	j - · · · j - · · · ·	
This resource was	s created and owned by Pearson	Edexcel

Surname		Other names	
Pearson Edexcel International Idvanced Level	Centre Number		Candidate Number
Core Matr Advanced	iema	ucs	C 34
Core Math Advanced Monday 16 June 2014 – Mo Time: 2 hours 30 minutes	orning	F	C34 Paper Reference NMA02/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 125.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P44969A ©2014 Pearson Education Ltd.

5/5/5/1/

Turn over 🕨

mme t Pape	er 2014 www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematics
		L
1.	$\mathbf{f}(x) = 2x^3 + x - 10$	
	(a) Show that the equation $f(x) = 0$ has a root α in the interval [1.5, 2]	(2)
	The only real root of $f(x) = 0$ is α	
	The iterative formula	
	$x_{n+1} = \left(5 - \frac{1}{2}x_n\right)^{\frac{1}{3}}, x_0 = 1.5$	
	can be used to find an approximate value for α	
	(b) Calculate x_1, x_2 and x_3 , giving your answers to 4 decimal places.	(3)
	(c) By choosing a suitable interval, show that $\alpha = 1.6126$ correct to 4 decin	mal places. (2)

Quest Num		Marks
1. (M1
,	Sign change (and $f(x)$ is continuous) therefore there is a root α {lies in the interval [1.5, 2]}	A1 [2
(b)	$x_1 = \left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$	M1
	$x_1 = 1.6198$, $x_1 = 1.6198$ cao	Alcao
	$x_2 = 1.612159576, x_3 = 1.612649754$ $x_2 = awrt 1.6122 and x_3 = awrt 1.6126$	A1
		[3
(c)	f(1.61255) = -0.001166022687, f(1.61265) = 0.0004942645692	_
	Sign change (and as $f(x)$ is continuous) therefore a root α lies in the interval	2 5 1 4 1
	$[1.61255, 1.61265] \Rightarrow \alpha = 1.6126 \ (4 \text{ dp})$	M1A1
		[2
	Notes	
o g A	A1: Attempts to evaluate both $f(1.5)$ and $f(2)$ and finds at least one of $f(1.5) = awrt -1.8$ or trunca r $f(2) = 8$ Must be using this interval or a sub interval e.g.[1.55, 1.95] not interval which goes iven interval such as [1.6, 2.1] 1: both $f(1.5) = awrt -1.8$ or truncated -1.7 and $f(2) = 8$, states sign change { or $f(1.5) < 0 < r$ r $f(1.5) f(2) < 0$ } or $f(1.5) < 0$ and $f(2) > 0$; and conclusion e.g. therefore a root α [lies in the interval	outside th
(b)	r $f(2) = 8$ Must be using this interval or a sub interval e.g.[1.55, 1.95] not interval which goes iven interval such as [1.6, 2.1] 1: both $f(1.5) = awrt - 1.8$ or truncated -1.7 and $f(2) = 8$, states sign change { or $f(1.5) < 0 < 1.5$	outside th
(b)]	r $f(2) = 8$ Must be using this interval or a sub interval e.g.[1.55, 1.95] not interval which goes iven interval such as [1.6, 2.1] 1: both $f(1.5) = awrt - 1.8$ or truncated -1.7 and $f(2) = 8$, states sign change { or $f(1.5) < 0 < r$ r $f(1.5) f(2) < 0$ } or $f(1.5) < 0$ and $f(2) > 0$; and conclusion e.g. therefore a root α [lies in the interval so result shown" or qed or "tick" etc M1: An attempt to substitute $x_0 = 1.5$ into the iterative formula e.g. see $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_1 = awrt 1.6$	outside th
0 g A c c (b) 1	r $f(2) = 8$ Must be using this interval or a sub interval e.g.[1.55, 1.95] not interval which goes iven interval such as [1.6, 2.1] 1: both $f(1.5) = awrt - 1.8$ or truncated -1.7 and $f(2) = 8$, states sign change { or $f(1.5) < 0 < r$ r $f(1.5) f(2) < 0$ } or $f(1.5) < 0$ and $f(2) > 0$; and conclusion e.g. therefore a root α [lies in the interval so result shown" or qed or "tick" etc M1: An attempt to substitute $x_0 = 1.5$ into the iterative formula	outside th f(2) [1.5, 2]]or
(b) 1 (c) 1	r $f(2) = 8$ Must be using this interval or a sub interval e.g.[1.55, 1.95] not interval which goes iven interval such as [1.6, 2.1] .1: both $f(1.5) = awrt -1.8$ or truncated -1.7 and $f(2) = 8$, states sign change { or $f(1.5) < 0 < r$ $f(1.5) f(2) < 0$ } or $f(1.5) < 0$ and $f(2) > 0$; and conclusion e.g. therefore a root α [lies in the interval so result shown" or qed or "tick" etc M1: An attempt to substitute $x_0 = 1.5$ into the iterative formula e.g. see $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_1 = awrt 1.6$ A1: $x_1 = 1.6198$ This exact answer to 4 decimal places is required for this mark A1: $x_2 = awrt 1.6122$ and $x_3 = awrt 1.6126$ (so e.g. 1.61216 and 1.6126498 would be acceptable here A1: Choose suitable interval for x, e.g. [1.61255, 1.61265] and at least one attempt to evaluate $f(x)$.	outside th f(2) [1.5, 2]]or
(b) 1 (c) 1	r $f(2) = 8$ Must be using this interval or a sub interval e.g.[1.55, 1.95] not interval which goes iven interval such as [1.6, 2.1] 1: both $f(1.5) = awrt - 1.8$ or truncated -1.7 and $f(2) = 8$, states sign change { or $f(1.5) < 0 < r$ r $f(1.5) f(2) < 0$ } or $f(1.5) < 0$ and $f(2) > 0$; and conclusion e.g. therefore a root α [lies in the interval so result shown" or qed or "tick" etc 41: An attempt to substitute $x_0 = 1.5$ into the iterative formula e.g. see $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_1 = awrt 1.6$ 41: $x_1 = 1.6198$ This exact answer to 4 decimal places is required for this mark 41: $x_2 = awrt 1.6122$ and $x_3 = awrt 1.6126$ (so e.g. 1.61216 and 1.6126498 would be acceptable here 41: Choose suitable interval for x, e.g. [1.61255, 1.61265] and at least one attempt to evaluate $f(x)$. a minority of candidate may choose a tighter range which should include 1.61262 (alpha to 5dp), g. [1.61259, 1.61263] This would be acceptable for both marks, provided the conditions for the A n	outside th f(2) [1.5, 2]]or
(b) 1 (c) 1	r $f(2) = 8$ Must be using this interval or a sub interval e.g.[1.55, 1.95] not interval which goes iven interval such as [1.6, 2.1] 1: both $f(1.5) = awrt - 1.8$ or truncated -1.7 and $f(2) = 8$, states sign change { or $f(1.5) < 0 < r$ r $f(1.5) f(2) < 0$ } or $f(1.5) < 0$ and $f(2) > 0$; and conclusion e.g. therefore a root α [lies in the interval so result shown" or qed or "tick" etc M1: An attempt to substitute $x_0 = 1.5$ into the iterative formula e.g. see $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_1 = awrt 1.6$ A1: $x_1 = 1.6198$ This exact answer to 4 decimal places is required for this mark A1: $x_2 = awrt 1.6122$ and $x_3 = awrt 1.6126$ (so e.g. 1.61216 and 1.6126498 would be acceptable here A1: Choose suitable interval for x, e.g. [1.61255, 1.61265] and at least one attempt to evaluate $f(x)$. a minority of candidate may choose a tighter range which should include 1.61262 (alpha to 5dp), g. [1.61259, 1.61263] This would be acceptable for both marks, provided the conditions for the A n re met. A1: needs (i) both evaluations correct to 1 sf, (either rounded or truncated) e.g0.001 and 0.0005 or 0 (ii) sign change stated and	outside th f(2) [1.5, 2]]or e)
(b) 1 (c) 1	r $f(2) = 8$ Must be using this interval or a sub interval e.g.[1.55, 1.95] not interval which goes iven interval such as [1.6, 2.1] 1: both $f(1.5) = awrt - 1.8$ or truncated -1.7 and $f(2) = 8$, states sign change { or $f(1.5) < 0 < r$ f(1.5) $f(2) < 0$ } or $f(1.5) < 0$ and $f(2) > 0$; and conclusion e.g. therefore a root α [lies in the interval so result shown" or qed or "tick" etc M1: An attempt to substitute $x_0 = 1.5$ into the iterative formula e.g. see $\left(5 - \frac{1}{2}(1.5)\right)^{\frac{1}{3}}$. Or can be implied by $x_1 = awrt 1.6$ A1: $x_1 = 1.6198$ This exact answer to 4 decimal places is required for this mark A1: $x_2 = awrt 1.6122$ and $x_3 = awrt 1.6126$ (so e.g. 1.61216 and 1.6126498 would be acceptable here A1: Choose suitable interval for x, e.g. [1.61255, 1.61265] and at least one attempt to evaluate $f(x)$. a minority of candidate may choose a tighter range which should include1.61262 (alpha to 5dp), e.g. [1.61259, 1.61263] This would be acceptable for both marks, provided the conditions for the A n re met. A1: needs (i) both evaluations correct to 1 sf, (either rounded or truncated) e.g0.001 and 0.0005 or 0.	outside th f(2) [1.5, 2]]or e)

WMA02

Leave blank 2. A curve *C* has the equation $x^3 - 3xy - x + y^3 - 11 = 0$ Find an equation of the tangent to C at the point (2, -1), giving your answer in the form ax + by + c = 0, where a, b and c are integers. (6) 4 P 4 4 9 6 9 A 0 4 4 8

Question Number	Scheme		Marks	
2.	$\underline{3x^{2}} - \left(\underline{3y + 3x\frac{dy}{dx}}\right) - 1 + 3y^{2}\frac{dy}{dx} = \underline{0}$		M1 <u>A1</u> <u>M1</u>	
	$\left\{\frac{dy}{dx} = \frac{3x^2 - 3y - 1}{3x - 3y^2}\right\}$	not necessarily required.		
	At $(2, -1)$, $m(\mathbf{T}) = \frac{dy}{dx} = \frac{3(2)^2 - 3(-1) - 1}{3(2) - 3(-1)^2} \left\{ = \frac{14}{3} \right\}$		M1	
	T : $y1 = \frac{14}{3}(x - 2)$		dM1	
	T : $14x - 3y - 31 = 0$ or equivalent		A1	
			[6] 6	
	Notes			
	Differentiates implicitly to include either $\pm ky^2 \frac{dy}{dx}$ or $\pm 3x \frac{dy}{dx}$. $\frac{y}{x} = \int at \text{ start and omission of } = 0 \text{ at end.})$			
	$x \rightarrow \underline{3x^2}$ and $-x + y^3 - 11 \rightarrow -1 + 3y^2 \frac{dy}{dx}$ (so the -11 should	have gone) $\mathbf{and} = 0$ needed \mathbf{h}	ere or implied	
by further	work. Ignore $\left(\frac{dy}{dx}\right)$ = at start.			
2 nd M1: A	An attempt to apply the product rule: $-3xy \rightarrow -\left(3y + 3x\frac{dy}{dx}\right)$ o	or $\pm 3y \pm 3x \frac{dy}{dx}$ o.e.		
	Correct method to collect two (not three) dy/dx terms and to evaluate the terms and the evaluation of the terms and the evaluation of the terms and the terms are ter	uate the gradient at $x = 2 y = -$	1 (This stage	
	the earlier "=0") Fhis is dependent on all previous method marks			
Uses line equation with their $\frac{14}{3}$. May use $y = \frac{14}{3}x + c$ and attempt to evaluate c by substituting $x = 2$ and $y = -1$.				
	applied by correct answer)			
2nd A1: Any positive or negative whole number multiple of $14x - 3y - 31 = 0$ is acceptable. Must have = 0.				
	one attempts the question using $\frac{dx}{dy}$ instead of $\frac{dy}{dx}$, please send to			

