x} (\cos^2 x - \sin^2 x)$	Uses a correct identity for $\sin 2x$	M1
	$2\sin x \cos^2 x - \sin x \equiv \sin x \left(\cos^2 x - \sin^2 x\right)$	Multiplies both sides by cos <i>x</i>	M1
	$2\cos^2 x - 1 \equiv \left(\cos^2 x - \sin^2 x\right)$	Correct identity	A1
	This is true*	Conclusion provided	A1*
	A 14	for (a)	
	Alternative 3 f $\tan x \cos 2x \equiv \frac{\sin x}{\cos x} (2\cos^2 x - 1)$	Uses a correct identity for $\cos 2x$	M1
	$\equiv 2\sin x \cos x - \frac{\sin x}{\cos x}$	M1: Multiplies out A1: Correct expression	M1A1
	$\equiv \sin 2x - \tan x^*$	A1: Obtains lhs with no errors	A1*

8(b)(i)	$\sin 2\theta - \tan \theta = \sqrt{3}\cos 2\theta$	$\Rightarrow \tan\theta\cos 2\theta = \sqrt{3}\cos 2\theta$	
	$\tan \theta = \sqrt{3} \Rightarrow \theta = \frac{\pi}{3} = (awrt 1.05)$	M1: $\tan \theta = \pm \sqrt{3} \Rightarrow \theta =$ A1: $\theta = \frac{\pi}{3}$ Accept awrt 1.05. Ignore solutions outside the range but withhold the A mark for extra solutions in range.	M1A1
	$\cos 2\theta = 0 \Rightarrow \theta = \frac{\pi}{4} (awrt \ 0.785)$	M1: $\cos 2\theta = 0 \Rightarrow \theta =$ A1: $\theta = \frac{\pi}{4}$ Accept awrt 0.785. Ignore solutions outside the range but withhold the A mark for extra solutions in range.	M1A1
(b)(ii)	$\tan(\theta+1)\cos(2\theta+2) - \sin(2\theta+2) = 2 \Longrightarrow \tan(\theta+1) = -2$ M1: $\tan(\theta+1) = \pm 2$		M1
	$\Rightarrow \theta = \arctan(-2) - 1$	Correct order of operations i.e. $\theta = \arctan(\pm 2) - 1$. This may be implied by $\theta = -2.1$	dM1
	$\Rightarrow \theta = 1.03$	awrt θ = 1.03. Ignore solutions outside the range but withhold the A mark for extra solutions in range.	A1
			(7)
			(11 marks)


Past Paper

Mathematics C34

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

The population of a species of animal is being studied. The population P, at time t years from the start of the study, is assumed to be

$$P = \frac{9000e^{kt}}{3e^{kt} + 7}, \qquad t \ge 0$$

where k is a positive constant.

A sketch of the graph of P against t is shown in Figure 2.

Use the given equation to

(a) find the population at the start of the study,

(b) find the value for the upper limit of the population.

Given that P = 2500 when t = 4

(c) calculate the value of k, giving your answer to 3 decimal places.

(5)

(2)

(1)

Using this value for k,

(d) find, using $\frac{dP}{dt}$, the rate at which the population is increasing when t = 10

Give your answer to the nearest integer.

(3)

