www.mystudybro.com

Mathematics C3

Past Paper

This resource was created and owned by Pearson Edexcel

6665

Centre No.			Paper Reference			Surname	Initial(s)				
Candidate No.			6	6	6	5	/	0	1	Signature	

Paper Reference(s)

6665/01

Edexcel GCE

Core Mathematics C3 Advanced

Wednesday 20 January 2010 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink or
Green)

Items included with question papers
Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 9 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited

N35381A W850/R6665/57570 5/5/5/4/3/3

advancing learning, changing lives

Examiner's use only

Team Leader's use only

Leave

| Question Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

9

Total

Turn over

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	_
	7
∟eave	- 1
hlanla	- 1

Express		
	$\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$	
as a single fraction in its	simplest form.	(4)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

January 2010 6665 Core Mathematics C3 Mark Scheme

Question Number	Scheme	Marks
Q1	$\frac{x+1}{3x^2-3} - \frac{1}{3x+1}$	
	$=\frac{x+1}{3(x^2-1)}-\frac{1}{3x+1}$	
	$x^{2} - 1 \to (x+1)(x-1) \text{ or}$ $= \frac{x+1}{3(x+1)(x-1)} - \frac{1}{3x+1}$ $3x^{2} - 3 \to (x+1)(3x-3) \text{ or}$ $3x^{2} - 3 \to (3x+3)(x-1)$ seen or implied anywhere in candidate's working.	Award below
	$=\frac{1}{3(x-1)}-\frac{1}{3x+1}$	
	$= \frac{3x + 1 - 3(x - 1)}{3(x - 1)(3x + 1)}$ Attempt to combine.	M1
	or $\frac{3x+1}{3(x-1)(3x+1)} - \frac{3(x-1)}{3(x-1)(3x+1)}$ Correct result.	A1
	Decide to award M1 here!!	M1
	Either $\frac{4}{3(x-1)(3x+1)}$ $= \frac{4}{3(x-1)(3x+1)} \text{ or } \frac{\frac{4}{3}}{(x-1)(3x+1)} \text{ or } \frac{4}{(3x-3)(3x+1)}$ $\text{ or } \frac{4}{9x^2 - 6x - 3}$	
		[4]

This resource was created and owned by Pearson Edexcel

Leave blank

2.

$$f(x) = x^3 + 2x^2 - 3x - 11$$

(a) Show that f(x) = 0 can be rearranged as

$$x = \sqrt{\left(\frac{3x+11}{x+2}\right)}, \quad x \neq -2.$$

(2)

The equation f(x) = 0 has one positive root α .

The iterative formula $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$ is used to find an approximation to α .

(b) Taking $x_1 = 0$, find, to 3 decimal places, the values of x_2 , x_3 and x_4 .

(3)

(c) Show that $\alpha = 2.057$ correct to 3 decimal places.

(3)

Question Number	Scheme		Mai	rks
Q2	$f(x) = x^3 + 2x^2 - 3x - 11$			
(a)	$f(x) = 0 \implies x^3 + 2x^2 - 3x - 11 = 0$ $\implies x^2(x+2) - 3x - 11 = 0$	Sets $f(x) = 0$ (can be implied) and takes out a factor of x^2 from $x^3 + 2x^2$, or x from $x^3 + 2x$ (slip).	M1	
	$\Rightarrow x^{2}(x+2) = 3x+11$ $\Rightarrow x^{2} = \frac{3x+11}{x+2}$ $\Rightarrow x = \sqrt{\frac{3x+11}{x+2}}$	then rearranges to give the quoted result on the question paper.	A1 #	AG (2)
(b)	Iterative formula: $x_{n+1} = \sqrt{\left(\frac{3x_n + 11}{x_n + 2}\right)}$, $x_1 = 0$			
	$x_2 = \sqrt{\left(\frac{3(0) + 11}{(0) + 2}\right)}$	An attempt to substitute $x_1 = 0$ into the iterative formula. Can be implied by $x_2 = \sqrt{5.5}$ or 2.35 or awrt 2.345	M1	
	$x_2 = 2.34520788$ $x_3 = 2.037324945$ $x_4 = 2.058748112$	Both $x_2 = \text{awrt } 2.345$ and $x_3 = \text{awrt } 2.037$ $x_4 = \text{awrt } 2.059$	A1 A1	(3)
(c)	Let $f(x) = x^3 + 2x^2 - 3x - 11 = 0$			
	f(2.0565) = -0.013781637 f(2.0575) = 0.0041401094 Sign change (and $f(x)$ is continuous) therefore a root α is such that $\alpha \in (2.0565, 2.0575) \Rightarrow \alpha = 2.057$ (3 dp)	Choose suitable interval for <i>x</i> , e.g. [2.0565, 2.0575] or tighter any one value awrt 1 sf both values correct awrt 1sf, sign change and conclusion As a minimum, both values must be correct to 1 sf, candidate states	M1 dM1 A1	(3)
		"change of sign, hence root".		[8]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

