www.mystudybro.com

Mathematics C3

Examiner's use only

Team Leader's use only

2

3

4

Leave

Past Paper

This resource was created and owned by Pearson Edexcel

Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	5	/	0	1	Signature	

Paper Reference(s)

6665/01

Edexcel GCE

Core Mathematics C3 Advanced Level

Monday 23 January 2006 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination

Mathematical Formulae (Green)

Items included with question papers

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Check that you have the correct question paper.

You must write your answer for each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 20 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

Turn over

Total

Leave

blank

1.

Figure 1 shows the graph of y = f(x), $-5 \le x \le 5$. The point M(2, 4) is the maximum turning point of the graph.

Sketch, on separate diagrams, the graphs of

(a)
$$y = f(x) + 3$$
,

(2)

(b)
$$y = |f(x)|$$
,

(2)

(c)
$$y = f(|x|)$$
.

(3)

Show on each graph the coordinates of any maximum turning points.

Mathematics C3

Past Paper (Mark Scheme) January 2006

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
1.	Shape unchanged Point	B1 B1 (2)
	(b) $y \leftarrow (2, 4)$ Shape Point	B1 B1 (2)
	(c) $(-2,4)$ y $(2,4)$ Shape $(2,4)$ $(-2,4)$	B1 B1 B1 (3) [7]

This resource was created and owned by Pearson Edexcel

0000

Leave blank

2.	Express
2.	Express

$$\frac{2x^2 + 3x}{(2x+3)(x-2)} - \frac{6}{x^2 - x - 2}$$

as a single fraction in its simplest form.

,	7	1	
	,	,	

4

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
2.	$x^{2}-x-2 = (x-2)(x+1)$ At any stage $\frac{2x^{2}+3x}{(2x+3)(x-2)} = \frac{x(2x+3)}{(2x+3)(x-2)} = \frac{x}{x-2}$	B1 B1
	$\frac{2x^2+3x}{(2x+3)(x-2)} - \frac{6}{x^2-x-2} = \frac{x(x+1)-6}{(x-2)(x+1)}$	M1
	$=\frac{x^2 + x - 6}{(x - 2)(x + 1)}$	A1
	$=\frac{(x+3)(x-2)}{(x-2)(x+1)}$	M1 A1
	$=\frac{x+3}{x+1}$	A1 (7) [7]
	Alternative method	D .1
	$x^{2}-x-2=(x-2)(x+1)$ At any stage (2x+3) appearing as a factor of the numerator at any stage	B1 B1
	$\frac{2x^2 + 3x}{(2x+3)(x-2)} - \frac{6}{(x-2)(x+1)} = \frac{(2x^2 + 3x)(x+1) - 6(2x+3)}{(2x+3)(x-2)(x+1)}$	M1
	$= \frac{2x^3 + 5x^2 - 9x - 18}{(2x+3)(x-2)(x+1)}$ can be implied	A1
	$= \frac{(x-2)(2x^2+9x+9)}{(2x+3)(x-2)(x+1)} \text{or} \frac{(2x+3)(x^2+x-6)}{(2x+3)(x-2)(x+1)} \text{or} \frac{(x+3)(2x^2-x-6)}{(2x+3)(x-2)(x+1)}$ Any one linear factor × quadratic	M1
	$= \frac{(2x+3)(x-2)(x+3)}{(2x+3)(x-2)(x+1)}$ Complete factors	A1
	$=\frac{x+3}{x+1}$	A1 (7)
	A T 1	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6665

Leave

$y = \ln\left(\frac{1}{3}x\right)$. The x-coordinate of P is 3. If the point P in the form $y = ax + b$, where	
t the point P in the form $y = ax + b$, where	and b are constants.
(5)	a did b die constants.
(-)	