Question Number	S	Scheme	Marks
9.(a)	$t = 0 \Longrightarrow P = \frac{9000}{3+7} = 900$	M1: Sets $t = 0$, may be implied by $e^0 = 1$ or may be implied by $\frac{9000}{3+7}$ or by a correct answer of 900. A1: 900	M1A1
			(2)
(b)	$t \to \infty P \to \frac{9000}{3} = 3000$	Sight of 3000	B1
		-	(1)
(c)	$t = 4, P = 2500 \Rightarrow 2500 = \frac{9000e^{4k}}{3e^{4k} + 7}$	Correct equation with $t = 4$ and $P = 2500$	B1
	$e^{4k} = \frac{17500}{1500} = (awrt 11.7 or 11.6)$ or $e^{-4k} = \frac{1500}{17500} = (awrt 0.857)$	M1: Rearranges the equation to make $e^{\pm 4k}$ the subject. They need to multiply by the $3e^{4k} + 7$ term, and collect terms in e^{4k} or e^{-4k} reaching $e^{\pm 4k} = C$ where C is a constant. A1: Achieves intermediate answer of $e^{4k} = \frac{17500}{1500} = (awrt 11.7 \text{ or } 11.6) \text{ or}$ $e^{-4k} = \frac{1500}{17500} = (awrt 0.857)$	M1A1
	$k = \frac{1}{4} \ln\left(\frac{35}{3}\right) $ or awrt 0.614	d M1: Proceeds from $e^{\pm 4k} = C$, $C > 0$ by correctly taking ln's and then making k the subject of the formula. Award for e.g. $e^{4k} = C \Rightarrow 4k = \ln(C) \Rightarrow k = \frac{\ln(C)}{4}$ A1: cao: Awrt 0.614 or the correct exact answer (or equivalent)	dM1A1
			(5)
	$t = 4, P = 2500 \Rightarrow 2500 = \frac{9000e^{4k}}{3e^{4k} + 7}$	correct work in (c):Correct equation with $t = 4$ and $P = 2500$	B1
	$7500e^{4k} + 17500 = 9000e^{4k}$		
	$\frac{1500e^{4k}}{\ln 1500} + \ln e^{4k} = \ln 17500$	M1: Takes In's correctly A1: Correct equation	M1A1
	$\ln e^{4k} = \ln 17500 - \ln 1500$ $4k = \ln 17500 - \ln 1500$		
	$k = \frac{\ln 17500 - \ln 1500}{4}$	Makes k the subject	M1A1
	$k = \frac{1}{4} \ln\left(\frac{35}{3}\right) $ or awrt 0.614	cao: Awrt 0.614 or the correct exact answer (or equivalent)	

-

(d)	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{(3e^{kt}+7) \times 9000ke^{kt}-9}{(3e^{kt}+7)^2}$	$\frac{9000e^{kt} \times 3ke^{kt}}{(3e^{kt}+7)^2} = \frac{63000ke^{kt}}{(3e^{kt}+7)^2}$	
	Differentiates using the $\frac{dP}{dt} = \frac{(3e^{kt} + 7) \times P}{(3)^{kt}}$	quotient rule to achieve $e^{kt} - 9000e^{kt} \times Qe^{kt}$ $e^{kt} + 7)^2$	
	or		
	$\frac{\mathrm{d}P}{\mathrm{d}t} = 9000 k \mathrm{e}^{kt} \left(3 \mathrm{e}^{kt} + 7\right)^{-1}$	$-9000e^{kt} (3e^{kt}+7)^{-2} \times 3ke^{kt}$	
		product rule to achieve	M1
	$\frac{\mathrm{d}P}{\mathrm{d}t} = P\mathrm{e}^{kt} \left(3\mathrm{e}^{kt} + 7\right)^{-1} - 9$	$9000e^{kt} \left(3e^{kt}+7\right)^{-2} \times Qe^{kt}$	M1
	$\frac{\mathrm{d}P}{\mathrm{d}t} = 63000 k \mathrm{e}^{-kt} \left(3 + 7 \mathrm{e}^{-kt}\right)^{-2}$		
	Differentiates using the chain rule on $P = 9000 (3 + 7e^{-kt})^{-1}$ to achieve		
	$\frac{\mathrm{d}P}{\mathrm{d}t} = \pm D\mathrm{e}^{-kt} \left(3 + 7\mathrm{e}^{-kt}\right)^{-2}$		
	Watch for $e^{kt} \rightarrow$	kte^{kt} which is M0	
	Sub $t = 10$ and $k = 0.614 \Rightarrow \frac{dP}{dt} = \dots$	Substitutes $t = 10$ and their k to obtain a value for $\frac{dP}{dt}$. If the value for $\frac{dP}{dt}$ is incorrect then the substitution of	dM1 (A1 on Epen)
	10	t = 10 must be seen explicitly.	
	$\frac{\mathrm{d}P}{\mathrm{d}t} = 9$	Awrt 9 (NB $\frac{dP}{dt} = 9.1694$)	A1
			(3)
			(11 marks)

(2)

(3)

Leave blank

 $3g(x+1) - \pi = 0$

 $g(x) = \arctan x, \quad x \in \mathbb{R}$

The equation $\arctan x - 4 + \frac{1}{2}x = 0$ has a positive root at $x = \alpha$ radians.

10. (a) Given that $-\frac{\pi}{2} < g(x) < \frac{\pi}{2}$, sketch the graph of y = g(x) where

(c) Show that $5 < \alpha < 6$

The iteration formula

$$x_{n+1} = 8 - 2 \arctan x_n$$

can be used to find an approximation for α

(b) Find the exact value of *x* for which

(d) Taking $x_0 = 5$, use this formula to find x_1 and x_2 , giving each answer to 3 decimal places.

