		J	
resource was	created and	owned by Pearson Edexcel	

Pearson Edexcel	Centre Number	Candidate Number
Lore Math Advanced Monday 27 January 2014 – Time: 1 hour 30 minutes	Morning	S C 3 Paper Reference 6665 A / 01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P43136A ©2014 Pearson Education Ltd. 5/5/5/5/

Turn over 🕨

Mathematics C3

(2)

(1)

6665 Leave

blank

1.

$$f(x) = \sec x + 3x - 2, \quad -\frac{\pi}{2} < x < \frac{\pi}{2}$$

(a) Show that there is a root of f(x) = 0 in the interval [0.2, 0.4]

(b) Show that the equation f(x) = 0 can be written in the form

$$x = \frac{2}{3} - \frac{1}{3\cos x}$$

The solution of f(x) = 0 is α , where $\alpha = 0.3$ to 1 decimal place.

(c) Starting with $x_0 = 0.3$, use the iterative formula

$$x_{n+1} = \frac{2}{3} - \frac{1}{3\cos x_n}$$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 4 decimal places.

(3)

(1)

(d) State the value of α correct to 3 decimal places.

2

Questio Numbe	on er	Sch	eme	Marks
1 (a))	Radians: f(0.2) = -0.4, $f(0.4) = 0.3$ or considers smaller subset of [0.2, 0.4]	Degrees: f(0.2) = -0.4, $f(0.4) = 0.2$ or considers smaller subset of [0.2, 0.4]	M1
		Change of sign in	nplies root	A1 (2)
(b))	$\sec x + 3x - 2 = 0 \Longrightarrow 3x = 2 - \sec x$	and so $x = \frac{2}{3} - \frac{1}{3\cos x} *$	B1 (1)
(c)		Radians: $x_1 = 0.3177$, $x_2 = 0.3158$, $x_3 = 0.3160$	Degrees: $x_1 = 0.3333, x_2 = 0.3333, x_3 = 0.3333$	M1, A1, A1 (3)
(d))	0.316 (radians)	0.333 (degrees)	B1 (1)
				[7]
	<u> </u>		Notes	
(a) M1: Gives two answers with at least one correct to 1sf. Candidates may work in degrees or in radians in this question, but there is a maximum of $6/7$ for those working in degrees. (May choose smaller interval between 0.2 and 0.4 e.g. f(0.3) and f(0.35) but this must span the root which is near to 0.316 in radians and				

0.333 in degrees) If they choose a larger interval then this is M0
A1: Both their values correct to at least one decimal place, and reason given (e.g. change of sign or f(0.2)<0, f(0.4)>0 or product f(0.2)f(0.4)<0 or equivalent) and conclusion e.g. root
(b) B1: Starts with equation equal to zero, rearranges correctly with no errors and at least one intermediate step

(c) M1:Substitutes $x_0 = 0.3$ into $x = \frac{2}{3} - \frac{1}{3\cos x} \Longrightarrow x_1 =$

This can be implied by $x_1 = \frac{2}{3} - \frac{1}{3\cos 0.3}$, or answers which round to 0.32 (rads) or 0.33 (degrees)

A1: x_1 awrt 0.3177 4dp (rads) or to awrt 0.3333 4dp (degrees)

Mark as the first value given. Don't be concerned by the subscript

A1: $x_2 = awrt \ 0.3158$, $x_3 = awrt \ 0.3160 \ (rads) - NOT \ just \ 0.316$

NB $x_2 = \text{awrt } 0.3333$, $x_3 = \text{awrt } 0.3333$ (degrees). This mark is A0. They cannot score A1 if working in degrees

Mark the second and third values given. Don't be concerned by the subscripts Ignore extra values.

(d) **B1**: 0.316 stated to 3dp (independent of part (c)) for radians or 0.333 for degrees

The whole answer must maintain consistent units – either degrees, or radians. Use answer to (c) to determine units being used. NB Degree answers have maximum of M1A1B1M1A1A0B1 ie 6/7

Leave blank

2.

$$f(x) = \frac{15}{3x+4} - \frac{2x}{x-1} + \frac{14}{(3x+4)(x-1)}, \quad x > 1$$

- (a) Express f(x) as a single fraction in its simplest form.
- (b) Hence, or otherwise, find f'(x), giving your answer as a single fraction in its simplest form.