Mathematics C34

WMA02

This resource was created and owned by Pearson Edexcel Past Paper Leave blank **3.** Given that $y = \frac{\cos 2\theta}{1 + \sin 2\theta}, \qquad \qquad -\frac{\pi}{4} < \theta < \frac{3\pi}{4}$ show that $\frac{\mathrm{d}y}{\mathrm{d}\theta} = \frac{a}{1+\sin 2\theta}, \qquad -\frac{\pi}{4} < \theta < \frac{3\pi}{4}$ where *a* is a constant to be determined. (4) 6 P 4 4 9 6 9 A 0 6 4 8

Question	Scheme		Marks		
Number		Or apply product rule to			
	Apply quotient rule :	$y = \cos 2\theta (1 + \sin 2\theta)^{-1}$			
3.	$\left\{ \begin{array}{ll} u = \cos 2\theta & v = 1 + \sin 2\theta \end{array} \right\}$				
5.	$\begin{cases} u = \cos 2\theta & v = 1 + \sin 2\theta \\ \frac{du}{d\theta} = -2\sin 2\theta & \frac{dv}{d\theta} = 2\cos 2\theta \end{cases}$	$\begin{cases} u = \cos 2\theta & v = (1 + \sin 2\theta)^{-1} \\ \frac{du}{d\theta} = -2\sin 2\theta & \frac{dv}{d\theta} = -2\cos 2\theta (1 + \sin 2\theta)^{-2} \end{cases}$			
	$\begin{bmatrix} d\theta & d\theta \end{bmatrix}$				
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = \frac{-2\sin 2\theta (1+\sin 2\theta) - 2\cos^2 2\theta}{(1+\sin 2\theta)^2}$	$-2(1+\sin 2\theta)^{-1}\sin 2\theta-2\cos^2 2\theta(1+\sin 2\theta)^{-2}$	M1 A1		
		$= (1 + \sin 2\theta)^{-2} \{-2\sin 2\theta - 2\sin^2 2\theta - 2\cos^2 2\theta\}$			
	$= \frac{-2\sin 2\theta - 2\sin^2 2\theta - 2\cos^2 2\theta}{(1 + \sin 2\theta)^2}$	$= (1 + \sin 2\theta) \left\{ -2\sin 2\theta - 2\sin 2\theta - 2\cos 2\theta \right\}$			
	$-2\sin 2\theta - 2$				
	$= \frac{-2\sin 2\theta - 2}{\left(1 + \sin 2\theta\right)^2}$	$= (1 + \sin 2\theta)^{-2} \{-2\sin 2\theta - 2\}$	M1		
	$= \frac{-2(1+\sin 2\theta)}{(1+\sin 2\theta)^2}$		A 1		
	$-\frac{1}{(1+\sin 2\theta)^2}$	$\frac{1}{1+\sin 2\theta}$	A1 cso		
			[4] 4		
	Notes				
M1: Appl	ies the Quotient rule, a form of which appea	rs in the formula book, to $\frac{\cos 2\theta}{1+\sin 2\theta}$			
	ula is quoted it must be correct. There must h is not quoted nor implied by their working, m	ave been some attempt to differentiate both term	s.		
		-			
		eir $\frac{vu'-uv'}{v^2}$, then only accept answers of the fo	orm		
$(1+\sin 2\theta)$	$A\sin 2\theta - \cos 2\theta \times (B\cos 2\theta)$ where A and	<i>B</i> are constant (could be 1) Condone "invisible"	,,		
	$(1+\sin 2\theta)^2$				
	r the M mark. If double angle formulae are us	-			
	ely applies the product rule with $u = \cos 2u$				
	ula is quoted it must be correct. There must h is not quoted nor implied by their working, m	ave been some attempt to differentiate both term	s.		
	$\partial_{v} v = (1 + \sin 2\theta)^{-1}, u' =, v' = followed by$	-			
	accept answers of the form $(1 + \sin 2\theta)^{-1} \times As$				
		formulae are used give marks for correct work.			
A1: Any f	ully correct (unsimplified) form of $\frac{dy}{d\theta}$ If do	uble angle formulae are used give marks for corr	ect work.		
Accept ver	sions of $\frac{dy}{d\theta} = \frac{-2\sin 2\theta (1 + \sin 2\theta) - 2\cos^2}{(1 + \sin 2\theta)^2}$	$\frac{2\theta}{2\theta}$ for use of the quotient rule or versions of			
$\frac{\mathrm{d}y}{\mathrm{d}\theta} = (1$	$+\sin 2\theta$) ⁻¹ ×-2sin 2 θ +cos 2 θ ×(-1)×(1+sin	$(12\theta)^{-2} \times 2\cos 2\theta$ for use of the product rule.			
M1: Appl	ies $\sin^2 2\theta + \cos^2 2\theta \equiv 1$ or $-2\sin^2 2\theta - 2c$	$\cos^2 2\theta \rightarrow -2$ correctly to eliminate squared the	rig.		
		the form $k \sin 2\theta + \lambda$ where k and λ are constant			
	(including 1) If double angle formulae have been used give marks only if correct work leads to answer in correct form. (If in doubt, send to review)				
	A1: Need to see factorisation of numerator then answer, which is cso				
so $\frac{1}{1}$	$\frac{-2}{+\sin 2\theta}$ or $\frac{a}{1+\sin 2\theta}$ and $a = -2$, with the	no previous errors			

Mathematics C34

Past Paper WMA02 Leave blank 4. Find (a) $\int (2x+3)^{12} dx$ (2) (b) $\int \frac{5x}{4x^2 + 1} \, \mathrm{d}x$ (2) 8 P 4 4 9 6 9 A 0 8 4 8

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Ouestion Scheme Marks Number $\pm\lambda(2x+3)^{13}$ M1 $\left\{ \int (2x+3)^{12} \, dx \right\} = \frac{(2x+3)^{13}}{(13)(2)} \left\{ + c \right\}$ $\left\{ \int \frac{5x}{4x^2+1} \, dt \right\} = \frac{5}{8} \ln(4x^2+1) \left\{ + c \right\} \text{ or } \frac{5}{8} \ln(x^2+\frac{1}{4}) \left\{ +k \right\}$ $\frac{(2x+3)^{13}}{(13)(2)} \{+c\} \quad (\text{Ignore '}+c')$ **4.** (a) A1 [2] M1 (b) A1 [2] 4 Notes (a) M1: Gives $\pm \lambda (2x+3)^{13}$ where λ is a constant or $\pm \mu (x+\frac{3}{2})^{13}$ A1: Coefficient does not need to be simplified so is awarded for $\frac{(2x+3)^{13}}{(13)(2)}$ or for $\frac{2^{12}}{13}(x+\frac{3}{2})^{13}$ i.e. $\frac{4096}{13}(x+\frac{3}{2})^{13}$ Ignore subsequent errors and condone lack of constant c N.B. If a binomial expansion is attempted, then it needs all thirteen terms to be correctly integrated for M1A1 (b) M1: Gives $\pm \mu \ln(4x^2 + 1)$ where μ is a constant or $\pm \mu \ln(x^2 + \frac{1}{4})$ or indeed $\pm \mu \ln(k(4x^2 + 1))$ May also be awarded for $\frac{5}{8}\ln(4x+1)$ or $\frac{5}{8}\ln(x^2+1)$, where coefficient 5/8 is correct and there is a slip writing down the bracket. It may also be given for $\pm \mu \ln(u)$ where u is clearly defined as $(4x^2 + 1)$ or equivalent substitutions such as $\pm \mu \ln(4u+1)$ where $u = x^2$ A1: $\frac{5}{8}\ln(4x^2+1)$ or $\frac{5}{8}\ln(x^2+\frac{1}{4})$ o.e. The modulus sign is not needed but allow $\frac{5}{8}\ln|4x^2+1|$ Also allow $0.625 \ln(4x^2 + 1)$ and condone lack of constant *c* N.B. $\frac{5}{8} \ln 4x^2 + 1$ with no bracket can be awarded M1A0

WMA02

This resource was created and owned by Pearson Edexcel Past Paper Leave blank $f(x) = (8 + 27x^3)^{\frac{1}{3}}, \quad |x| < \frac{2}{3}$ 5. Find the first three non-zero terms of the binomial expansion of f(x) in ascending powers of *x*. Give each coefficient as a simplified fraction. (5) 10