3.	(a) Express $5 \cos x - 3 \sin x$ in the form $R \cos(x + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2}\pi$.	(4)	Leave blank
		(.)	
	(b) Hence, or otherwise, solve the equation		
	$5\cos x - 3\sin x = 4$		
	for $0 \le x < 2\pi$, giving your answers to 2 decimal places.	(5)	

www.mystudybro.com

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

6	6	65	:

Question Number	Scheme	Marks
Q3 (a)	$5\cos x - 3\sin x = R\cos(x + \alpha), R > 0, \ 0 < x < \frac{\pi}{2}$	
	$5\cos x - 3\sin x = R\cos x \cos \alpha - R\sin x \sin \alpha$	
	Equate $\cos x$: $5 = R \cos \alpha$ Equate $\sin x$: $3 = R \sin \alpha$ $R = \sqrt{5^2 + 3^2}$; $= \sqrt{34} \{= 5.83095\}$ $\frac{R^2 = 5^2 + 3^2}{\sqrt{34} \text{ or awrt 5.8}}$	·
	$\tan \alpha = \pm \frac{3}{5} \text{ or } \tan \alpha = \pm \frac{5}{3} \text{ or } \tan \alpha $	MII
(b)	$\alpha = \operatorname{awrt} 0.17\pi \text{ or } \alpha = \frac{\pi}{\operatorname{awrt} 5.8}$ Hence, $5\cos x - 3\sin x = \sqrt{34}\cos(x + 0.5404)$ $5\cos x - 3\sin x = 4$	(4)
(6)	$\sqrt{34}\cos(x+0.5404) = 4$	
	$\cos(x + 0.5404) = \frac{4}{\sqrt{34}} \{ = 0.68599 \}$ $\cos(x \pm \text{their } \alpha) = \frac{4}{\text{their } R}$	M1
	$(x + 0.5404) = 0.814826916^{c}$ For applying $\cos^{-1}\left(\frac{4}{\text{their }R}\right)$	M1
	$x = 0.2744^{\circ}$ awrt 0.27°	
	$(x + 0.5404) = 2\pi - 0.814826916^{c} $ $\{ = 5.468358^{c} \}$ $2\pi - \text{their } 0.8148$	ddM1
	$x = 4.9279^{\circ}$ awrt 4.93°	A1
	Hence, $x = \{0.27, 4.93\}$	(5)
		[9]

Part (b): If there are any EXTRA solutions inside the range $0 \le x < 2\pi$, then withhold the final accuracy mark if the candidate would otherwise score all 5 marks. Also ignore EXTRA solutions outside the range $0 \le x < 2\pi$.

This resource was created and owned by Pearson Edexcel

6665

Leave blank

4. (i) Given that $y = \frac{\ln(x^2 + 1)}{x}$, find $\frac{dy}{dx}$.

(4)

(ii) Given that $x = \tan y$, show that $\frac{dy}{dx} = \frac{1}{1+x^2}$.

(5)