(2)

(2)

Question Number	Scheme		
10(a)		M1: Curve not a straight line through (0, 0) in quadrants 1 and 3 only.	
		A1: Grad $\rightarrow 0$ as $x \rightarrow \pm \infty$	M1A1
			(2)
(b)	$3 \arctan(x+1) - \pi = 0$ $\Rightarrow \arctan(x+1) = \frac{\pi}{3}$	Substitutes $g(x+1) = \arctan(x+1)$ in $3g(x+1) - \pi = 0$ and makes $\arctan(x+1)$ the subject. Do not condone missing brackets unless later work implies their presence.	M1
	$\Rightarrow x = \tan\left(\frac{\pi}{3}\right) - 1 = \sqrt{3} - 1$ allow need	Takes tan and makes x the subject e.g. $x = \sqrt{3} \pm 1$. Note that $\tan\left(\frac{\pi}{3}\right)$ does not to be evaluated for this mark. May be ed by e.g. $x = 0.732$ $\sqrt{3}-1$	dM1A1
			(3)
(c)	Sub $x = 5$ and $x = 6$ into $\pm \left(\arctan x - 4 + \frac{1}{2}x \right) \Rightarrow -0.126 + 0.405$		
	and obtains at least one answer correct to 1sfBoth values correct (to one sig fig), change of sign + conclusionAllow equivalent statements e.g. positive, negative therefore root etc. butthis mark may be withheld if there are any contradictory statements e.g.therefore root lies between g(5) and g(6)		A1
	If $-\left(\arctan x - 4 + \frac{1}{2}x\right)$ is used to give 0.126, -0.405, allow both marks if a conclusion is given.		
			(2)
(d)	$x_1 = 8 - 2 \arctan 5$	Score for $x_1 = 8 - 2 \arctan 5 =$ This may be implied by awrt 5.3 (radians) or awrt -149 (degrees) for x_1	M1
	$x_1 = 5.253, x_2 = 5.235$	x_1 = awrt 5.253, x_2 = awrt 5.235 Ignore any subsequent iterations and ignore labelling if answers are clearly the second and third terms.	A1
			(2)
			(9 marks)

WMA02

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

11. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$l_1: \mathbf{r} =$	$\begin{pmatrix} 7 \\ 4 \\ 9 \end{pmatrix}$	$+\lambda \left($	$\begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$
$l_2:\mathbf{r}=$	$(-6)^{-7}$	$+ \mu$	$\begin{pmatrix} 5\\4\\b \end{pmatrix}$

where λ and μ are scalar parameters and b is a constant.

- Given that l_1 and l_2 meet at the point X,
- (a) show that b = -3 and find the coordinates of *X*.

The point A lies on l_1 and has coordinates (6, 3, 5)

The point *B* lies on l_2 and has coordinates (14, 9, -9)

- (b) Show that angle $AXB = \arccos\left(-\frac{1}{10}\right)$ (4)
- (c) Using the result obtained in part (b), find the exact area of triangle *AXB*.

Write your answer in the form $p\sqrt{q}$ where p and q are integers to be determined.

(3)

(5)