Question					
Number	Scheme	Marks			
5.	$\left(8+27x^{3}\right)^{\frac{1}{3}} = \underline{\left(8\right)^{\frac{1}{3}}} \left(1+\frac{27x^{3}}{8}\right)^{\frac{1}{3}} = \underline{2} \left(1+\frac{27x^{3}}{8}\right)^{\frac{1}{3}} \qquad \underline{\left(8\right)^{\frac{1}{3}}} \text{ or } \underline{2}$	<u>B1</u>			
	$= \{2\} \left[1 + \left(\frac{1}{3}\right) \left(kx^{3}\right) + \frac{\left(\frac{1}{3}\right) \left(-\frac{2}{3}\right)}{2!} \left(kx^{3}\right)^{2} + \dots \right]$	M1 A1			
	$= \left\{2\right\} \left[1 + \left(\frac{1}{3}\right)\left(\frac{27x^{3}}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{27x^{3}}{8}\right)^{2} + \dots\right]$				
	$= 2\left[1 + \frac{9}{8}x^{3}; -\frac{81}{64}x^{6} + \dots\right]$				
	$= 2 + \frac{9}{4}x^3; -\frac{81}{32}x^6 + \dots$	A1; A1 [5]			
Method 2	$\left\{ \left(8 + 27x^3\right)^{\frac{1}{3}} \right\} = (8)^{\frac{1}{3}} + \left(\frac{1}{3}\right)(8)^{-\frac{2}{3}}(27x^3) + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(8)^{-\frac{5}{3}}(27x^3)^2$				
	$(8)^{\frac{1}{3}}$ or 2	B1			
	Any two of three (un-simplified or simplified) terms correct All three (un-simplified or simplified) terms correct.	M1 A1			
	$= 2 + \frac{9}{4}x^3; -\frac{81}{32}x^6 + \dots$	A1; A1 [5]			
	Notes	5			
Method 1:					
<u>B1</u> : $(8)^{\frac{1}{3}}$ or	r <u>2</u> outside brackets then isw or $(8)^{\frac{1}{3}}$ or <u>2</u> as candidate's constant term in their binomial expansion	on.			
	nds $(+kx^3)^{\frac{1}{3}}$ to give any 2 terms out of 3 terms correct for their k simplified or un-simplified				
	$1 + \left(\frac{1}{3}\right)\left(kx^{3}\right) \text{ or } \left(\frac{1}{3}\right)\left(kx^{3}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(kx^{3}\right)^{2} \text{ or } 1 + \dots + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(kx^{3}\right)^{2} \text{ [Allow } \left(\frac{1}{3}-1\right) \text{ for } k \neq 1 \text{ are acceptable for M1. Allow omission of brackets. } [k will usually be 27, 27/8 or 27/2]$	$\left(-\frac{2}{3}\right)$]			
	-				
	ect simplified or un-simplified $1 + \left(\frac{1}{3}\right)\left(kx^3\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(kx^3\right)^2$ expansion with consistent $\left(kx^3\right)$ {or				
	e only}. Note that $k \neq 1$. The bracketing must be correct and now need all three terms correct for	r their k.			
•	A1: $2 + \frac{9}{4}x^3$ - allow $2 + 2.25x^3$ or $2 + 2\frac{1}{4}x^3$				
A1: $-\frac{81}{32}$ <u>Method 2:</u>	A1: $-\frac{81}{32}x^6$ allow $-2.53125x^6$ or $-2\frac{17}{32}x^6$ (Ignore extra terms of higher power) Method 2:				
B1: $(8)^{\frac{1}{3}}$ or	- 2				
M1: Any t A1: All th recover	 M1: (8)³ or 2 M1: Any two of three (un-simplified or simplified) terms correct – condone missing brackets A1: All three (un-simplified or simplified) terms correct. The bracketing must be correct but it is acceptable for them recover this mark following "invisible" brackets. A1A1: as above. 				
	Special case (either method) uses x instead of x^3 throughout to obtain = $2 + \frac{9}{4}x$; $-\frac{81}{32}x^2 +$ gets B1M1A1A0A0				

ummer ast Paper		4 www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematics	С ; мА
			L	Lea
6	(a)	Express $5-4x$ in partial fractions		Jiai
0.	(a)	Express $\frac{5-4x}{(2x-1)(x+1)}$ in partial fractions.	(3)	
			(3)	
	(b)	(i) Find a general solution of the differential equation		
		$(2x-1)(x+1)\frac{dy}{dx} = (5-4x)y, x > \frac{1}{2}$		
		Given that $y = 4$ when $x = 2$,		
		(ii) find the particular solution of this differential equation.		
		Give your answer in the form $y = f(x)$.	(7)	
12				

P 4 4 9 6 9 A 0 1 2 4 8

Question Number	Scheme	Marks
6. (a)	$\frac{5-4x}{(2x-1)(x+1)} \equiv \frac{A}{(2x-1)} + \frac{B}{(x+1)}$ so $5-4x \equiv A(x+1) + B(2x-1)$	B1
	Let $x = -1$, $9 = B(-3) \implies B =$ Let $x = \frac{1}{2}$, $3 = A\left(\frac{3}{2}\right) \implies A =$	M1
	$A = 2 \text{ and } B = -3 \text{ or } \left\{ \frac{5 - 4x}{(2x - 1)(x + 1)} \equiv \frac{2}{(2x - 1)} - \frac{3}{(x + 1)} \right\}$	A1
		[3]
(b) (i), (ii)	$\int \frac{1}{y} \mathrm{d}y = \int \frac{5 - 4x}{(2x - 1)(x + 1)} \mathrm{d}x$	B1
	$= \int \frac{2}{(2x-1)} - \frac{3}{(x+1)} dx = C \ln(2x-1) + D \ln(x+1)$	M1
	$=\frac{2}{2}\ln(2x-1) - 3\ln(x+1)$	Alft
	$\ln y = \ln(2x-1) - 3\ln(x+1) + c$	A 1
Method 1 for (ii)	$\ln 4 = \ln(2(2) - 1) - 3\ln(2 + 1) + c \implies c = \{\ln 36\}$	A1 M1
	$\ln y = \ln(2x-1) - 3\ln(x+1) + \ln 36 \text{so} \ln y = \ln\left(\frac{36(2x-1)}{(x+1)^3}\right) \text{So} y = \frac{36(2x-1)}{(x+1)^3}$	M1 A1 [7]
Method 2 for (ii)	Solution as Method 1 up to $\ln y = \ln(2x-1) - 3\ln(x+1) + c$ so first four marks as before	B1M1A1A1
	Writes $y = \frac{A(2x-1)}{(x+1)^3}$ as general solution which would earn the 3 rd M1 mark.	M1
	Then may substitute to find their constant A, which would earn the 2^{nd} M1 mark.	M1
	Then A1 for $y = \frac{36(2x-1)}{(x+1)^3}$ as before.	A1
		[7] 10

Notes (a) **B1:** Forming the linear identity (this may be implied). **Note**: A & B are not assigned in this question – so other letters may be used **M1**: A valid method to find the value of one of either their A or their B. A1: A = 2 and B = -3 (This is sufficient without rewriting answer provided it is clear what A and B are) Note: In part (a), $\left\{\frac{5-4x}{(2x-1)(x+1)} = \right\} \frac{2}{(2x-1)} - \frac{3}{(x+1)}$, from no working, is B1M1A1 (cover-up rule). (b) You can mark parts (b)(i) and (b)(ii) together. (i) **B1**: Separates variables as shown. (Can be implied.) Need **both sides** correct, but condone missing integral signs. M1: Uses partial fractions on RHS and obtains two log terms after integration. The coefficients may be wrong e.g. $2 \ln (2x - 1)$ or may follow their wrong partial fractions. Ignore LHS for this mark. A1ft: RHS correct integration for their partial fractions – do not need LHS nor +c for this mark A1: All three terms correct (LHS and RHS) including +c. (ii) M1: Substitutes y = 4 and x = 2 into their general solution with a constant of integration to obtain c = 0. M1: A fully correct method of removing the logs – must have a constant of integration which must be treated Correctly. Must have had $\ln y = \dots$ earlier A1: $y = \frac{36(2x-1)}{(x+1)^3}$ isw. NB If Method 2 is used the third method mark is earned at the end of part (i), then the second method mark is earned when the values are substituted. **Special case1**: A common error using method 2: $y = \frac{(2x-1)}{(x+1)^3} + A$, then $4 = \frac{(3)}{(3)^3} + A$ so A = would earn M1 (substitution); M0 (not fully correct removing logs); A0 **Special case**2: A possible error using method 1 or 2: y = (2x-1) - 3(x+1) + A, then 4 = 3 - 9 + A so A = would earn M0 (too bad an error); M0 (not fully correct removing logs); A0 i.e. M0M0A0 If there is no constant of integration they are likely to lose the last four marks.

Mathematics C34

(3)

WMA02 Leave

blank

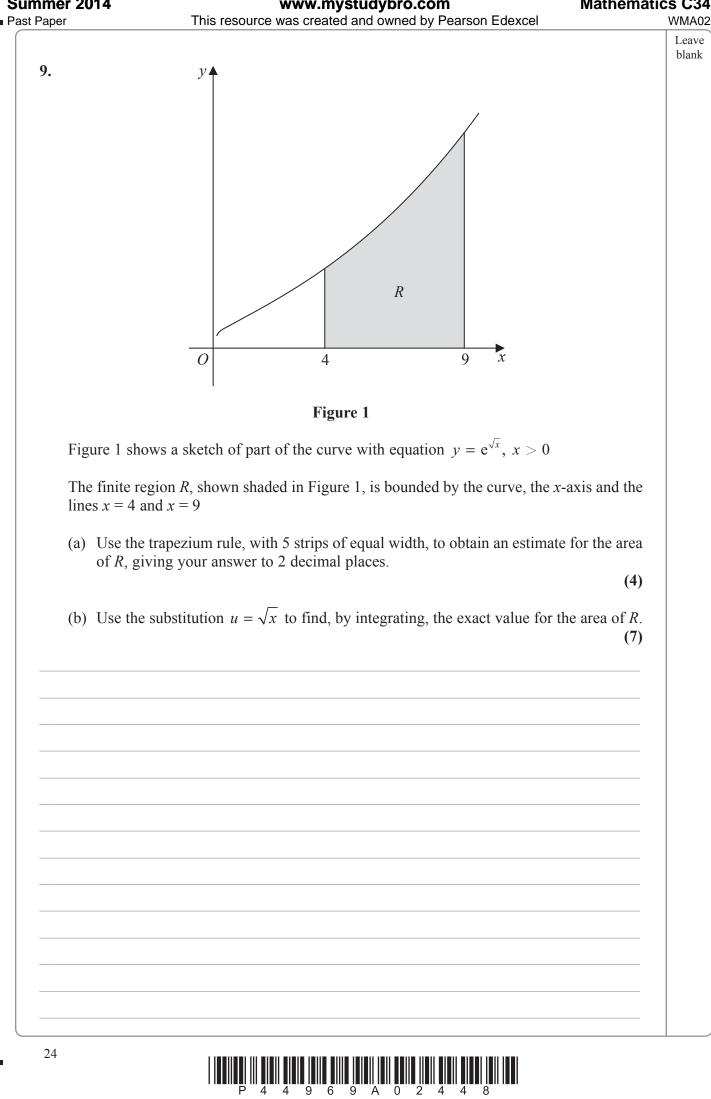
The function f is defined by 7.