(3)

(4)

Question Number	Scheme	Marks
2. (a)	Use of common denominator e.g. $\frac{15}{3x+4} - \frac{2x}{x-1} + \frac{14}{(3x+4)(x-1)} = \frac{15(x-1) - 2x(3x+4) + 14}{(3x+4)(x-1)}$	M1
	$=\frac{-6x^2+7x-1}{(3x+4)(x-1)}$	A1
	$=\frac{-(6x-1)(x-1)}{(3x+4)(x-1)}$	M1
	$=\frac{(1-6x)}{(3x+4)} \text{ or } =\frac{(-6x+1)}{(3x+4)} \text{ or } =-\frac{(6x-1)}{(3x+4)} \text{ o.e.}$	A1 (4)
First Alternative for (a)	$\frac{15}{3x+4} - \frac{2x}{x-1} + \frac{14}{(3x+4)(x-1)} = \frac{15}{3x+4} + \frac{-2x(3x+4)+14}{(3x+4)(x-1)}$	M1
	$=\frac{15}{3x+4} + \frac{-6x^2 - 8x + 14}{(3x+4)(x-1)}$	A1
	$=\frac{15}{3x+4} + \frac{-2(x-1)(3x+7)}{(3x+4)(x-1)}$	M1
	$=\frac{(1-6x)}{(3x+4)} \text{ or } =\frac{(-6x+1)}{(3x+4)} \text{ or } =-\frac{(6x-1)}{(3x+4)} \text{ o.e.}$	A1 (4)
Second Alternative for (a)	$\frac{15}{3x+4} - \frac{2x}{x-1} + \frac{14}{(3x+4)(x-1)} = \frac{15(3x+4)(x-1) - 2x(3x+4)^2 + 14(3x+4)}{(3x+4)^2(x-1)}$	M1
	$=\frac{(3x+4)(-6x^2+7x-1)}{(3x+4)^2(x-1)} \text{ or } =\frac{(x-1)(-18x^2-21x+4)}{(3x+4)^2(x-1)}$	A1
	$=\frac{(3x+4)^2(1-6x)}{(3x+4)^2(x-1)}, =\frac{(1-6x)}{(3x+4)} \text{ or } =\frac{(-6x+1)}{(3x+4)} \text{ or } =-\frac{(6x-1)}{(3x+4)} \text{ o.e.}$	M1, A1 (4)
(b)	$f'(x) = \frac{(3x+4) \times (-6) - (1-6x) \times 3}{(3x+4)^2}$	M1 A1ft
	$=\frac{-27}{(3x+4)^2}$	A1cao (3)
Alternative for (b)	Or $f'(x) = (3x+4)^{-1} \times (-6) + (1-6x) \times (-3) \times (3x+4)^{-2}$	M1 A1ft
	$=\frac{-27}{(3x+4)^2}$	A1cao (3)
Second Alternative for (b)	Or $f(x) = -2 + \frac{9}{3x+4}$ so $f'(x) = 9 \times (-3) \times (3x+4)^{-2} = \frac{-27}{(3x+4)^2}$	M1 A1ft A1cao (3)