Question Number	Scheme		
11 (a)	$\begin{pmatrix} 7\\4\\9 \end{pmatrix} + \lambda \begin{pmatrix} 1\\1\\4 \end{pmatrix} = \begin{pmatrix} -6\\-7\\3 \end{pmatrix} + \mu \begin{pmatrix} 5\\4\\b \end{pmatrix} \Rightarrow \begin{array}{c} 7+1\lambda = -6+5\mu\\4+1\lambda = -7+4\mu \text{ any two of}\\9+4\lambda = 3+b\mu \end{array}$ Writes down any two equations for the coordinates of the point of intersection. There must be an attempt to set the coordinates equal but condone slips.		
	Full method to find both λ and μ from equations 1 and 2 and uses these values and equation 3 to find a value for b		
	$(1) - (2) \Longrightarrow 3 = 1 + 1$	$+\mu \Rightarrow \mu = 2$	
	Sub $\mu = 2$ into (1) \Rightarrow 7+1	$\lambda = -6 + 10 \Longrightarrow \lambda = -3$	
	Put values in 3^{rd} equation 9 Completely correct work including $\lambda = -$ sides of the third equation	-3, $\mu = 2$ and substitution into both	A1
	Substitutes their value of λ into l_1 to find the coordinates or position vector of the point of intersection. Alternatively substitutes their value of μ into l_2 to find the coordinates or position.		
	May be implied by at least 2 of		
	X = (4, 1, -3)	Correct coordinates or vector. Correct coordinates implies M1A1 Marks for finding the coordinates of X can score anywhere in the question.	A1
	(b) Way 1		(5)
	(2) (10)	Attempts the difference between the coordinates X and A , X and B . This could be implied by the calculation of the lengths AX and BX . Allow slips but must be subtracting.	M1
	$\pm \overrightarrow{XA} \pm \overrightarrow{XB} = XA XB \cos\theta \Rightarrow 20 + 16 - 48 = \sqrt{72}\sqrt{200}\cos\theta$		
	M1: Attempt the scalar product of \overline{XA} and \overline{XB} or \overline{AX} and \overline{BX} or \overline{XA} and \overline{BX} or \overline{XA} and \overline{BX}		
(b)	Allow $\cos \theta = \frac{\begin{pmatrix} 2 \\ 2 \\ 8 \end{pmatrix} \cdot \begin{pmatrix} 10 \\ 8 \\ -6 \end{pmatrix}}{\sqrt{72}\sqrt{200}}$ for M1 but not A1 unless the numerator is evaluated		dM1A1
	A1: A correct un-simplified expression $20+16-48 = \sqrt{72}\sqrt{200}\cos\theta$ oe -12 This is a given answer. There must		
	$\cos \theta = \frac{-12}{\sqrt{72} \times \sqrt{200}} \Rightarrow \theta = \arccos\left(-\frac{1}{10}\right)^*$	This is a given answer. There must be an intermediate line with $\cos \theta =$ $\operatorname{or} \theta =$	A1*
			(4)

	(b) Way 2		
	$\mathbf{d}_1 = \begin{pmatrix} 1\\1\\4 \end{pmatrix}, \mathbf{d}_2 = \begin{pmatrix} 5\\4\\-3 \end{pmatrix}$	Uses <i>b</i> = -3 and the direction vectors or multiples of the direction vectors	M1
	$\mathbf{d}_1 \cdot \mathbf{d}_2 = \mathbf{d}_1 \mathbf{d}_2 \cos\theta \Longrightarrow 5 + 4 - 12 = \sqrt{18} \sqrt{50} \cos\theta$		
	M1: Attempt the scalar product of the direction vectors		
(b)	Allow $\cos \theta = \frac{\begin{pmatrix} 1\\1\\4 \end{pmatrix} \cdot \begin{pmatrix} 5\\4\\-3 \end{pmatrix}}{\sqrt{18}\sqrt{50}}$ for M1 but not	A1 unless the numerator is evaluated	dM1A1
	A1: A correct un-simplified expression $5 + 4 - 12 = \sqrt{18}\sqrt{50}\cos\theta$ oe		
	$\cos \theta = \frac{-3}{\sqrt{18} \times \sqrt{50}} \Rightarrow \theta = \arccos\left(-\frac{1}{10}\right)^*$	This is a given answer. There must be an intermediate line with $\cos \theta =$ $\operatorname{or} \theta =$	A1*