 $f:x\mapsto \frac{3x-5}{x+1}, x\in\mathbb{R}, x\neq -1$

- (a) Find an expression for $f^{-1}(x)$
- (b) Show that

 $\mathfrak{L}(x) = \frac{x+a}{x+a}$ $x \in \mathbb{D}$ $x \neq -1$ $x \neq 1$

$\Pi(x) = \frac{1}{x-1}, x \in \mathbb{R}, x \neq -1, x \neq 1$	
where <i>a</i> is an integer to be determined.	(4)
The function g is defined by	
$g:x\mapsto x^2-3x,\ x\in\mathbb{R},\ 0\leqslant x\leqslant 5$	
(c) Find the value of fg(2)	(2)
(d) Find the range of g	(3)


Question	Schem	e	Marks
Number			
7. (a)	$y = \frac{3x-5}{x+1}$ Method 1	$y = 3 - \frac{8}{x+1}$ Method 2	
	$y(x+1) = 3x - 5 \Rightarrow xy + y = 3x - 5$	$\frac{8}{x+1} = 3 - y$ so $x+1 = \frac{8}{3-y}$	M1
	$y + 5 = 3x - xy \implies y + 5 = x(3 - y)$ $\implies \frac{y + 5}{3 - y} = x$	$x = \frac{8}{3 - y} - 1$	M1
	Hence $(f^{-1}(x)) = \frac{x+5}{3-x}$ $(x \in \Box, x \neq 3)$	Hence $(f^{-1}(x)) = \frac{8}{3-x} - 1$ $(x \in \Box, x \neq 3)$	A1 oe
(b)	$ff(x) = \frac{3\left(\frac{3x-5}{x+1}\right) - 5}{\left(\frac{3x-5}{x+1}\right) + 1}$	$ff(x) = 3 - \frac{8}{3 - \frac{8}{x+1} + 1}$	[3] M1 A1
	$=\frac{\frac{3(3x-5)-5(x+1)}{x+1}}{\frac{(3x-5)+(x+1)}{x+1}}$	$ff(x) = 3 - \frac{8(x+1)}{4x-4}$	M1
	$= \frac{9x - 15 - 5x - 5}{3x - 5 + x + 1} = \frac{4x - 20}{4x - 4}$ $= \frac{x - 5}{x - 1} \text{(note that } a = -5.)$	$=\frac{x-5}{x-1}$	A1
(c)	$fg(2) = f(4-6) = f(-2) = \frac{3(-2) - "5"}{-2+1}$; = 11 or su	bstitute 2 into $fg(x) = \frac{3(x^2 - 3x) - 5}{x^2 - 3x + 1}$;= 11	[4] M1; A1
(d)	$g(x) = x^2 - 3x = (x - 1.5)^2 - 2.25$. Hence $g_{min} = -2$. Either $g_{min} = -2.25$ or $g(x) \ge -2.25$ or $g(5)$	2.25 () = 25 - 15 = 10	[2] M1 B1
	$-2.25 \le g(x) \le 10 \text{ or } -2.25 \le y \le 10$,	A1
			[3]
			[5] 12

Notes Method 2 is less likely and the notes apply to Method 1. (a) M1: Brings (x + 1) to the LHS and multiplies out by y or if x and y swapped first (y + 1) to the LHS and multiplies out by x M1: A full method to make x (or swapped y) the subject by collecting terms and factorising. A1: $\frac{x+5}{3-x}$ or equivalent e.g. $-\frac{x+5}{x-3}$ or $\frac{-x-5}{x-3}$ or $-1+\frac{8}{3-x}$ etc Ignore LHS. **Does not need to include domain** i.e does not need statement that $x \in \Box$, $x \neq 3$ Should now be in x, not y, for this mark. N.B. Use of quotient rule to differentiate and to find f' is M0M0A0. This is NOT a misread. (b) M1: An attempt to substitute f into itself. e.g. $ff(x) = \frac{3f(x) - 5}{f(x) + 1}$. Squaring f(x) is M0. Allow $ff(x) = \frac{3f(x) - 5}{x + 1}$ or $ff(x) = \frac{3x - 5}{f(x) + 1}$ for M1A0 A1: Correct expression. This mark implies the previous method mark. M1: An attempt to combine each of the numerator and the denominator into single rational fraction with same common denominator A1: See $\frac{x-5}{x-1}$ Does not need to include domain or statement that $x \in \Box$, $x \neq -1$, $x \neq 1$ NB If they use a mixture of methods 1 and 2 then mark accordingly – attempt M1, correct A1, combined into single rational function M1 then answer is A1 rational relation so may see $= \frac{3\left(3 - \frac{8}{x+1}\right) - 5}{\left(3 - \frac{8}{x+1}\right) + 1}$ or $3 - \frac{8}{\left(\frac{3x-5}{x+1}\right) + 1}$ (c) M1: *Full method* of inserting g(2) (i.e. -2) into f(x). Or substitutes 2 into fg(x) = $\frac{3(x^2 - 3x) - 5}{x^2 - 3x + 1}$ A1: cao (d) M1: Full method to establish the minimum of g. (Or correct answer with no method) e.g.: $(x \pm \alpha)^2 + \beta$ leading to $g_{\min} = \beta$. Or finding derivative, setting to zero, finding x (=1.5) and then finding g(1.5) in order to find the minimum. Or obtaining roots of x = 0, 3 and using symmetry to obtain $g_{min} = g(1.5) = \beta$. Or listing values leading to $g_{\min} = g(1.5) = \beta$. This mark may also be implied by -2.25. For finding either the correct minimum value of g (can be implied by $g(x) \ge -2.25$ or g(x) > -2.25) or for **B1**: stating that g(5) = 10 or finding the value 10 as a maximum $-2.25 \le g(x) \le 10$ or $-2.25 \le y \le 10$ or $-2.25 \le g \le 10$. A1: Note that: $-2.25 \le x \le 10$ (wrong variable) is A0; -2.25 < y < 10 (wrong inequality) is A0; $-2.25 \le f \le 10$ (wrong function) is A0; Accept [-2.25, 10] (correct notation) for A1 but not (-2.25, 10) (strict inequality) which is A0 A correct answer with no working gains M1 B1 A1 i.e. 3/3

8.	The volume V of a spherical balloon is increasing at a constant rate of $250 \text{ cm}^3 \text{ s}^{-1}$. Find the rate of increase of the radius of the balloon, in cm s ⁻¹ , at the instant when the volume of the balloon is $12\ 000\ \text{cm}^3$. Give your answer to 2 significant figures. [You may assume that the volume V of a sphere of radius r is given by the	Leave
	[For may assume that the volume V of a sphere of radius V is given by the formula $V = \frac{4}{3}\pi r^3$.]	
20		
20		

Question Number	Scheme	Marks			
8.	$\frac{\mathrm{d}V}{\mathrm{d}t} = 250$				
	$\left\{ V = \frac{4}{3}\pi r^3 \implies \right\} \frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$	B1			
	$V = 12000 \Rightarrow 12000 = \frac{4}{3}\pi r^3 \Rightarrow r = \sqrt[3]{\frac{9000}{\pi}} (= 14.202480)$	B1			
	$\frac{\mathrm{d}r}{\mathrm{d}t} \left\{ = \frac{\mathrm{d}r}{\mathrm{d}V} \times \frac{\mathrm{d}V}{\mathrm{d}t} \right\} = \frac{1}{4\pi r^2} \times 250$	M1			
	When $r = \sqrt[3]{\frac{9000}{\pi}}, \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{250}{4\pi \left(\sqrt[3]{\frac{9000}{\pi}}\right)^2}$	dM1			
	So, $\frac{dr}{dt} = 0.0986283(cm s^{-1})$ awrt 0.099	A1			
		[5] 5			
	Notes				
B1 :	dV				
Applie	s $12000 = \frac{4}{3}\pi r^3$ and rearranges to find <i>r</i> using division then cube root with accurate algebra				
	May state $r = \sqrt[3]{\frac{3V}{4\pi}}$ then substitute $V = 12000$ later which is equivalent. r does not need to be evaluated.				
M1:	M1: Uses chain rule correctly so $\frac{1}{\left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}r}\right)} \times 250$				
	ubstitutes their <i>r</i> correctly into their equation for $\frac{dr}{dt}$ This depends on the previous method mark	ζ.			
A1:	awrt 0.099 (Units may be ignored) If this answer is seen, then award A1 and isw.				
	Premature approximation usually results in all marks being earned prior to this one.				

Mathematics C34

Question Number				Schem	ie			Marks
	x	4	5	6	7	8	9	
9. (a)	У	e ²	$e^{\sqrt{5}}$	$e^{\sqrt{6}}$	$e^{\sqrt{7}}$	$e^{\sqrt{8}}$	e ³	M1
		7.389056	9.356469	11.582435	14.094030	16.918828	20.085536	
			$\frac{1}{2} \times 1 \times \underbrace{\{\ldots\ldots\ldots\}}_{}$	}				B1 oe
	$\frac{1}{2} \times 1 \times$	$\left\{ e^2 + e^3 + 2\left(e^2 + e^3 + 2e^2 + e^3 + 2e^2\right)\right)\right) \right\} \right\} \right\}$	$e^{\sqrt{5}} + e^{\sqrt{6}} + e^{\sqrt{7}}$	$\left\{ + e^{\sqrt{8}} \right\} $ $\left\{ = \right\}$	$\frac{1}{2}(27.4745930)$	2 + 103.903	526)}	M1
	= 65.6	890595 = 65	5.69 (2 dp)					A1
	Special case (s.c.) Uses $h = 5/4$ with 5 ordinates giving answer $65.76 - award M0B0M1A1(s.c.)$ See note below						[4]	
(b)	$\left\{ u = \sqrt{x} \Longrightarrow \right\} \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u} = 2u$						B1	
	$\left\{\int e^{\sqrt{x}} dx\right\} = \int e^{u} 2u du$						M1 A1	
		$= \{2\} (ue$	$\int e^u du$					M1
		$= \{2\} (ue$	$(u^{u} - e^{u})$					A1
	$\left[2\left(ue^{u}\right)\right]$	$\left(-\mathrm{e}^{u}\right) \right]_{2}^{3}=2\left(-\mathrm{e}^{u}\right) \right]_{2}^{3}=2\left(-\mathrm{e}^{u}\right) \left[-\mathrm{e}^{u}\right] \left[-\mathrm{e}^{$	$3\mathrm{e}^3-\mathrm{e}^3\Big)-2\Big($	$2e^2 - e^2$				ddM1
	$4e^3 - 2$	$2e^2$ or $2e^2(2)$	(e-1) etc.					A1
								[7] 11

Notes (a) M1: Finds v for x = 4, 5, 6, 7, 8 and 9. Need six v values for this mark. May leave as on middle row of table – give mark if correct unsimplified answers given, then isw if errors appear later. If given as decimals only, without prior expressions, need to be accurate to 2 significant figures.(Allow one slip) May not appear as table, but only in trapezium rule. **B1**: Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ or h = 1 stated. This is independent of the method marks M1: For structure of $\{\dots, \dots, n\}$ ft their y values and allow for 5 or 6 y values so may follow wrong h or table which has x from 5 to 9 or from 4 to 8 NB $\{4+9+2(5+6+7+8)\}$ is M0 **A1:** 65.69 N.B. Wrong brackets e.g. $\frac{1}{2} \times 1 \times (e^2 + e^3) + 2(e^{\sqrt{5}} + e^{\sqrt{6}} + e^{\sqrt{7}} + e^{\sqrt{8}})$ is M0 unless followed by correct answer 65.69 which implies M1A1 Special case: uses five ordinates (i.e. four strips 45.256.57.759 e^2 $e^{\sqrt{5.25}}$ $e^{\sqrt{6.5}}$ $e^{\sqrt{7.75}}$ e^3 7.389056...9.887663..12.800826..16.181719..20.085536... *y* e³ $\frac{1}{2} \times \frac{5}{4} \times \{ \dots \}$ Then Giving $\frac{1}{2} \times \frac{5}{4} \times \left\{ e^2 + e^3 + 2 \left(e^{\sqrt{5.25}} + e^{\sqrt{6.5}} + e^{\sqrt{7.75}} \right) \right\} = 65.76$ This complete method for special case earns M0 B0 M1 A1 i.e. 2/4 **B1**: States or uses $\frac{du}{dx} = \frac{1}{2}x^{-\frac{1}{2}}$ or $\frac{dx}{du} = 2u$ (b) A1: Obtains $2\int u e^u du$ **M1**: Obtains $\pm \lambda \int u e^u du$ for a constant value λ M1: An attempt at integration by parts in the right direction on λue^{u} . This mark is implied by the correct answer. There is no need for limits. If the rule is quoted it must be correct. A version of the rule appears in the formula booklet. Accept for this mark expressions of the form $ue^{u} du = ue^{u} - e^{u} du$ A1: $\lambda u e^{u} \rightarrow \lambda u e^{u} - \lambda e^{u}$. (Candidates just quoting this answer earn M1A1) **ddM1**: Substitutes limits of 3 and 2 in u (or 9 and 4 in x) in **their integrand** and subtracts the correct way round. (Allow one slip) This mark depends on both previous method marks having been earned A1: Obtains $4e^3 - 2e^2$ or $2e^2(2e - 1)$ with terms collected. If then given as a decimal isw.