Question Number	Scheme	Marks			
Third Alternative for (b)	Differentiates original expression: $\frac{-45}{(3x+4)^2} - \left[\frac{2(x-1)-2x}{(x-1)^2}\right] + \frac{-14(6x+1)}{(3x+4)^2(x-1)^2}$	M1 A1			
	$=\frac{-27}{(3x+4)^2}$	A1cao [7]			
(a) M1: Com A1: corre M1: Facto A1 cao (b	<u>Notes</u> bines two or three fractions into single fraction with correct use of common denomina ct answer with collected terms giving three term quadratic numerator orises their quadratic following usual rules in numerator: out may be written in different ways – see m-s above)	ltor			
(b) M1 : App denomir numera squared	(b) M1: Applies product or quotient rule correctly to their fraction (must have <i>x</i> terms in numerator and denominator of their answer to (a) which may be linear, quadratic, or even cubic; not just constant numerator) but it should be clear that they are using the correct rule with correct signs and correct term squared (in the case of quotient rule) i.e. using $\frac{vu' - uv'}{v^2}$ and states $u = v = \frac{du}{dx} = \frac{dv}{dx} = 0$ or an				
answer	answer of the form $\frac{(3x+4) \times A - (1-6x) \times B}{(3x+4)^2}$ implies the method.				
Similarly attempt	y for the product rule : If the formula is quoted it must be correct. There must have been to differentiate both terms. le is not quoted nor implied by their working, meaning that term are written out $6u'' = u = (12 - 12)^{-1} u' = u' = -61$ followed by their $uu' = u' = -61$	n some			
u = 1 - the form	$u = [1-6x], v = ([3x+4])^{-1}, u' =, v' = \text{ followed by their } vu' + uv', \text{ then only accept answers of the form } ([3x+4])^{-1} \times A \pm [3]([3x+4])^{-2} \times B.$				
Condone For the t above. (1	Condone invisible brackets for the M mark. For the third alternative method , need an attempt at all three differentiations in line with the guidance above. (N.B. the first A1 is not ft for this method).				
A1ft: may be	e unsimplified e.g. $\frac{(3x+4)\times(-6)-(1-6x)\times 5}{(3x+4)^2}$ but should be correct for their answe	r to (a)			
A1: correct s	implified cao but accept $=\frac{-27}{9x^2+24x+16}$, as alternative				
So a wrong a	nswer in (a) can only achieve a maximum mark of M1A1A0 in part (b)				

Mathematics C3

8 Theorem 2 This resource was created and owned by Pearson Edexcel Leave black

a. (a) By writing
$$\csc x$$
 as $\frac{1}{\sin x}$, show that
$$\frac{d(\csc x)}{dx} = -\csc x \cot x$$
(b) find an expression for $\frac{dy}{dx}$.
(c) Show that the x-coordinate of this turning point is at $x = \frac{1}{2} \arctan k$ where the value of the constant k should be found.
(c) Show that the x-coordinate of this turning point is at $x = \frac{1}{2} \operatorname{arctan} k$ where the value of the constant k should be found.
(c) Show that the x-coordinate of this turning point is at $x = \frac{1}{2} \operatorname{arctan} k$ where the value of the constant k should be found.
(c) Show that the x-coordinate of this turning point is at $x = \frac{1}{2} \operatorname{arctan} k$ where the value of the constant k should be found.
(c) Show that the x-coordinate of this turning point is at $x = \frac{1}{2} \operatorname{arctan} k$ where the value of the constant k should be found.
(c) Show that the x-coordinate of this turning point is at $x = \frac{1}{2} \operatorname{arctan} k$ where the value of the constant k should be found.
(c) Show that the x-coordinate of this turning point is at $x = \frac{1}{2} \operatorname{arctan} k$ where the value of the constant k should be found.
(c) Show that the x-coordinate of this turning point is at $x = \frac{1}{2} \operatorname{arctan} k$ where the value of the constant k should be found.
(c) Show that the x-coordinate of this turning point is at $x = \frac{1}{2} \operatorname{arctan} k$ where the value of the constant k should be found.
(c) Show that the x-coordinate of the x-coordinate