Past Paper (Mark Scheme) January 2006

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
3.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}$ accept $\frac{3}{3x}$	M1 A1
	At $x = 3$, $\frac{dy}{dx} = \frac{1}{3}$ \Rightarrow $m' = -3$ Use of $mm' = -1$	M1
	$y - \ln 1 = -3(x - 3)$	M1
	y = -3x + 9 Accept $y = 9 - 3x$	A1 (5) [5]
	$\frac{dy}{dx} = \frac{1}{3x}$ leading to $y = -9x + 27$ is a maximum of M1 A0 M1 M1 A0 = 3/5	
4.	(a) (i) $\frac{d}{dx} \left(e^{3x+2} \right) = 3e^{3x+2} \left(\text{or } 3e^2 e^{3x} \right)$ At any stage	B1
	$\frac{dy}{dx} = 3x^2 e^{3x+2} + 2x e^{3x+2}$ Or equivalent	M1 A1+A1
	(ii) $\frac{d}{dx}(\cos(2x^3)) = -6x^2 \sin(2x^3)$ At any stage	(4) M1 A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-18x^3 \sin\left(2x^3\right) - 3\cos\left(2x^3\right)}{9x^2}$	M1 A1 (4)
	Alternatively using the product rule for second M1 A1 $y = (3x)^{-1} \cos(2x^{3})$	
	$\frac{dy}{dx} = -3(3x)^{-2}\cos(2x^3) - 6x^2(3x)^{-1}\sin(2x^3)$	
	Accept equivalent unsimplified forms	
	(b) $1 = 8\cos(2y+6)\frac{dy}{dx} \text{or} \frac{dx}{dy} = 8\cos(2y+6)$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{8\cos(2y+6)}$	M1 A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{8\cos\left(\arcsin\left(\frac{x}{4}\right)\right)} \left(=(\pm)\frac{1}{2\sqrt{(16-x^2)}}\right)$	M1 A1 (5)
		[13]

This resource was created and owned by Pearson Edexcel

6665

_	7
Leave	- 1
1-11-	
blank	- 1

- **4.** (a) Differentiate with respect to x
 - (i) x^2e^{3x+2} ,

(4)

(ii) $\frac{\cos(2x^3)}{3x}$

(4)

(b) Given that $x = 4 \sin(2y + 6)$, find $\frac{dy}{dx}$ in terms of x.

(5)

Past Paper (Mark Scheme) January 2006

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
3.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{x}$ accept $\frac{3}{3x}$	M1 A1
	At $x = 3$, $\frac{dy}{dx} = \frac{1}{3}$ \Rightarrow $m' = -3$ Use of $mm' = -1$	M1
	$y - \ln 1 = -3(x - 3)$	M1
	y = -3x + 9 Accept $y = 9 - 3x$	A1 (5) [5]
	$\frac{dy}{dx} = \frac{1}{3x}$ leading to $y = -9x + 27$ is a maximum of M1 A0 M1 M1 A0 = 3/5	
4.	(a) (i) $\frac{d}{dx} \left(e^{3x+2} \right) = 3e^{3x+2} \left(\text{or } 3e^2 e^{3x} \right)$ At any stage	B1
	$\frac{dy}{dx} = 3x^2 e^{3x+2} + 2x e^{3x+2}$ Or equivalent	M1 A1+A1
	(ii) $\frac{d}{dx}(\cos(2x^3)) = -6x^2 \sin(2x^3)$ At any stage	(4) M1 A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-18x^3 \sin\left(2x^3\right) - 3\cos\left(2x^3\right)}{9x^2}$	M1 A1 (4)
	Alternatively using the product rule for second M1 A1 $y = (3x)^{-1} \cos(2x^{3})$	
	$\frac{dy}{dx} = -3(3x)^{-2}\cos(2x^3) - 6x^2(3x)^{-1}\sin(2x^3)$	
	Accept equivalent unsimplified forms	
	(b) $1 = 8\cos(2y+6)\frac{dy}{dx} \text{or} \frac{dx}{dy} = 8\cos(2y+6)$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{8\cos(2y+6)}$	M1 A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{8\cos\left(\arcsin\left(\frac{x}{4}\right)\right)} \left(=(\pm)\frac{1}{2\sqrt{(16-x^2)}}\right)$	M1 A1 (5)
		[13]

This resource was created and owned by Pearson Edexcel

Leave blank

5.

$$f(x) = 2x^3 - x - 4$$
.

(a) Show that the equation f(x) = 0 can be written as

$$x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)}.$$

(3)

The equation $2x^3 - x - 4 = 0$ has a root between 1.35 and 1.4.

(b) Use the iteration formula

$$x_{n+1} = \sqrt{\left(\frac{2}{x_n} + \frac{1}{2}\right)},$$

with $x_0 = 1.35$, to find, to 2 decimal places, the values of x_1 , x_2 and x_3 .

(3)

The only real root of f(x) = 0 is α .

(c) By choosing a suitable interval, prove that $\alpha = 1.392$, to 3 decimal places.