ummer ast Paper	20	14 www.mystudybro.com Mathema This resource was created and owned by Pearson Edexcel	atics (WN
			Le
10. ((a)	Use the identity for $sin(A + B)$ to prove that	
		$\sin 2A \equiv 2\sin A \cos A \tag{2}$	
((b)	(2) Show that	
,	(0)		
		$\frac{\mathrm{d}}{\mathrm{d}x}\left[\ln(\tan(\frac{1}{2}x))\right] = \operatorname{cosec} x \tag{4}$	
	A cı	urve C has the equation	
		$y = \ln(\tan(\frac{1}{2}x)) - 3\sin x, \qquad 0 < x < \pi$	
((c)	Find the <i>x</i> coordinates of the points on <i>C</i> where $\frac{dy}{dx} = 0$	
		Give your answers to 3 decimal places.	
		(Solutions based entirely on graphical or numerical methods are not acceptable.) (6)	
		· · · · · · · · · · · · · · · · · · ·	
28			

Question Number	Scheme	Marks			
10. (a)	$A = B \Longrightarrow \sin 2A = \frac{\sin(A+A)}{\sin(A+A)} = \frac{\sin A \cos A + \cos A \sin A}{\sin A} or \frac{\sin A \cos A + \sin A \cos A}{\sin(A+A)}$				
	Hence, $\sin 2A = 2 \sin A \cos A$ (as required) *	A1 * [2]			
(b)	Way 1A: $\begin{cases} y = \ln\left[\tan\left(\frac{1}{2}x\right)\right] \Rightarrow \end{cases} \frac{dy}{dx} = \frac{\frac{1}{2}\sec^{2}\left(\frac{1}{2}x\right)}{\tan\left(\frac{1}{2}x\right)} \qquad \text{Way 1B} \frac{dy}{dx} = \frac{\frac{1}{2}\sec^{2}\left(\frac{1}{2}x\right)}{\tan\left(\frac{1}{2}x\right)} \end{cases}$	M1 A1			
	$=\frac{1}{2\tan(\frac{1}{2}x)\cos^{2}(\frac{1}{2}x)}=\frac{1}{\frac{2\sin(\frac{1}{2}x)}{\cos(\frac{1}{2}x)}\cdot\frac{\cos^{2}(\frac{1}{2}x)}{1}}=\frac{1+\tan^{2}(\frac{1}{2}x)}{2\tan(\frac{1}{2}x)}=\frac{\cos^{2}(\frac{1}{2}x)+\sin^{2}(\frac{1}{2}x)}{2\sin(\frac{1}{2}x)\cos(\frac{1}{2}x)}$	dM1			
	$= \frac{1}{2\sin(\frac{1}{2}x)\cos(\frac{1}{2}x)} = \frac{1}{\sin x} = \csc x * \qquad = \frac{1}{2\sin(\frac{1}{2}x)\cos(\frac{1}{2}x)} = \frac{1}{\sin x} = \csc x *$	A1 * [4]			
	Way 2: $\left\{ y = \ln\left[\sin\left(\frac{1}{2}x\right)\right] - \ln\left[\cos\left(\frac{1}{2}x\right)\right] \Rightarrow \right\} \frac{dy}{dx} = \frac{\frac{1}{2}\cos\left(\frac{1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)} - \frac{-\frac{1}{2}\sin\left(\frac{1}{2}x\right)}{\cos\left(\frac{1}{2}x\right)}$	M1 A1			
	$= \frac{\cos^{2}(\frac{1}{2}x) + \sin^{2}(\frac{1}{2}x)}{2\sin(\frac{1}{2}x)\cos(\frac{1}{2}x)} := \frac{1}{\sin x} = \csc x$	M1;A1 [4]			
	Way3: quotes $\int \cos e c x dx = \ln(\tan(\frac{1}{2}x))$	M1 A1			
	(As differentiation is reverse of integration) $\frac{d}{dx} \left[\tan\left(\frac{1}{2}x\right) \right] = \operatorname{cosec} x$	M1 A1 [4]			
(c)	$\left\{y = \ln\left[\tan\left(\frac{1}{2}x\right)\right] - 3\sin x \Longrightarrow \right\} \frac{dy}{dx} = \csc x - 3\cos x$	B1			
	$\left\{\frac{dy}{dx} = 0 \Rightarrow \right\} \csc x - 3\cos x = 0 \Rightarrow \frac{1}{\sin x} - 3\cos x = 0$	M1			
	$\Rightarrow 1 = 3\sin x \cos x \Rightarrow 1 = \frac{3}{2}(2\sin x \cos x) \text{ so } \sin 2x = k \text{, where } -1 < k < 1 \text{ and } k \neq 0$	M1			
	So $\sin 2x = \frac{2}{3}$	A1			
	$\{ 2x = \{0.729727, 2.411864\} \}$ So $x = \{0.364863, 1.205932\}$	A1 A1 [6]			
Way2 10 (c)	Method (Squaring Method) $\left\{ y = \ln \left[\tan \left(\frac{1}{2} x \right) \right] - 3\sin x \Rightarrow \right\} \frac{dy}{dx} = \csc x - 3\cos x$	12 B1			
	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow \right\} \csc x - 3\cos x = 0 \Rightarrow \frac{1}{\sin x} - 3\cos x = 0$	M1			
	$\Rightarrow \frac{1}{1 - \cos^2 x} = 9\cos^2 x \text{ so } 9\cos^4 x - 9\cos^2 x + 1 = 0 \text{ or } 9\sin^4 x - 9\sin^2 x + 1 = 0$	M1			
	So $\cos^2 x = 0.873 \text{ or } 0.127$ or $\sin^2 x = 0.873 \text{ or } 0.127$	A1			
	So $x = \{0.364863, 1.205932\}$	A1 A1 [6]			

Notes

(a) M1: This mark is for the <u>underlined</u> equation in either form $\frac{\sin A \cos A + \cos A \sin A \text{ or } \sin A \cos A + \sin A \cos A}{\sin A \cos A + \sin A \cos A}$

A1: For this mark need to see : sin2A at the start of the proof, or as part of a conclusion sin(A + A) = at the start $= \frac{\sin A \cos A + \cos A \sin A}{= 2 \sin A \cos A}$ or $\frac{\sin A \cos A + \sin A \cos A}{= 2 \sin A \cos A}$ at the end

(**b**)**M1**: For expression of the form $\frac{\pm k \sec^2(\frac{1}{2}x)}{\tan(\frac{1}{2}x)}$, where k is constant (could even be 1)

A1: Correct differentiation so $\frac{dy}{dx} = \frac{\frac{1}{2}\sec^2(\frac{1}{2}x)}{\tan(\frac{1}{2}x)}$

Way 1A:

dM1: Use both $\tan\left(\frac{1}{2}x\right) = \frac{\sin\left(\frac{1}{2}x\right)}{\cos\left(\frac{1}{2}x\right)}$ and $\sec^2\left(\frac{1}{2}x\right) = \frac{1}{\cos^2\left(\frac{1}{2}x\right)}$ in their differentiated expression. This may be implied.

This depends on the previous Method mark.

A1*: Simplify the fraction, use double angle formula, see $\frac{1}{\sin x}$ and obtain correct answer with completely correct work and no errors seen (NB Answer is given) Way 1B

dM1: Use both $\sec^2\left(\frac{1}{2}x\right) = 1 + \tan^2\left(\frac{1}{2}x\right)$ and $\tan\left(\frac{1}{2}x\right) = \frac{\sin\left(\frac{1}{2}x\right)}{\cos\left(\frac{1}{2}x\right)}$

A1*: Simplify the fraction, use double angle formula, see $\frac{1}{\sin x}$ and obtain correct answer with completely correct work and no errors seen (NB Answer is given) Way 2:

M1:Split into
$$\left\{ y = \ln\left[\sin\left(\frac{1}{2}x\right)\right] - \ln\left[\cos\left(\frac{1}{2}x\right)\right] \Rightarrow \right\}$$
 then differentiate to give $\frac{dy}{dx} = \frac{k\cos\left(\frac{1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)} - \frac{c\sin\left(\frac{1}{2}x\right)}{\cos\left(\frac{1}{2}x\right)}$
A1: Correct answer $\frac{dy}{dx} = \frac{\frac{1}{2}\cos\left(\frac{1}{2}x\right)}{\sin\left(\frac{1}{2}x\right)} - \frac{-\frac{1}{2}\sin\left(\frac{1}{2}x\right)}{\cos\left(\frac{1}{2}x\right)}$
M1: Obtain $= \frac{\cos^{2}\left(\frac{1}{2}x\right) + \sin^{2}\left(\frac{1}{2}x\right)}{2\sin\left(\frac{1}{2}x\right)\cos\left(\frac{1}{2}x\right)}$ A1*: As before

Way 3:

Alternative method: This is rare, but is acceptable. Must be completely correct.

Quotes $\int \csc x dx = \ln(\tan(\frac{1}{2}x))$ and follows this by $\frac{d}{dx} \left[\tan(\frac{1}{2}x) \right] = \csc x$ gets 4/4

(c) **B1**: Correct differentiation – so see
$$\frac{dy}{dx} = \csc x - 3\cos x$$

M1: Sets their
$$\frac{dy}{dx} = 0$$
 and uses $\csc x = \frac{1}{\sin x}$

Way 1:

M1: Rearranges and uses double angle formula to obtain $\sin 2x = k$, where -1 < k < 1 and $k \neq 0$

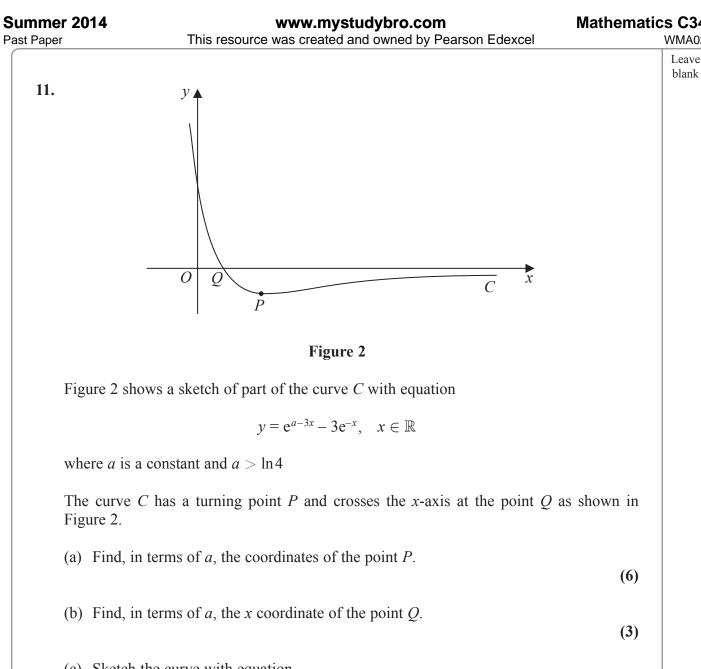
(This may be implied by $a + b \sin 2x = 0$ followed by correct answer)

A1: $\sin 2x = \frac{2}{3}$ (This may be implied by correct answer)

A1: Either awrt 0.365 or awrt 1.206 (answers in degrees lose both final marks)

A1: Both awrt 0.365 and awrt 1.206

Ignore y values. Ignore extra answers outside range. Lose the last A mark for extra answers in the range.