Question Number	Scheme	Marks		
3 (a)	Let $y = (\sin x)^{-1}$, then $\frac{dy}{dx} = -1(\sin x)^{-2} \times \cos x$	M1 A1		
	i.e. $\frac{dy}{dx} = \frac{-1}{\sin x} \times \frac{\cos x}{\sin x} = -\cos \exp \cot x^*$	B1* (3)		
Alternative Method (a)	Use of quotient rule $\frac{dy}{dx} = \frac{\sin x \times 0 - 1\cos x}{\sin^2 x}$	M1A1		
	i.e. $\frac{dy}{dx} = \frac{-1}{\sin x} \times \frac{\cos x}{\sin x} = -\cos \exp \cot x^*$	B1* (3)		
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\mathrm{e}^{3x}\cos\mathrm{ec}2x + \mathrm{e}^{3x} \times -2\cos\mathrm{ec}2x\cot 2x$	M1 A1 A1 (3)		
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{3x} \cos \mathrm{ec} 2x(3 - 2\cot 2x) = 0$	M1		
	(So cot $2x = 1.5$) tan $2x = 2/3$ so $x = \frac{1}{2}\arctan\frac{2}{3}$ (or $k = 2/3$)	A1 (2) [8]		
Notes				
(a) M1 : Use	of chain rule so $\frac{dy}{dx} = -1(\sin x)^{-2} \times (\pm \cos x)$			
A1: cao B1 : Use c	of definitions of $cosecx$ and $cotx$ and $conclusion$, with no errors (need at least in	termediate step		
show	In in scheme which may be written $\frac{dy}{dx} = \frac{-\cos x}{\sin x \sin x}$). This mark is dependent on t	he M1.		
Alternative:	M1 : If quotient rule is used need to see $\frac{dy}{dx} = \frac{\sin x \times 0 - 1(\pm \cos x)}{\sin^2 x}$, then A1 is c	ao		
(b) M1 : If th $u = e^{3x}$,	e rule is not quoted nor implied by their working, meaning that terms are written $v = \cos ec 2x$, $u' =, v' =$ followed by their $vu'+uv'$, then only accept answe	out ers of the form		
$\mu e^{3x} co$	$\sec 2x + e^{3x} \times \lambda \csc \sec 2x \cot 2x$.			
A1: one to	erm correct, A1 both terms correct (need not simplify isw)			
(c) M1 : Puts	(c) M1: Puts $\frac{dy}{dx} = 0$ and factorises or cancels by $e^{3x} \csc 2x$ concluding that $a \pm b \cot 2x = 0$ or $\cot 2x = \pm \frac{a}{b}$			

A1: Draws correct conclusion $\frac{1}{2} \arctan \frac{2}{3}$ or k = 2/3

This resource was created and owned by Pearson Edexcel 6665 Leave blank A pot of coffee is delivered to a meeting room at 11am. At a time t minutes after 11am 4. the temperature, θ °C, of the coffee in the pot is given by the equation $\theta = A + 60e^{-kt}$ where A and k are positive constants. Given also that the temperature of the coffee at 11am is 85 °C and that 15 minutes later it is 58 °C, (a) find the value of A. (1) (b) Show that $k = \frac{1}{15} \ln \left(\frac{20}{11} \right)$ (3) (c) Find, to the nearest minute, the time at which the temperature of the coffee reaches 50 °C. (4)