	(b) Way 3			
	$\pm \overrightarrow{XA} = \pm \begin{pmatrix} 2\\2\\8 \end{pmatrix}, \pm \overrightarrow{XB} = \pm \begin{pmatrix} 10\\8\\-6 \end{pmatrix}$	Attempts the difference between the coordinates <i>X</i> and <i>A</i> , <i>X</i> and <i>B</i> . This could be implied by the calculation of the lengths <i>AX</i> and <i>BX</i> . Allow slips but must be subtracting.	M1	
(b)	$ AB ^{2} = XA ^{2} + XB ^{2} - 2 XA XB \cos\theta \Rightarrow 8$ M1: Uses \overline{AB} with a correct A1: A correct un-simplified expression 8^{2}	et attempt at the cosine rule	dM1A1	
	$\cos\theta = \frac{-24}{2\sqrt{72} \times \sqrt{200}} \Rightarrow \theta = \arccos\left(-\frac{1}{10}\right)^*$	This is a given answer. There must be	A1*	
(c)	$\cos \theta = -\frac{1}{10} \Rightarrow \sin \theta = \frac{\sqrt{99}}{10}$ or e.g. $\sqrt{\frac{99}{100}}, \frac{3\sqrt{11}}{10}$. May be implied by a correct exact area.		B1	
	Area of triangle = $\frac{1}{2}XA \times XB \times \sin \theta$ $A = \frac{1}{2} \times 6\sqrt{2} \times 10\sqrt{2} \times \frac{3\sqrt{11}}{10}$			
	Uses Area of triangle = $\frac{1}{2}XA \times XB \times \sin \theta$			
	This mark can be scored for e.g. $\frac{1}{2}$ (their XA)×(their XB)×sin (cos ⁻¹ ($-\frac{1}{10}$)) or			
	$\frac{1}{2}$ (their XA)×(their XB)×sin(95.7391)			
	Must be using the angle given by $\cos^{-1}\left(-\frac{1}{10}\right)$			
	$A = 18\sqrt{11} \text{ oe} \qquad \text{Accept for example } A = 9\sqrt{44}, \sqrt{3564}$			
	Note that $A = \frac{1}{2} \times 6\sqrt{2} \times 10\sqrt{2} \times \sin(95.7391) = 18\sqrt{11}$ scores all 3 marks			
			(3)	
			(12 marks)	

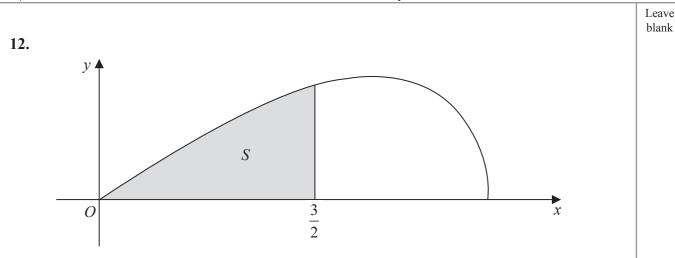


Figure 3 shows a sketch of the curve with parametric equations

$$x = 3\sin t$$
, $y = 2\sin 2t$, $0 \le t \le \frac{\pi}{2}$

The finite region *S*, shown shaded in Figure 3, is bounded by the curve, the *x*-axis and the line with equation $x = \frac{3}{2}$

The shaded region S is rotated through 2π radians about the x-axis to form a solid of revolution.

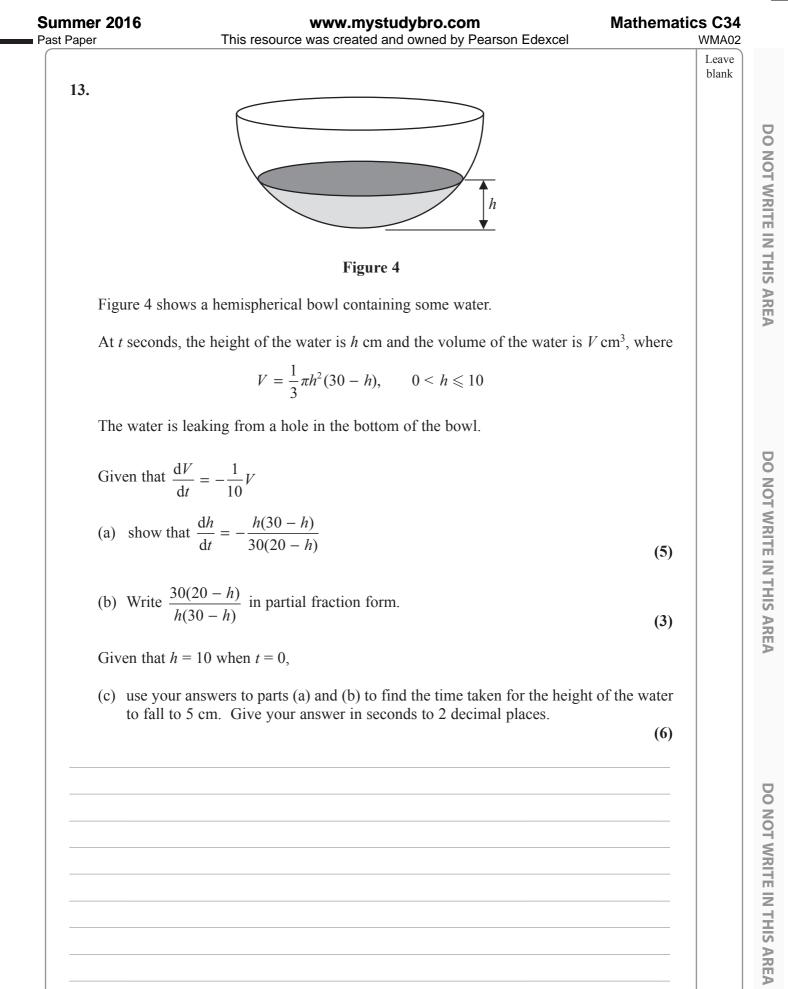
(a) Show that the volume of the solid of revolution is given by