Way 2:

M1: Obtain quadratic in sinx or in $\cos x$. Condone $\cos ec^2 x - 9\cos^2 x = 0$ as part of the working A1 A1 A1: See scheme

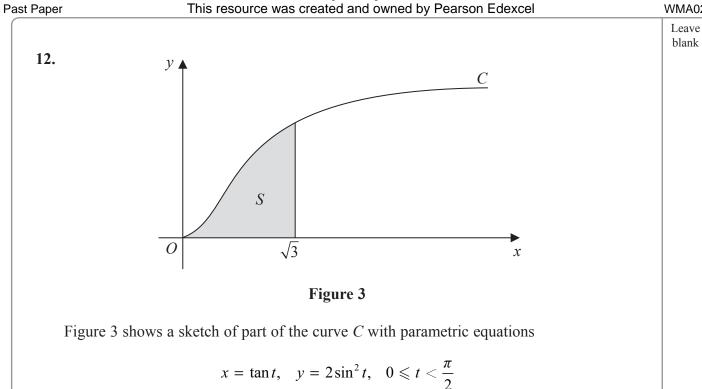
Way 3:

This method is unlikely and uses $t = tan(\frac{x}{2})$. See scheme for detail

(c) Sketch the curve with equation

 $y = |e^{a-3x} - 3e^{-x}|, x \in \mathbb{R}, a > \ln 4$

Show on your sketch the exact coordinates, in terms of a, of the points at which the curve meets or cuts the coordinate axes.


(3)

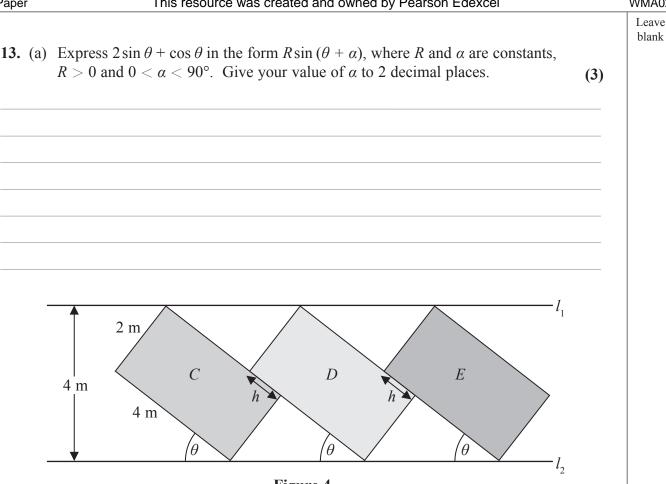
Question	Scheme			Mar	ks
Number					
11. (a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3\mathrm{e}^{a-3x} + 3\mathrm{e}^{-x}$			M1 A1	l
	$-3e^{a-3x} + 3e^{-x} = 0 \implies e^{-x} =$	$e^{a-3x} \Rightarrow -x = a - 3x \Rightarrow x$	=	M1	
	$x = \frac{1}{2}a$			A1	
	So, $y_p = e^{a - 3(\frac{a}{2})} - 3e^{-(\frac{a}{2})}$; = -	$2e^{-\frac{a}{2}}$		ddM1;	A1
					[6]
	M	ark parts (b) and (c) together			
	Method 1	Method 2	Method 3		
(b)	$0 = e^{a - 3x} - 3e^{-x} \implies e^{a - 2x} = 3$	$0 = e^{a - 3x} - 3e^{-x} \implies e^{2^{n}x} = \frac{e^{a}}{2^{n}x}$	$0 = e^{a^{-3x}} - 3e^{-x} \Longrightarrow 3e^{2^{a^{-x}}} = e^{a}$	M1	
	Method 1 $0 = e^{a^{-3x}} - 3e^{-x} \Rightarrow e^{a^{-2x}} = 3$ $\Rightarrow a^{-2x} = \ln 3$	$"2"x = a - \ln 3$	$\ln 3 + "2"x = a$	dM1	
	$\Rightarrow x = \frac{a - \ln 3}{2}$ or equiva	lent e.g. $\frac{1}{2}\ln\left(\frac{e^a}{3}\right)$ or $-\ln\sqrt{a}$	$\left(\frac{3}{e^a}\right)$ etc	A1	
	Method 4 $0 = e^{a - 3x} - 3e^{-x} \implies e^{a - 3x} = 3e^{-x}$ $"2"x = a - \ln 3$ $\implies x = \frac{a - \ln 3}{2} \text{ o.e. } e^{-x}$	^x and so $a - 3x = \ln 3 - x$.g. $\frac{1}{2} \ln \left(\frac{e^a}{3}\right)$ or $-\ln \sqrt{\left(\frac{3}{e^a}\right)}$ e	tc	M1 dM1 A1	[3]
(c)	y $y = e^{a-3x} - (0, e^{a} - 3)$		Shape Cusp and behaviour for large x $(0, e^a - 3)$.	B1 B1 B1	
	0	x			[3] 12

Notes (a) M1: At least one term differentiated correctly A1: Correct differentiation of both terms M1: Sets $\frac{dy}{dx}$ to 0 and applies a correct method for eliminating the exponentials e^x to reach $x = \frac{dy}{dx}$ (At this stage the RHS may include $ln(e^{a})$ term but should include no x terms) A1: $x_p = \frac{1}{2}a$ after correct work **ddM1**: (Needs both previous M marks) Substitutes their x-coordinate into y (not into $\frac{dy}{dx}$) A1: $y_p = -2e^{-\frac{a}{2}}$ given as one term (b) Parts (b) and (c) may be marked together. Methods 1, 2and 3: **M1**: Put y = 0 and attempt to obtain $e^{f(x)} = k$ e.g. $e^{a \pm \lambda x} = 3$ (Method 1) or $e^{\lambda x} = \frac{e^a}{3}$ (Method 2) or $3e^{2^a x} = e^a$ (Method 3) Must have all x terms on one side of the equation for any of these methods dM1: This depends on previous M mark. Take logs correctly. e.g. $a \pm \lambda x = \ln 3$ (Method 1) or $\lambda x = a - \ln 3$ (Method 2) or $\ln 3 + 2^{\circ}x = a$ (Method 3) A1: cao $x_Q = \frac{a - \ln 3}{2}$ (must be exact) Method 4: M1: Puts $e^{a-3x} = 3e^{-x}$ then takes lns correctly (see scheme) $a-3x = \ln 3 - x$ dM1: Collects x terms on one side A1: $x_Q = \frac{a - \ln 3}{2}$ cao (must be exact to answer requirements of (c)) (c) B1: Correct overall shape, so $y \ge 0$ for all x, curve crossing positive y axis and small portion seen to left of y axis, meets x axis once, one maximum turning point **B1**: Cusp at $x = x_Q$ (not zero gradient) and no appearance of curve clearly increasing as x becomes large **B1**: Either writes full coordinates $(0, e^a - 3)$ in the text or $(0, e^a - 3)$ or $e^a - 3$ marked on the y-axis or even $(e^{a} - 3, 0)$ if marked on the y axis (must be exact) – allow $|e^{a} - 3|$ i.e. allow modulus sign, Can be earned without the graph. No requirement for $x_Q = \frac{a - \ln 3}{2}$ to be repeated for this mark. It has been credited in part (b)

The finite region S, shown shaded in Figure 3, is bounded by the curve C, the line $x = \sqrt{3}$ and the x-axis. This shaded region is rotated through 2π radians about the x-axis to form a solid of revolution.

(a) Show that the volume of the solid of revolution formed is given by

$$4\pi \int_{0}^{\frac{\pi}{3}} (\tan^2 t - \sin^2 t) dt$$


(6)

(b) Hence use integration to find the exact value for this volume.

(6)

Question	Scheme	Marks		
Number 12 (a)	change limits: $x = 0 \rightarrow t = 0$ and $x = \sqrt{3} \rightarrow t = \frac{\pi}{3}$	B1		
12 (u)	Uses $V = (\pi) \int \underline{y^2} d\underline{x}$ - in terms of the parameter t	M1		
		1011		
	$(\pi) \int y^2 dx = (\pi) \int y^2 \frac{dx}{dt} dt = (\pi) \int (2\sin^2 t)^2 \sec^2 t dt$	A1		
	$= \{\pi\} \int 4\tan^2 t \sin^2 t dt \qquad \text{or} = \{\pi\} \int 4\sin^2 t \sin^2 t \frac{1}{\cos^2 t} dt$	A1		
	$= \{\pi\} \int 4\tan^2 t (1 - \cos^2 t) dt \qquad \text{or} = \{\pi\} \int 4\sin^2 t (\sec^2 t - 1) dt$	dM1		
	$V = \pi \int_0^{\sqrt{3}} y^2 dx = 4\pi \int_0^{\frac{\pi}{3}} (\tan^2 t - \sin^2 t) dt * $ Correct proof.	A1 * [6]		
(b)	$\int (\tan^2 t - \sin^2 t) dt = \int \sec^2 t - 1 - \left(\frac{1 - \cos 2t}{2}\right) dt \qquad \text{Uses } 1 + \tan^2 t = \sec^2 t \text{ (may be implied)}$	M1		
	Uses $\cos 2t = 1 - 2\sin^2 t$ (may be implied)	M1		
	$\left\{=\int \sec^2 t - 1 - \frac{1}{2} + \frac{1}{2}\cos 2t dt\right\} = \tan t - t - \frac{1}{2}t + \frac{1}{4}\sin 2t$	M1 A1		
	$= \left(\tan\left(\frac{\pi}{3}\right) - \frac{3}{2}\left(\frac{\pi}{3}\right) + \frac{1}{4}\sin\left(\frac{2\pi}{3}\right) \right) - (0) $ Applies limit of $\frac{\pi}{3}$	ddM1		
	$= \sqrt{3} - \frac{\pi}{2} + \frac{\sqrt{3}}{8} = \frac{9\sqrt{3}}{8} - \frac{\pi}{2}$			
	$V = 4\pi \left(\frac{9\sqrt{3}}{8} - \frac{\pi}{2}\right) \text{ or } \pi \left(\frac{9\sqrt{3}}{2} - 2\pi\right) \text{ oe} $ Two term exact answer	A1 [6]		
	*See back page for methods using integration by parts	12		
(a) B1 : S	Notes ee both $x = 0 \rightarrow t = 0$ and $x = \sqrt{3} \rightarrow t = \frac{\pi}{3}$; Allow if just stated as in scheme- must be in part (a)			
	ttempt at $V = (\pi) \int \underline{y^2} d\underline{x}$ - ignore limits and π but need to replace both y^2 and dx by expressions in			
pa	arameter <i>t</i> . Methods using Cartesian approach are M0 unless parameters are reintroduced.			
A1 : ∫	$(2\sin^2 t)^2 \sec^2 t \mathrm{d}t \text{ ignoring limits and } \pi \qquad \left[= \left\{\pi\right\} \int 4\sin^4 t \sec^2 t \mathrm{d}t = \left\{\pi\right\} \int \frac{4\sin^4 t}{\cos^2 t} \mathrm{d}t = \left\{\pi\right\} \int 4\tan^4 t \cos^2 t \mathrm{d}t \right]$			
A1 : 0	btain $\int 4\tan^2 t \sin^2 t dt$ at some point or $= \{\pi\} \int 4\sin^2 t \sin^2 t \frac{1}{\cos^2 t} dt$			
d M1 : 2	Applies $\sin^2 t = 1 - \cos^2 t$ or $\tan^2 t = \sec^2 t - 1$ after reaching $\int 4\tan^2 t \sin^2 t dt$ or $\int 4\sin^2 t \sin^2 t dt \frac{1}{\cos^2 t}$	-d <i>t</i>		
A1 *: O	btains given answer with no errors seen (To obtain this mark π must have been included in $V =$	$\underline{\pi}\int \underline{y^2} dx$)		
This an	swer must include limits, but can follow B0 scored earlier. Any use of dx where dt should be us $t = t^2 t + tan^2 t = \sec^2 t$	•		
M1 : U	Uses $\cos 2t = 1 - 2\sin^2 t$			
M1 : A	at least two terms of $\pm A \tan t \pm B t \pm C \sin 2t$ A1: Correct integration of $\tan^2 t - \sin^2 t$ with all signs	correct		
ddM1 : (depends upon the first two M1 marks being awarded in part (b)) Substitutes $\frac{\pi}{3}$ into their integrand (can be				
	answer or by 4.75) A1: Two term exact answer for V			