Question Number	Scheme	Marks
Q4 (i)	$y = \frac{\ln(x^2 + 1)}{x}$	
	$u = \ln(x^2 + 1) \implies \frac{du}{dx} = \frac{2x}{x^2 + 1}$ $\ln(x^2 + 1) \implies \frac{\sin(x^2 + 1)}{x^2 + 1}$ $\ln(x^2 + 1) \implies \frac{2x}{x^2 + 1}$	M1 A1
	Apply quotient rule: $\begin{cases} u = \ln(x^2 + 1) & v = x \\ \frac{du}{dx} = \frac{2x}{x^2 + 1} & \frac{dv}{dx} = 1 \end{cases}$	
	$\frac{\mathrm{d}y}{1} = \frac{\left(\frac{2x}{x^2+1}\right)(x) - \ln(x^2+1)}{x^2}$ Applying $\frac{xu' - \ln(x^2+1)v'}{x^2}$ correctly.	M1
	$\frac{dy}{dx} = \frac{(x + 1)^2}{x^2}$ Correct differentiation with correct bracketing but allow recovery.	A1 (4)
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{(x^2 + 1)} - \frac{1}{x^2} \ln(x^2 + 1) \right\}$ {Ignore subsequent working.}	
(ii)	$x = \tan y$ $\tan y \to \sec^2 y \text{ or an attempt to}$	
	$\frac{dx}{dx} = \sec^2 y$ differentiate $\frac{\sin y}{\cos y}$ using either the	M1*
	dr .	A1
	$\frac{dy}{dx} = \frac{1}{\sec^2 y} \left\{ = \cos^2 y \right\}$ Finding $\frac{dy}{dx}$ by reciprocating $\frac{dx}{dy}$.	dM1*
	For writing down or applying the identity $\frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$ which must be applied/stated completely in y .	dM1*
	Hence, $\frac{dy}{dx} = \frac{1}{1+x^2}$, (as required) For the correct proof, leading on from the previous line of working.	A1 AG
		(5)
		[9]

This resource was created and owned by Pearson Edexcel

Leave blank

5. Sketch the graph of $y = \ln |x|$, stating the coordinates of any points of intersection with the axes.

(3)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme			
Q5	$y = \ln x $			
	Right-hand branch in quadrants 4 and 1. Correct shape.	B1		
	Left-hand branch in quadrants 2 and 3. Correct shape.	B1		
	Completely correct sketch and both $\left(-1,\{0\}\right)$ and $\left(1,\{0\}\right)$	B1		
		(3)		
		[3]		

6665 Leave

blank

6.

Figure 1

Figure 1 shows a sketch of the graph of y = f(x).

The graph intersects the y-axis at the point (0, 1) and the point A(2, 3) is the maximum turning point.

Sketch, on separate axes, the graphs of

- (i) y = f(-x) + 1,
- (ii) y = f(x + 2) + 3,
- (iii) y = 2f(2x).

On each sketch, show the coordinates of the point at which your graph intersects the y-axis and the coordinates of the point to which A is transformed.

(9)

Winter 2010 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number	Scheme	
Q6 (i)	y = f(-x) + 1 Shape of	
	and must have a maximum in quadrant 2 and a minimum in quadrant 1 or on the positive y -axis.	B1
	Either $(\{0\}, 2)$ or $A'(-2, 4)$	B1
	Both $(\{0\}, 2)$ and $A'(-2, 4)$	B1
	x x	(3)
(ii)	$y = f(x+2) + 3$ $y \spadesuit$	
	$A'(\{0\}, 6)$ Any translation of the original curve.	B1
	The <i>translated maximum</i> has either <i>x</i> -coordinate of 0 (can be implied) or <i>y</i> -coordinate of 6. The translated curve has maximum	B1
	$(\{0\}, 6)$ and is in the correct position on the Cartesian axes.	B1
	O X	(2)
(iii)	y = 2f(2x)	(3)
(111)	y = 21(2x) $A'(1, 6)$ Shape of	
	with a minimum in quadrant 2 and a maximum in quadrant 1.	B1
	Either $(\{0\}, 2)$ or $A'(1, 6)$	B1
	Both $(\{0\}, 2)$ and $A'(1, 6)$	B1
	O X	(2)
		(3) [9]
		[/]

This resource was created and owned by Pearson Edexcel

6665

Leave blank

7. (a) By writing $\sec x$ as $\frac{1}{\cos x}$, show that $\frac{d(\sec x)}{dx} = \sec x \tan x$.

(3)

Given that $y = e^{2x} \sec 3x$,

(b) find $\frac{dy}{dx}$.

(4)

The curve with equation $y = e^{2x} \sec 3x$, $-\frac{\pi}{6} < x < \frac{\pi}{6}$, has a minimum turning point at (a, b).

(c) Find the values of the constants a and b, giving your answers to 3 significant figures.