Question Number	Scheme	Marks		
4.	(a) When $t = 0$, $\theta = 85$ so $85 = A + 60$, $A = 25$	B1 (1)		
	(b) $58 = "25" + 60e^{-k15}$ "33" - 60e^{-k15} - e^{-k15} - <u>"33"</u> or $e^{k15} - \frac{60}{60}$	M1		
	So $-15k = \ln\left(\frac{"11"}{20}\right)$ or $15k = \ln\left(\frac{20}{"11"}\right)$	M1 M1		
	$k = -\frac{1}{15} \ln\left(\frac{11}{20}\right) = \frac{1}{15} \ln\left(\frac{20}{11}\right) *$	A1cso* (3)		
	(c) $50 = "25" + 60e^{-kt} \rightarrow e^{-kt} = \text{ or } e^{kt} = \text{ or } (.96)^t =$	M1		
	$(e^{-kt}) = \frac{25}{60}$ (or awrt 0.42) or $(0.96^t) = \frac{25}{60}$ or $(e^{kt}) = \frac{60}{25}$	A1		
	$t = \frac{\ln\left(\frac{"25"}{60}\right)}{-k} \text{or} t = \frac{\ln\left(\frac{60}{"25"}\right)}{k}$	M1		
	$\frac{\ln\left(\frac{25}{60}\right)}{-\frac{1}{15}\ln\left(\frac{20}{11}\right)} = (21.96) = 22 \text{ mins (approx) or } 11.22 \text{ or } t = 22$	A1 (4) [8]		
(a) B1 : Giv	$\frac{\text{Notes}}{\text{Notes}}$ es answer <i>A</i> = 25 – any work seen should be correct			
(b) M1 : Us M1 : Uses 1 of <i>A</i> to find	es values 58 and 15 with their A to form equation in k and isolate $e^{-k15} = or e^{k15} = or e^{k15} = or e^{k15}$ and only applying log to positive quantities k. Need to see line shown in mark scheme.	= s) with their value		
A1cso: The	re needs to be a step between $-15k = \ln\left(\frac{"11"}{20}\right)$ and the printed answer. The printed	answer needs to		
be stated. 1 in A0 N.B. This p	No errors should be seen reaching it. Use of decimals giving 0.03985 as part of the p proof must be seen in part (b) to be credited with marks in part (b).	proof will result		
(c) M1: Uses 50 with their A and makes their e^{-kt} subject A1: correct numerical fraction (any correct form- if given as decimal accept awrt 0.42)[ignore LHS]				
M1 : Uses l	bgs correctly then rearranges correctly to obtain $t = \frac{\ln\left(\frac{1}{60}\right)}{-k}$ (Allow 50 – their A	instead of 25 in		
numerator) A1: awrt 22	2 minutes. Accept 11.22 i.e. 24 hour clock or $t = 22$ or $t = 22$ minutes but not $t = 22$ c	legrees C.		
Special cas	e: A common error is to reach $0.96t = \frac{25}{60}$; this is a result of log errors- so allow M1	A1M0A0		
Another co this achieve	mmon error is to miscopy 15 as 5 (usually part way through the answer). Answer is uses $M1A1M1A0$	usually 7.3 and		

Mathematics C3

Question Number	Scheme	Marks		
5	(a) $R\cos\alpha = 3$, $R\sin\alpha = 3$			
5.	$R = 3\sqrt{2}$ or $\sqrt{18}$ or awrt 4.24	B1		
	$\tan \alpha = 1, \Rightarrow \alpha = \frac{\pi}{4} \qquad \text{or } 0.785$	M1, A1 (3)		
	(b) $\left(\frac{dx}{dy}\right) = 3\cos y - 3\sin y$ or $3\sqrt{2}\cos(y + \frac{\pi}{4})$	M1 A1		
	Puts $3\sqrt{2}\cos(y+\alpha) = 2$ or puts $-3\sqrt{2}\sin(y-\alpha) = 2$	B1		
	So $\cos(y+\alpha) = \frac{\sqrt{2}}{3}$ and $y = "1.0799"-\alpha$ or $y = "-0.491"+\alpha$	M1		
	y=0.295 and $x=3.742$ (or 3.743)	A1 A1 (6) [9]		
Notes (a) B1 : $(R = \sqrt{3^2 + 3^2}) = 3\sqrt{2}$ (accept $\pm 3\sqrt{2}$ but not just $-3\sqrt{2}$) No working need be seen. Accept decimal answers which round to 4.24. M1 : For $\tan \alpha = \pm \frac{3}{3}$ If <i>R</i> is used then accept $\sin \alpha = \pm \frac{3}{R}$ or $\cos \alpha = \pm \frac{3}{R}$ A1 : Accept awrt 0.785 BUT 45 degrees is A0 (b) M1 : Attempts differentiation (may be sign errors) A1 : correct in either form shown on scheme – answer is A0 if clearly in degrees. B1 : Obtains equation given in scheme, or $\frac{1}{3\sqrt{2}\cos(y+\alpha)} = \frac{1}{2}$, or equivalent. $3\cos y - 3\sin y = 2$ (without further work) is B0 but may be written as $-3\sqrt{2}\sin(y-\alpha) = 2$ which would be B1. It may also be solved by "t" formulae (see below)				
M1: Allow	in degrees or radians for $\operatorname{arcos}\left(\frac{\pm 2}{R}\right) \pm \alpha$ or for $\operatorname{arcsin}\left(\frac{\pm 2}{R}\right) \pm \alpha$ or for $\operatorname{arcos}\left(\frac{\pm 2}{R}\right) \pm \alpha$	$\left(\frac{\pm\frac{1}{2}}{R}\right)\pm\alpha$ or		
for arcsin	$\left(\frac{\pm \frac{1}{2}}{R}\right) \pm \alpha$			
 A1: one correct answer – allow 3.742 or 3.743 following incorrect y value A1: two correct answers (Accept awrt in both cases) Do not accept mixed units- unless recovery yields a correct final answer. Special case: Candidate works solely in degrees: In part (a) max mark is B1M1A0 In part (b) they can have 				
M1A1 for - d	$-3\cos y - 3\sin y$ or M1A0 for $3\sqrt{2}\cos(y+45)$) then B1 is possible and M1 if so y a degrees. The value for y in degrees is not appropriate but correct work in degrees	lution is		
correct value Ignore extra	completed in degrees. The value for y in degrees is not appropriate but correct work in degrees may lead tocorrect value for x, so A1, A0 could be earned.Ignore extra answer outside range.(PTO for little t formula method in part (b))			