Figure 4

Figure 4 shows the design for a logo that is to be displayed on the side of a large building. The logo consists of three rectangles, C, D and E, each of which is in contact with two horizontal parallel lines l_1 and l_2 . Rectangle D touches rectangles C and E as shown in Figure 4.

Rectangles C, D and E each have length 4 m and width 2 m. The acute angle θ between the line l_2 and the longer edge of each rectangle is shown in Figure 4.

Given that l_1 and l_2 are 4 m apart,

(b) show that

$$2\sin\theta + \cos\theta = 2$$

Given also that $0 < \theta < 45^{\circ}$,

(c) solve the equation

$$2\sin\theta + \cos\theta = 2$$

giving the value of θ to 1 decimal place.

Rectangles C and D and rectangles D and E touch for a distance h m as shown in Figure 4.

Using your answer to part (c), or otherwise,

(d) find the value of h, giving your answer to 2 significant figures.

(3)

(2)

(3)

Question Number	Scheme	Mar	ks	
13. (a)	$R = \sqrt{5} = 2.23606$ (must be given in part (a))			
	$\tan \alpha = \frac{1}{2}$ or $\sin \alpha = \frac{1}{\sqrt{5}}$ or $\cos \alpha = \frac{2}{\sqrt{5}}$ (see notes for other values which gain M1)	M1		
	$\Rightarrow \alpha = 26.56505^{\circ}$ (must be given in part (a))	A1	[0]	
			[3]	
(b)	Way 1: Uses distance between two lines is 4 (or half distance is 2) with correct trigonometry may state $4\sin\theta + 2\cos\theta = 4$ or show sketch	M1		
	Need sketch and $4\sin\theta + 2\cos\theta = 4$ and deduction that	A1 *		
	$2\sin\theta + \cos\theta = 2$ or $\cos\theta + 2\sin\theta = 2*$		[2]	
	Way 2: Alternative method: Uses diagonal of rectangle as hypotenuse of right angle triangle and	M1		
	obtains $\sqrt{20} \sin(\theta + \alpha) = 4$			
	So from (a) $2\sin\theta + \cos\theta = 2$ or $\cos\theta + 2\sin\theta = 2$	A1	[2]	
	Way 3: They may state and verify the result provided the work is correct and accurate See notes below. Substitution of 36.9 (obtained in (c) is a circular argument and is M0A0)		[-]	
(c)	Way1: Uses $\sqrt{5}\sin(\theta + 26.57) = 2$ to obtain Way 2 $\cos^2\theta + 4\cos\theta\sin\theta + 4\sin^2\theta = 4$			
	See notes for variations			
	$\sin(\theta + "26.57") = \frac{2}{"\sqrt{5}"} (= 0.8944) \qquad 4\cos\theta\sin\theta - 3\cos^2\theta = 0 \\ \cos\theta(4\sin\theta - 3\cos\theta) = 0 \text{so} \tan\theta = \frac{3}{4}$	M1		
	$\theta = \arcsin\left(\frac{2}{\text{their } \sqrt[n]{5"}}\right) - 26.57"$ $\theta = \arctan\frac{3}{4} \text{ or equivalent}$	M1		
	Hence, $\theta = 36.8699^{\circ}$	A1		
			[3]	
(d)	Way 1: $"x" = \frac{2}{\tan^{"}36.9"}$ Way 2: $"y" = \frac{4}{\sin\theta}$	B1		
	$\{h + x = 4 \Rightarrow\}$ $h + \frac{2}{\tan^{"}36.9"} = 4$ $\{h + y = 8 \Rightarrow\}$ $h + \frac{4}{\sin^{"}36.9"} = 8$	M1		
	Way 1: $"x" = \frac{2}{\tan^{"}36.9"}$ $\{h + x = 4 \Rightarrow\}$ $h + \frac{2}{\tan^{"}36.9"} = 4$ $h = 4 - \frac{2}{\tan^{3}6.9} = 1.336 \text{ or } \frac{4}{3} \text{ or } \underline{1.3} (2\text{sf})$ Way 2: $"y" = \frac{4}{\sin\theta}$ $\{h + y = 8 \Rightarrow\}$ $h + \frac{4}{\sin^{"}36.9"} = 8$ $h = 8 - \frac{4}{\sin^{3}6.9} = -\frac{4}{3} \text{ or } \underline{1.3} (2\text{sf})$	<u>A1</u> ca	o [3] 11	

Notes (a) **B1**: $R = \sqrt{5}$ or awrt 2.24 no working needed – must be in part (a) **M1**: $\tan \alpha = \frac{1}{2}$ or $\tan \alpha = 2$ or $\sin \alpha = \frac{1}{\sqrt{5}}$ or $\sin \alpha = \frac{2}{\sqrt{5}}$ or $\cos \alpha = \frac{2}{\sqrt{5}}$ or $\cos \alpha = \frac{1}{\sqrt{5}}$ and attempt to find alpha. Method mark may be implied by correct alpha A1: accept α = awrt 26.57; also accept $\sqrt{5}\sin(\theta + 26.57)$ - must be in part (a) Answers in radians (0.46) are A0 (b) Way 1: M1: Uses distance between two lines is 4 (or half distance is 2) states $4\sin\theta + 2\cos\theta = 4$ or shows sketch (may be on Figure 4 on question paper) with some trigonometry A1*: Shows sketch with implication of two right angled triangles (may be on Figure 4 on question paper) and follows $4\sin\theta + 2\cos\theta = 4$ by stating printed answer or equivalent (given in the mark scheme) and no errors seen. Wav 2: on scheme (not a common method) Way 3: They may state and verify the result provided the work is correct and accurate. M1: Verification with correct accurate work e.g. $2 \times \frac{x}{4} + \frac{4-x}{2} = 2$, with x shown on figure A1: Needs conclusion that $2\sin\theta + \cos\theta = 2$ Substitution of 36.9 (obtained in (c) is a circular argument and is MOA0) (c) Way 1: M1: $\sin(\theta + \text{their } \alpha) = \frac{2}{\text{their } P}$ (Uses part (a) to solve equation) M1: $\theta = \arcsin\left(\frac{2}{\text{their }R}\right)$ - their α (operations undone in the correct order with subtraction) A1: awrt 36.9 (answer in radians is 0.644 and is A0) Wav 2: **M1**: Squares both sides, uses appropriate trig identities and reaches $\tan \theta = \frac{3}{4}$ or $\sin \theta = \frac{3}{5}$ or $\cos \theta = \frac{4}{5}$ or $\sin 2\theta = \frac{24}{25}$ **One example is shown in the scheme**. Another popular one is $2\sin\theta = 2 - \cos\theta \rightarrow 4(1 - \cos^2\theta) = 4 - 4\cos\theta + \cos^2\theta \rightarrow 5\cos^2\theta - 4\cos\theta = 0$ and so $\cos\theta = \frac{4}{5}$ for M1 } M1: $\theta = \arctan \frac{3}{4}$ or other correct inverse trig value e.g. $\arcsin \theta \left(\frac{3}{4}\right)$ or $\arccos \theta \left(\frac{4}{5}\right)$ A1: awrt 36.9 (answer in radians is 0.644 and is A0) (d) Way 1: (Most popular) **B1**: States $x = \frac{2}{\tan \theta}$, where x (not defined in the question) is the non-overlapping length of rectangle M1: Writes equation $h + \frac{2}{\tan \theta} = 4$ - must be this expression or equivalent e.g. $\tan \theta = \frac{2}{4-h}$ gets B1 M1 A1: accept decimal which round to 1.3 or the exact answer i.e. $\frac{4}{3}$ (may follow slight inaccuracies in earlier angle being rounded wrongly) **N.B. There is a variation which states** $\sin \theta = \frac{2\cos \theta}{4-h}$ or $\frac{\sin \theta}{2} = \frac{\sin(90-\theta)}{4-h}$ for B1 M1 then A1 as before Way 2: (Less common) B1: States $y = \frac{4}{\sin \theta}$, where y (not defined in question) is the non-overlapping length of two rectangles M1: Writes equation $h + \frac{4}{\sin \theta} = 8$ - must be this expression or equivalent e.g. $\sin \theta = \frac{4}{8-h}$ gets B1 M1 A1: as in Way 1 There are other longer trig methods – possibly using Pythagoras for showing that h = 1.3 to 2sf. If the method is clear award B1M1A1 – otherwise send to review.