(4)

Past Paper (Mark Scheme)

6665

Questi Numb		Scheme			Marks	
Q7 ((a)	$y = \sec x = \frac{1}{\cos x} = (\cos x)^{-1}$				
		$\frac{\mathrm{d}y}{\mathrm{d}x} = -1(\cos x)^{-2}(-\sin x)$	$\frac{dy}{dx} = \pm ((\cos x)^{-2} (\sin x))$ $-1(\cos x)^{-2} (-\sin x) \text{ or } (\cos x)^{-2} (\sin x)$	M1 A1		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \left\{ \frac{\sin x}{\cos^2 x} \right\} = \underbrace{\left(\frac{1}{\cos x} \right) \left(\frac{\sin x}{\cos x} \right)}_{= \frac{\sec x \tan x}{\cos x}}$	Convincing proof. Must see both <u>underlined steps.</u>	A1	AG (3)	
((b)	$y = e^{2x} \sec 3x$				
		$\begin{cases} u = e^{2x} & v = \sec 3x \\ \frac{du}{dx} = 2e^{2x} & \frac{dv}{dx} = 3\sec 3x \tan 3x \end{cases}$	Seen or implied Seen $e^{2x} \rightarrow 2e^{2x}$ or $\sec 3x \rightarrow 3\sec 3x \tan 3x$ Both $e^{2x} \rightarrow 2e^{2x}$ and	M1		
		$\left(\frac{dx}{dx} - 2c - \frac{dx}{dx} - 3scc 3x \tan 3x\right)$	$\sec 3x \to 3\sec 3x \tan 3x$	A1		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\mathrm{e}^{2x}\sec 3x + 3\mathrm{e}^{2x}\sec 3x\tan 3x$	Applies $vu' + uv'$ correctly for their u, u', v, v'	M1		
			$2e^{2x}\sec 3x + 3e^{2x}\sec 3x\tan 3x$	A1	isw (4)	
	(c)	Turning point $\Rightarrow \frac{dy}{dx} = 0$				
		Hence, $e^{2x} \sec 3x (2 + 3\tan 3x) = 0$	Sets their $\frac{dy}{dx} = 0$ and factorises (or cancels) out at least e^{2x} from at least two terms.	M1		
		{Note $e^{2x} \neq 0$, $\sec 3x \neq 0$, so $2 + 3\tan 3x = 0$,}				
		giving $\tan 3x = -\frac{2}{3}$	$\tan 3x = \pm k \; ; k \neq 0$	M1		
		$\Rightarrow 3x = -0.58800 \Rightarrow x = \{a\} = -0.19600$	Either awrt -0.196° or awrt -11.2°	A1		
		Hence, $y = \{b\} = e^{2(-0.196)} \sec(3 \times -0.196)$	2012	A 1		
		= 0.812093 = 0.812 (3sf)	0.812	A1	cao (4)	
					[11]	

Part (c): If there are any EXTRA solutions for x (or a) inside the range $-\frac{\pi}{6} < x < \frac{\pi}{6}$, ie. -0.524 < x < 0.524 or ANY EXTRA solutions for y (or b), (for these values of x) then withhold the final accuracy mark. Also ignore EXTRA solutions outside the range $-\frac{\pi}{6} < x < \frac{\pi}{6}$, ie. -0.524 < x < 0.524.

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

63	U,
6	668
Le	ave

$\csc^2 2x - \cot 2x = 1$	
for $0 \le x \le 180^{\circ}$.	(7)

Question Number	Scheme		
Q8	$\csc^2 2x - \cot 2x = 1$, (eqn *) $0 \le x \le 180^\circ$		
	Using $\csc^2 2x = 1 + \cot^2 2x$ gives $1 + \cot^2 2x - \cot 2x = 1$	Writing down or using $\csc^2 2x = \pm 1 \pm \cot^2 2x$ or $\csc^2 \theta = \pm 1 \pm \cot^2 \theta$.	M1
	$\frac{\cot^2 2x - \cot 2x}{\cot^2 2x - \cot 2x} = 0 \text{or} \cot^2 2x = \cot 2x$	For either $\frac{\cot^2 2x - \cot 2x}{\cot^2 2x = \cot 2x}$ {= 0}	A1
	$\cot 2x(\cot 2x - 1) = 0 \text{or} \cot 2x = 1$	Attempt to factorise or solve a quadratic (See rules for factorising quadratics) or cancelling out cot 2 <i>x</i> from both sides.	dM1
	$\cot 2x = 0 \text{or} \cot 2x = 1$	Both $\cot 2x = 0$ and $\cot 2x = 1$.	A1
	$\cot 2x = 0 \Rightarrow (\tan 2x \rightarrow \infty) \Rightarrow 2x = 90, 270$ $\Rightarrow x = 45, 135$ $\cot 2x = 1 \Rightarrow \tan 2x = 1 \Rightarrow 2x = 45, 225$ $\Rightarrow x = 22.5, 112.5$	Candidate attempts to divide at least one of their principal angles by 2. This will be usually implied by seeing $x = 22.5$ resulting from $\cot 2x = 1$.	ddM1
	Overall, $x = \{22.5, 45, 112.5, 135\}$	Both $x = 22.5$ and $x = 112.5$ Both $x = 45$ and $x = 135$	A1 B1
			[7]