Question Number	Scheme	Marks
5.	Contd "little <i>t</i> formula method"	
Alternative for last four marks in (b)	(b) $\frac{dx}{dy} = 3\cos y - 3\sin y$ (as before)	M1A1
	$3\cos y - 3\sin y = 2$ so $3\frac{1-t^2}{1+t^2} - 3\frac{2t}{1+t^2} = 2$	B1
	Attempt to solve $5t^2 + 6t - 1 = 0$ and use $y = 2 \times \arctan"0.148"$	M1
	y=0.295 and $x=3.742$ (or 3.743)	A1 A1 (6) [9]

6.

Leave blank

- Given that *a* and *b* are constants and that 0 < a < b,
 - (a) on separate diagrams, sketch the graph with equation
 - (i) y = |2x+a|,
 - (ii) y = |2x+a| b.

Show on each sketch the coordinates of each point at which the graph crosses or meets the axes.

(6)

(b) Solve, for *x*, the equation

$$2x + a\big| - b = \frac{1}{3}x$$

giving any answers in terms of *a* and *b*.

Question Number	1	Scheme		Marks
6	(a) (i)		V shape in correct position i.e. touches – ve x – axis as shown	B1
			(- <i>a</i> /2,0) and (0, <i>a</i>)	B1
	(ii)		Translation down of previous V shape ft or correct position if starts again	B1 ft
		A A A A A A A A A A A A A A A A A A A	((b-a)/2, 0) and $((a+b)/2, 0)$	B1, B1
			Completely correct graph with y intercept at $(0, a - b)$	B1 (6)
	(b) $(2x+a)-b$	$p = \frac{1}{3}x \rightarrow \frac{5}{3}x = b - a$		M1
	So $x = \frac{3}{5}(b-a)$			
	And $-(2x+a) - b = \frac{1}{3}x \rightarrow -2x - \frac{1}{3}x = a + b$			M1
	So $x = -\frac{3}{7}(a)$	(a+b)		A1
	/			(4) [10]
(a) (i) D	1. Vahana anmaat	orientation and position Could be s	tick shape (i.e. not whole of W)	
(a)(1) B	1 : $(-a/2, 0)$ and (0), a) accept $-a/2$ and a marked on the formula of	the correct axes or even $(0, -a/2)$	on x axis and
т	(a, 0) on y axis	nh for these marks to be swarded	l in nart (a)	
(ii) B	31ft: Translation do	wn of previous V shaped graph by	any amount (may be in wrong	position)
0 B	r correct V in corre	ect position if candidate starts again a correct B1 : both correct (may be s	and does not relate this to their g	graph in part (a) d $\left(-(a + b)/2\right)$ or
e	ven $(0, (b - a)/2)$ an	nd $(0, -(a + b)/2)$). (May be shown o	n wrong parts of x – axis, or integrated o	erchanged) Marks
m B	ay be given for cor S1 : The graph must l	rect coordinates i.e. ((<i>b</i> – <i>a</i>) /2, 0) ar be completely correct. Intercept mu	nd $(-(a + b)/2, 0)$ without grap st be on negative v axis and th	h. ere should be
t	wo x-intercepts, or	ne positive and one negative. The	y coordinate must be correct (m	ay be shown on y
(b) N	11 :Attempts first +ve	(a - b, 0)) e solution correctly using $(2x + a)$ and of	btains equation with multiple of x of	only on LHS
Α	1: any equivalent to	$x = \frac{3}{5}(b-a)$ e.g. $x = \frac{3}{5}b - \frac{3}{5}a$		2
M	1: Attempts second –	-ve solution correctly using $-(2x+a)$	and obtains equation with multiple	of <i>x</i> on LHS
Α	1: any equivalent to	$b x = -\frac{5}{7}(a+b)$ e.g. $x = -\frac{3}{7}a - \frac{3}{7}b$		