$$k \int_0^a \sin^2 t \cos^3 t \, \mathrm{d}t$$

where *k* and *a* are constants to be given in terms of π .

(5)

(b) Use the substitution $u = \sin t$, or otherwise, to find the exact value of this volume, giving your answer in the form $\frac{p\pi}{q}$ where p and q are integers. (Solutions based entirely on graphical or numerical methods are not accentable)


(Solutions based entirely on graphical or numerical methods are not acceptable.)

(6)

Question Number	Scheme		Marks
12.(a)	$V = \int y^2 dx = \int y^2 \frac{dx}{dt}$		
	M1: Attempts $\int y^2 dx = \int y^2 \frac{dx}{dt} dt$ where $\frac{dx}{dt} = \pm k \cos t$		M1A1
	May be implied by		
	A1: = $\int (2\sin 2t)^2 3\cos t (dt) (dt ca)$		
	$= \int (4\sin t \cos t)^2 3\cos t dt \qquad \text{Uses } \sin 2t = 2\sin t \cos t$		
	$x = \frac{3}{2} \Longrightarrow t = \frac{\pi}{6} \text{ or } k = 48$	Correct value for <i>a</i> (must be exact) or a correct value for <i>k</i>	B1
	$V = \int \pi y^2 dx = 48\pi \int_{0}^{\frac{\pi}{6}} \sin^2 t \cos^3 t dt ^*$	Achieves printed answer including "dt" (even if lost earlier) with correct limits and 48π in place with no errors. Or achieves the printed answer with the letters <i>a</i> and <i>k</i> and states the correct values of <i>a</i> and <i>k</i> .	A1*
			(5)

(b)	$u = \sin t \Rightarrow \frac{dt}{dt} = \cos t$	tates $\frac{du}{dt} = \cos t$ or equivalent. May be nplied.	B1
	$V = k \int \sin^2 t \cos^3 t dt = k \int u^2 \cos^2 t du = k \int u^2 (1 - \sin^2 t) du = k \int u^2 (1 - u^2) du$ M1: Substitutes fully including for dt using $u = \sin t$ and $\cos^2 t = \pm 1 \pm \sin^2 t$ to produce an integral just in terms of u . A1ft: Fully correct integral in terms of u - follow through on incorrect k's and ignore inclusion or omission of π so look for e.g. $k \int u^2 (1 - u^2) du$ or equivalent		
	and allow the		
	$=k\left[\frac{u^3}{3}-\frac{u^5}{5}\right]$	Multiplies out to form a polynomial in <i>u</i> and integrates with $u^n \rightarrow u^{n+1}$ for at least one of their powers of <i>u</i> .	M1
	Volume = $48\pi \left[\frac{u^3}{3} - \frac{u^5}{5}\right]_0^{\frac{1}{2}} = \frac{17\pi}{10}$	d M1: All methods must have been scored. It is for using the limits 0 and $\frac{1}{2}$ and subtracting or for using the limits 0 and $\frac{\pi}{6}$ if they return to sin <i>t</i> . However, in both cases the substitution of 0 does not need not be seen. A1: $V = \frac{17\pi}{10}$ oe such as $V = \frac{51\pi}{30}$	d M1A1
			(6)
	If $\frac{du}{dt} = -\cos t$ is used, maximum B0M1A0M1M1A0 is possible		
			(11 marks)