(3)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks
5.	(a) $2x^2 - 1 - \frac{4}{x} = 0$ Dividing equation by $x - 1 = 1$ Obtaining $x^2 = 1$. Cookside $x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)}$ Dividing equation by $x - 1 = 1$. Cookside $x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)}$ Cookside $x = 1$. Cookside $x = 1$. So $x = 1$.	M1 M1 A1 (3) B1, B1, B1 (3)
	$f(1.3915) \approx -3 \times 10^{-3}$, $f(1.3925) \approx 7 \times 10^{-3}$ Both, awrt Change of sign (and continuity) $\Rightarrow \alpha \in (1.3915, 1.3925)$ $\Rightarrow \alpha = 1.392$ to 3 decimal places \bigstar cso	A1 (3) [9]
6.	(a) $R\cos\alpha = 12$, $R\sin\alpha = 4$ $R = \sqrt{(12^2 + 4^2)} = \sqrt{160}$ Accept if just written down, awrt 12.6 $\tan\alpha = \frac{4}{12}$, $\Rightarrow \alpha \approx 18.43^\circ$ awrt 18.4°	M1 A1 M1, A1(4)
	(b) $\cos(x + \text{their } \alpha) = \frac{7}{\text{their } R} \ (\approx 0.5534)$ $x + \text{their } \alpha = 56.4^{\circ} \qquad \text{awrt } 56^{\circ}$ $= \dots, 303.6^{\circ} \qquad 360^{\circ} - \text{their principal value}$ $x = 38.0^{\circ}, 285.2^{\circ} \qquad \text{Ignore solutions out of range}$ If answers given to more than 1 dp, penalise first time then accept awrt above.	M1 A1 M1 A1, A1 (5)
	(c)(i) minimum value is $-\sqrt{160}$ ft their R (ii) $\cos(x + \text{ their } \alpha) = -1$ $x \approx 161.57^{\circ}$ cao	B1ft M1 A1 (3) [12]

This resource was created and owned by Pearson Edexcel

Leave

blank

6.

$$f(x) = 12 \cos x - 4 \sin x.$$

Given that $f(x) = R \cos(x + \alpha)$, where $R \ge 0$ and $0 \le \alpha \le 90^{\circ}$,

(a) find the value of R and the value of α .

(4)

(b) Hence solve the equation

$$12\cos x - 4\sin x = 7$$

for $0 \le x < 360^{\circ}$, giving your answers to one decimal place.

(5)

(c) (i) Write down the minimum value of $12 \cos x - 4 \sin x$.

(1)

(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.

(2)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks
5.	(a) $2x^2 - 1 - \frac{4}{x} = 0$ Dividing equation by $x - 1 = 1$ Obtaining $x^2 = 1$. Cookside $x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)}$ Dividing equation by $x - 1 = 1$. Cookside $x = \sqrt{\left(\frac{2}{x} + \frac{1}{2}\right)}$ Cookside $x = 1$. Cookside $x = 1$. So $x = 1$.	M1 M1 A1 (3) B1, B1, B1 (3)
	$f(1.3915) \approx -3 \times 10^{-3}$, $f(1.3925) \approx 7 \times 10^{-3}$ Both, awrt Change of sign (and continuity) $\Rightarrow \alpha \in (1.3915, 1.3925)$ $\Rightarrow \alpha = 1.392$ to 3 decimal places \bigstar cso	A1 (3) [9]
6.	(a) $R\cos\alpha = 12$, $R\sin\alpha = 4$ $R = \sqrt{(12^2 + 4^2)} = \sqrt{160}$ Accept if just written down, awrt 12.6 $\tan\alpha = \frac{4}{12}$, $\Rightarrow \alpha \approx 18.43^\circ$ awrt 18.4°	M1 A1 M1, A1(4)
	(b) $\cos(x + \text{their } \alpha) = \frac{7}{\text{their } R} \ (\approx 0.5534)$ $x + \text{their } \alpha = 56.4^{\circ} \qquad \text{awrt } 56^{\circ}$ $= \dots, 303.6^{\circ} \qquad 360^{\circ} - \text{their principal value}$ $x = 38.0^{\circ}, 285.2^{\circ} \qquad \text{Ignore solutions out of range}$ If answers given to more than 1 dp, penalise first time then accept awrt above.	M1 A1 M1 A1, A1 (5)
	(c)(i) minimum value is $-\sqrt{160}$ ft their R (ii) $\cos(x + \text{ their } \alpha) = -1$ $x \approx 161.57^{\circ}$ cao	B1ft M1 A1 (3) [12]

This resource was created and owned by Pearson Edexcel

Leave blank

7. (a) Show that

(i)
$$\frac{\cos 2x}{\cos x + \sin x} \equiv \cos x - \sin x, \quad x \neq (n - \frac{1}{4})\pi, n \in \mathbb{Z},$$

(2)

(ii)
$$\frac{1}{2}(\cos 2x - \sin 2x) \equiv \cos^2 x - \cos x \sin x - \frac{1}{2}$$
.