This resource was created and owned by Pearson Edexcel WMA02 Leave blank 14. Relative to a fixed origin O, the line l has vector equation $\mathbf{r} = \begin{pmatrix} -1\\ -4\\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 2\\ 1\\ -1 \end{pmatrix}$ where λ is a scalar parameter. Points A and B lie on the line l, where A has coordinates (1, a, 5) and *B* has coordinates (b, -1, 3). (a) Find the value of the constant *a* and the value of the constant *b*. (3) (b) Find the vector \overrightarrow{AB} . (2) The point C has coordinates (4, -3, 2)(c) Show that the size of the angle *CAB* is 30° (3) (d) Find the exact area of the triangle CAB, giving your answer in the form $k\sqrt{3}$, where *k* is a constant to be determined. (2) The point D lies on the line l so that the area of the triangle CAD is twice the area of the triangle CAB. (e) Find the coordinates of the two possible positions of D. (4)

Question Number	Scheme		Mark	s
14.	$A(1, a, 5), B(b, -1, 3), l: \mathbf{r} = -\mathbf{i} - 4\mathbf{j} + 6\mathbf{k}$			
(a)	Either at point $A: \lambda = 1$ or at point $B: \lambda = 3$	M1		
(u)	leading to either $a = -3$ or $b = 5$			
	leading to both $a = -3$ and $b = 5$			
		A1	[3]	
(b)	Attempts $\pm [('5\mathbf{i}' - \mathbf{j} + 3\mathbf{k}) - (\mathbf{i}' - 3\mathbf{j}' + 5\mathbf{k})]$ subtraction either way round			[9]
	$AB = 4\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ o.e. subtraction	A1		
(c)	Way 1 $(\overrightarrow{AC}) = \begin{pmatrix} 3 \\ "0" \\ -3 \end{pmatrix}$ or $(\overrightarrow{CA}) = \begin{pmatrix} -3 \\ "0" \\ 3 \end{pmatrix}$	Way 2 $AB = 2\sqrt{6}, AC = 3\sqrt{2}, BC = \sqrt{6}$	M1	[2]
	$\cos C\hat{A}B = \frac{\begin{pmatrix} 4\\2\\-2 \end{pmatrix} \cdot \begin{pmatrix} 3\\0\\-3 \end{pmatrix}}{\sqrt{(4)^2 + (2)^2 + (-2)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-3)^2}}$	$\cos C\hat{A}B = \frac{24 + 18 - 6}{2\sqrt{24}\sqrt{18}}$ Or right angled triangle and $\cos C\hat{A}B = \frac{\sqrt{3}}{2} \text{ o.e.}$	dM1	
	$\cos C\hat{A}B = \frac{12 + 0 + 6}{\sqrt{24}\sqrt{18}} = \frac{\sqrt{3}}{2}$ (o.e.) $\Rightarrow C\hat{A}B = 30^{\circ} *$	so $C\hat{A}B = 30^{\circ}$	A1 * cso	
	$\sqrt{24}.\sqrt{18}$ 2			[2]
				[3]
(d)	Area $CAB = \frac{1}{2}\sqrt{24}\sqrt{18}\sin 30^{\circ}$		M1	
	$= 3\sqrt{3}$ (or $k = 3$)	A1	[2]	
(e)	$\left(\overline{OD_{1}}\right) = \begin{pmatrix} -1\\ -4\\ 6 \end{pmatrix} + 5 \begin{pmatrix} 2\\ 1\\ -1 \end{pmatrix} \text{or} = \begin{pmatrix} 1\\ a\\ 5 \end{pmatrix} + 2 \begin{pmatrix} 4\\ 2\\ -2 \end{pmatrix} \text{or}$	$= \begin{pmatrix} b \\ -1 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} ; = \text{ or}$	M1; oe	
	$\begin{pmatrix} 9\\1\\1 \end{pmatrix}$		A1	
	$\overrightarrow{OD_2} = \begin{pmatrix} -1 \\ -4 \\ 6 \end{pmatrix} - 3 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \text{or} = \begin{pmatrix} 1 \\ a \\ 5 \end{pmatrix} - 2 \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} \text{or}$	$= \begin{pmatrix} b \\ -1 \\ 3 \end{pmatrix} - 3 \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix} ;$	M1; oe	
	$= \begin{pmatrix} -7\\ -7\\ 9 \end{pmatrix}$		A1	
	See notes for a common approach to part (e) using	g the length of <i>AD</i>		[4] 14

Notes Throughout – allow vectors to be written as a row, with commas, as this is another convention. (a) M1: Finds, or implies, correct value of λ for at least one of the two given points A1: At least one of *a* or *b* correct A1: Both *a* and *b* correct (b) M1: Subtracts the position vector of A from that of B or the position vector of B from that of A. Allow any notation. Even allow coordinates to be subtracted. Follow through their a and b for this method mark. A1: Need correct answer : so $\overline{AB} = 4\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ or $\overline{AB} = \begin{pmatrix} 4 \\ 2 \\ -2 \end{pmatrix}$ or (4, 2, -2) This is not ft. (c) Way 1: M1: Subtracts the position vector of A from that of C or the position vector of C from that of A. Allow any notation. Even allow coordinates to be subtracted. Follow through their *a* for this method mark. **dM1**: Applies dot product formula between their $(\overline{AB} \text{ or } \overline{BA})$ and their $(\overline{AC} \text{ or } \overline{CA})$. A1*: Correctly proves that $\hat{CAB} = 30^\circ$. This is a printed answer. Must have used $(\overline{AB} \text{ with } \overline{AC})$ or $(\overline{BA} \text{ with } \overline{CA})$ for this mark and must not have changed a negative to a positive to falsely give the answer, that would result in M1M1A0 Do not need to see $\frac{\sqrt{3}}{2}$ but should see equivalent value. Allow $\frac{\pi}{6}$ as final answer. Way 2: M1: Finds lengths of AB, AC and BC dM1: Uses cosine rule or trig of right angled triangle, either sin, cos or tan A1: Correct proof that angle = 30 degrees (d) M1: Applies $\frac{1}{2} |\overline{AB}| |\overline{AC}| \sin 30^\circ$ - must try to use their vectors (b – a) and (c – a) or state formula and try to use it. Could use vector product. Must not be using $\frac{1}{2} |\overrightarrow{OB}| |\overrightarrow{OC}| \sin 30^\circ$ A1: $3\sqrt{3}$ cao – must be exact and in this form (see question) (e) M1: Realises that AD is twice the length of AB and uses complete method to find one of the points. Then uses one of the three possible starting points on the line (A, B, or the point with positionvector $-\mathbf{i} - 4\mathbf{j} + 6\mathbf{k}$) to reach D. See one of the equations in the mark scheme and ft their a or b. So accept $\left(\overline{OD_1}\right) = \begin{pmatrix} -1\\ -4\\ 6 \end{pmatrix} + 5 \begin{pmatrix} 2\\ 1\\ -1 \end{pmatrix}$ or $= \begin{pmatrix} 1\\ a\\ 5 \end{pmatrix} + 4 \begin{pmatrix} 2\\ 1\\ -1 \end{pmatrix}$ or $= \begin{pmatrix} b\\ -1\\ 3 \end{pmatrix} + 2 \begin{pmatrix} 2\\ 1\\ -1 \end{pmatrix}$ **A1**: Accept (9, 1, 1) or 9**i** + **j** + **k** or $\begin{pmatrix} 9\\1\\1 \end{pmatrix}$ cao M1: Realises that AD is twice the length of AB but is now in the opposite direction so uses one of the three possible starting points to reach D. See one of the equations in the mark scheme and ft their a or *b*.

So accept
$$(\overline{OD}_{2}^{-}) = \begin{pmatrix} -1\\ -4\\ -4\\ -6 \end{pmatrix} = 3 \begin{pmatrix} 2\\ 1\\ -1 \end{pmatrix}$$
 or $= \begin{pmatrix} 1\\ a\\ 5 \end{pmatrix} = 2 \begin{pmatrix} 4\\ 2\\ -2 \end{pmatrix}$ or $= \begin{pmatrix} b\\ -1\\ -1 \end{pmatrix} = 3 \begin{pmatrix} 4\\ 2\\ -2 \end{pmatrix}$
A1: Accept (-7, -7, 9) or -7i -7j + 9k or $\begin{pmatrix} -7\\ -7\\ 9\\ 9 \end{pmatrix}$ cao
NB Many long methods still contain unknown variables x, y and z or λ . These are not complete
methods so usually earn M0A0M0A0 on part (e) PTO.
Mark scheme for a common approach to part (e) using the length of AD is
given below:
 $(2\lambda - 2)^{2} + (\lambda - 1)^{2} + (1^{n} - \lambda)^{2} = ^{n}96^{n}$ then obtain $\lambda^{2} - 2\lambda - 15 = 0$ so $\lambda = -$,
then substitute value of λ to find coordinates. May make a slip in algebra
expanding brackets or collecting terms (even if results in two term quadratic)
This may be simplified to $\sqrt{6}(\lambda - 1) = 4\sqrt{6}$ or to $\sqrt{6}(1 - \lambda) = 4\sqrt{6}$
NB $6(1 - \lambda)^{2} = 4\sqrt{6}$ is M0 as one side has dimension (length)² and the other is
length
 $\begin{pmatrix} 9\\ 1\\ 1\\ \end{pmatrix}$ (from $\lambda = 5$)
Substitute other value of λ . May make a slip in algebra
 $= \begin{pmatrix} -7\\ -7\\ 9\\ \end{pmatrix}$ (from $\lambda = -3$)
Substitute other value of λ to find coordinates
 $\begin{pmatrix} -1\\ -4\\ 6\\ \end{pmatrix}$ (from $\lambda = 0$)
Substitute other value of λ
 $= \begin{pmatrix} -3\\ -2\\ 4\\ \end{pmatrix}$ (from $\lambda = 2$)
For this solution score M1A0M1A0 i.e. 2/4

Qu 12(b) using integration by parts

Qu 12 (b) Some return to $V = {\pi} \int 4\tan^2 t \sin^2 t dt$. There are two ways to proceed and both use integration by parts Way 1: $\int (\tan^{2} t \sin^{2} t) dt = \int (\sec^{2} t - 1)\sin^{2} t dt$ Uses $1 + \tan^{2} t =$ Uses $\cos 2t = 1 - 2$ $\begin{cases} = \sin^{2} t \tan t - \int 2\sin t \cos t \tan t dt - \int \frac{1 - \cos 2t}{2} dt \\ = -\left(\frac{3}{4}\tan\left(\frac{\pi}{3}\right) - \left(\frac{\pi}{2}\right) + \frac{3}{4}\sin\left(\frac{2\pi}{3}\right)\right) - (0) \end{cases}$ Applies limit Uses $1 + \tan^2 t = \sec^2 t$ M1 Uses $\cos 2t = 1 - 2\sin^2 t$ M1 (b) M1 A1 Applies limit of $\frac{\pi}{3}$ ddM1 $V = 4\pi \left(\frac{9\sqrt{3}}{8} - \frac{\pi}{2}\right)$ or $\pi \left(\frac{9\sqrt{3}}{2} - 2\pi\right)$ oe Two term exact answer A1 [6] Way 2: Try to use parts on $\int (\sec^2 t - 1)\sin^2 t \, dt \text{ using } u = \sin^2 t \text{ and } v = \tan t - t$ Award first two M marks as before Uses $1 + \tan^2 t = \sec^2 t$ and Uses $\cos 2t = 1 - 2\sin^2 t$ M1 M1 This needs parts twice and to get down to $= \sin^2 t (\tan t - t) - t + \frac{1}{2} \sin 2t - \frac{t}{2} \cos 2t + \frac{1}{4} \sin 2t$ M1A1 Then limits as before to give $V = 4\pi \left(\frac{9\sqrt{3}}{8} - \frac{\pi}{2}\right)$ or $\pi \left(\frac{9\sqrt{3}}{2} - 2\pi\right)$ oe ddM1A1