Question Number	Scheme	Marks
13(a)	$V = \frac{1}{3}\pi h^{2} (30 - h) = 10\pi h^{2} - \frac{1}{3}\pi h^{3} \Rightarrow \frac{dV}{dh} = 20\pi h - \pi h^{2}$ or $V = \frac{1}{3}\pi h^{2} (30 - h) \Rightarrow \frac{dV}{dh} = \frac{2}{3}\pi h (30 - h) - \frac{1}{3}\pi h^{2}$	M1A1
	M1: Attempts $\frac{dV}{dh}$ either by multiplying out and differentiating each term to give a derivative of the form $\alpha h - \beta h^2$ or by the product rule to give a	
	derivative of the form $\alpha h (30 - h) \pm \beta h^2$. A1: Any correct (possibly un-simplified) form for $\frac{dV}{dh}$	
	Uses $\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} \Rightarrow -\frac{1}{10}V = (20\pi h - \pi h^2) \times \frac{\mathrm{d}h}{\mathrm{d}t}$	M1
	Uses a correct form of the chain rule, e.g. $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ or uses $\frac{dh}{dV} \times \frac{dV}{dt}$ with their $\frac{dV}{dh}$ and $\frac{dV}{dt} = -\frac{1}{10}V$.	
	$\Rightarrow -\frac{1}{10} \times \frac{1}{3} \pi h^2 (30 - h) = \pi h (20 - h) \times \frac{dh}{dt} \left(\Rightarrow \frac{dh}{dt} = \dots \right)$	M1
	Substitutes $V = \frac{1}{3}\pi h^2 (30 - h)$ and rearranges to obtain $\frac{dh}{dt}$ in terms of h	
	$\frac{dh}{dt} = -\frac{h(30-h)}{30(20-h)} *$ This is a given answer. There must have been intermediate lines and correct factorisation and no errors and " $\frac{dh}{dt}$ = "must be seen at some point.	A1*
		(5)
(b)	$\frac{30(20-h)}{h(30-h)} \equiv \frac{A}{h} + \frac{B}{30-h}$ Correct form for the partial fractions	B1
	$30(20-h) \equiv A(30-h) + Bh$ $h = 30 \Rightarrow 30B = -300 \Rightarrow B = -10$ and $h = 0 \Rightarrow 30A = 600 \Rightarrow A = 20$ Attempts to get both constants by a correct method e.g. substituting, comparing coefficients, cover up rule	M1
	$\frac{30(20-h)}{h(30-h)} \equiv \frac{20}{h} - \frac{10}{30-h}$ Correct partial fractions (or states "A" = 20, "B" = -10)	A1
		(3)

(c)	Wa			
	$\frac{dh}{dt} = -\frac{h(30-h)}{30(20-h)} \Rightarrow \int \frac{30(20-h)}{h(30-h)} dh = -1 \int dt$ A correct statement which may be implied by subsequent work. Condone the omission of "dh" and "dt" provided the intention is clear but the minus sign must be present on one side or the other.			B1
	$20\ln h + 10\ln(30 - h)$	to obtain A1: Corr partial fra	grates their partial fractions $\pm P \ln h \pm Q \ln(30 - h)$ rect integration for their actions of the form $\frac{1}{-h}$ following through their "B".	M1A1ft
	$t = 0, h = 10 \Longrightarrow c = 20 \ln 10 + 10 \ln 20$	value for	es $h = 10$ and $t = 0$ to find a c. NB $c = 76.0$	M1
	$h = 5 \Rightarrow t = 20 \ln 10 + 10 \ln 20 - 10 \ln 25 - 20 \ln 5$ Substitutes $h = 5$ and uses their value of c to find a value for t.			ddM1
	t = 11.63 (secs)	Awrt 11.	63 only	A1cso
				(6)
	(c) W	av 2		(14 marks)
	(c) Way 2 $\frac{dh}{dt} = -\frac{h(30-h)}{30(20-h)} \Rightarrow \int \frac{30(20-h)}{h(30-h)} dh = -1 \int dt$ A correct statement which may be implied by subsequent work. Condone the omission of "dh" and "dt" provided the intention is clear but the minus			B1
	$20\ln h + 10\ln(30 - h)$	$\frac{A}{h} + \frac{B}{30-h}$ following through their "A" and "B". +10ln(30-h)]_5^{10} Attempts the limits 5 and 10 for h. Either statement as shown is		M1A1ft
	$(t =)[20 \ln h + 10 \ln(30 - h)]_{5}^{10}$ or $(t =)[20 \ln h + 10 \ln(30 - h)]_{10}^{5}$			M1
	$(t =)[20\ln 10 + 10\ln 20] - [20\ln 5 + 10\ln 25]$ Substitutes $h = 5$ and $h = 10$ to find a value for t .		ddM1	
	t = 11.63 Awrt 11.63 only			A1cso
				(6)