(3)

(b) Hence, or otherwise, show that the equation

$$\cos\theta \left(\frac{\cos 2\theta}{\cos\theta + \sin\theta}\right) = \frac{1}{2}$$

can be written as

$$\sin 2\theta = \cos 2\theta.$$

(3)

(c) Solve, for $0 \le \theta < 2\pi$,

$$\sin 2\theta = \cos 2\theta$$
,

giving your answers in terms of π .

(4)

N 2 3 4 9 5 A 0 1 4 2 0

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks	ì
7.	(a) (i) Use of $\cos 2x = \cos^2 x - \sin^2 x$ in an attempt to prove the identity. $\frac{\cos 2x}{\cos x + \sin x} = \frac{\cos^2 x - \sin^2 x}{\cos x + \sin x} = \frac{(\cos x - \sin x)(\cos x + \sin x)}{\cos x + \sin x} = \cos x - \sin x $ cso	M1 A1 (2	2)
	(ii) Use of $\cos 2x = 2\cos^2 x - 1$ in an attempt to prove the identity. Use of $\sin 2x = 2\sin x \cos x$ in an attempt to prove the identity. $\frac{1}{2}(\cos 2x - \sin 2x) = \frac{1}{2}(2\cos^2 x - 1 - 2\sin x \cos x) = \cos^2 x - \cos x \sin x - \frac{1}{2} $ cso	M1 M1 A1 (3	3)
	(b) $\cos \theta (\cos \theta - \sin \theta) = \frac{1}{2}$ Using (a)(i) $\cos^2 \theta - \cos \theta \sin \theta - \frac{1}{2} = 0$	M1	
	$\frac{1}{2}(\cos 2\theta - \sin 2\theta) = 0$ Using (a)(ii) $\cos 2\theta = \sin 2\theta *$	M1 A1 (3	3)
	(c) $\tan 2\theta = 1$ $2\theta = \frac{\pi}{4}, \left(\frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}\right)$ any one correct value of 2θ	M1 A1	
	$\theta = \frac{\pi}{8}, \frac{5\pi}{8}, \frac{9\pi}{8}, \frac{13\pi}{8}$ Obtaining at least 2 solutions in range The 4 correct solutions If decimals (0.393,1.963,3.534,5.105) or degrees (22.5°,112.5°,202.5°,292.5°) are given, but all 4 solutions are found, penalise one A mark only. Ignore solutions out of range.	M1 A1 (4	

This resource was created and owned by Pearson Edexcel

Leave blank

The functions f and g are defined by

$$f: x \to 2x + \ln 2, \quad x \in \mathbb{R},$$

$$g: x \to e^{2x}, \qquad x \in \mathbb{R}.$$

(a) Prove that the composite function gf is

$$gf: x \to 4e^{4x}, \qquad x \in \mathbb{R}.$$

(4)

(b) In the space provided on page 19, sketch the curve with equation y = gf(x), and show the coordinates of the point where the curve cuts the y-axis.

(1)

(c) Write down the range of gf.

(1)

(d) Find the value of x for which $\frac{d}{dx}[gf(x)] = 3$, giving your answer to 3 significant figures.

(4)

Mathematics C3

Past Paper (Mark Scheme) January 2006

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
8.	(a) $\operatorname{gf}(x) = \operatorname{e}^{2(2x+\ln 2)}$ $= \operatorname{e}^{4x} \operatorname{e}^{2\ln 2}$ $= \operatorname{e}^{4x} \operatorname{e}^{\ln 4}$ $= 4\operatorname{e}^{4x} \qquad \text{Give mark at this point, cso}$ $\left(\operatorname{Hence} \operatorname{gf}: x \mapsto 4\operatorname{e}^{4x}, x \in \square\right)$ (b)	M1 M1 M1 A1 (4)
	Shape and point O x	B1 (1)
	(c) Range is \Box + Accept gf $(x) > 0$, $y > 0$ (d) $\frac{d}{dx} [gf(x)] = 16e^{4x}$	B1 (1)
	$e^{4x} = \frac{3}{16}$ $4x = \ln \frac{3}{16}$ $x \approx -0.418$	M1 A1 M1 A1 (4) [10]