If there are any EXTRA solutions inside the range $0 \le x \le 180^{\circ}$ and the candidate would otherwise score FULL MARKS then withhold the final accuracy mark (the sixth mark in this question). Also ignore EXTRA solutions outside the range $0 \le x \le 180^{\circ}$.

This resource was created and owned by Pearson Edexcel

Leave

blank

- **9.** (i) Find the exact solutions to the equations
 - (a) ln(3x-7) = 5

(3)

(b) $3^x e^{7x+2} = 15$

(5)

(ii) The functions f and g are defined by

$$f(x) = e^{2x} + 3,$$

$$x \in \mathbb{R}$$

$$g(x) = \ln(x - 1), \qquad x \in \mathbb{R}, \ x > 1$$

$$x \in \mathbb{R}, x > 1$$

(a) Find f^{-1} and state its domain.

(4)

(b) Find fg and state its range.

(3)

Question Number	Scheme			arks
00 (:)(a)	$\ln(3x-7)=5$			
Q9 (i)(a)	$\ln(3x - 7) = 5$ $e^{\ln(3x - 7)} = e^5$	Takes e of both sides of the equation. This can be implied by $3x - 7 = e^5$.	M1	
	$3x - 7 = e^5 \implies x = \frac{e^5 + 7}{3} \{ = 51.804 \}$	Then rearranges to make x the subject. Exact answer of $\frac{e^5 + 7}{3}$.	dM1	(3)
(b)	$3^x e^{7x+2} = 15$. ,
	$\ln\left(3^x e^{7x+2}\right) = \ln 15$	Takes ln (or logs) of both sides of the equation.	M1	
	$\ln 3^x + \ln e^{7x+2} = \ln 15$	Applies the addition law of logarithms.	M1	
	$x\ln 3 + 7x + 2 = \ln 15$	$x\ln 3 + 7x + 2 = \ln 15$	A1 (oe
	$x(\ln 3 + 7) = -2 + \ln 15$	Factorising out at least two <i>x</i> terms on one side and collecting number terms on the other side.	ddM′	1
	$x = \frac{-2 + \ln 15}{7 + \ln 3} \ \left\{ = 0.0874 \right\}$	Exact answer of $\frac{-2 + \ln 15}{7 + \ln 3}$	A1 c	
(ii) (a)	$f(x) = e^{2x} + 3, x \in \square$			(5)
	$y = e^{2x} + 3 \implies y - 3 = e^{2x}$ $\implies \ln(y - 3) = 2x$	Attempt to make <i>x</i> (or swapped <i>y</i>) the subject	M1	
	$\Rightarrow \frac{1}{2}\ln(y-3) = x$	Makes e^{2x} the subject and takes ln of both sides	M1	
	Hence $f^{-1}(x) = \frac{1}{2} \ln(x-3)$	$\frac{\frac{1}{2}\ln(x-3)}{\text{or } f^{-1}(y) = \frac{1}{2}\ln(y-3)} \text{ (see appendix)}$	<u>A1</u> c	cao
	$f^{-1}(x)$: Domain: $\underline{x > 3}$ or $\underline{(3, \infty)}$	Either $\underline{x > 3}$ or $\underline{(3, \infty)}$ or $\underline{\text{Domain} > 3}$.	B1	(4)
(b)	$g(x) = \ln(x-1), x \in \square, x > 1$			(1)
	$fg(x) = e^{2\ln(x-1)} + 3 \left\{ = (x-1)^2 + 3 \right\}$	An attempt to put function g into function f. $e^{2\ln(x-1)} + 3$ or $(x-1)^2 + 3$ or $x^2 - 2x + 4$.	M1 A1 i	İSW
	fg(x): Range: $y > 3$ or $(3, \infty)$	Either $y > 3$ or $(3, \infty)$ or Range > 3 or $g(x) > 3$.	B1	(3)
				[15]