Winter 2014	www.mystudybro.com	Mathematics C3
Past Paper	This resource was created and owned by Pearson Edexcel	6665
		blank
7. (i)	(a) Prove that	
	$\cos 3\theta \equiv 4\cos^3\theta - 3\cos\theta$	
	(You may use the double angle formulae and the identity	
	$\cos(A + B) \equiv \cos A \cos B - \sin A \sin B$	
		(4)
	(b) Hence solve the equation	
	$2\cos 3\theta + \cos 2\theta + 1 = 0$	
	giving answers in the interval $0 \leq \theta \leq \pi$.	
	Solutions based entirely on graphical or numerical methods are not ac	ceptable.
		(6)
(ii)	Given that $\theta = \arcsin x$ and that $0 < \theta < \frac{\pi}{2}$, show that	
	2^{+}	
	$\sqrt{(1-x^2)}$	
	$\cot \theta = \frac{\sqrt{x}}{x}, 0 < x < 1$	
		(3)

P 4 3 1 3 6 A 0 2 2 2 8

Question Number	Scheme		Mark	s
7 (i)(a)	$\cos 3\theta = \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$		M1	
	$=(2\cos^2\theta-1)\cos\theta-$	$-2\sin\theta\cos\theta\sin\theta$	M1	
	$= 2\cos^3\theta - \cos\theta - 2($	$1 - \cos^2 \theta \cos \theta$	dM1	
	$= 4\cos^3\theta - 3\cos\theta^*$		A1 *	(4)
(b)	$8\cos^3\theta - 6\cos\theta + (2)$	$2\cos^2\theta - 1) + 1 = 0$	M1	
	$8\cos^3\theta + 2\cos^2\theta$	$\theta - 6\cos\theta = 0$	A1	
	$2\cos\theta(4\cos\theta-3)(\cos\theta+1) = 0$ so $\cos\theta =$		dM1	
	$\cos\theta = \frac{3}{4} (\text{or} 0 \text{ or } -1)$		A1	
	$\theta = 0.723$ and no extra answers in range, or $\theta = \frac{\pi}{2}$ and π (or 90° and 180°) A		A1, B1	(6)
(ii)	$(\sin\theta = x \text{ and so}) \cos\theta = \sqrt{(1-x^2)}$	Or uses right angled triangle with sides 1, x and $\sqrt{(1-x^2)}$	M1	
	$(\cot\theta) = \frac{\cos\theta}{\sin\theta}$	Indicates θ on diagram and implies $(\cot \theta) = \frac{adjacent}{opposite}$	M1	
	$\sqrt{(1-x^2)}$ *		A1*	
	$=\frac{1}{x}$	T		(3)
				[13]

<u>Notes</u>

(i) (a) M1: Correct statement for $\cos 3\theta$ as shown using compound angle formula

M1: Uses correct double angle formulae for $\sin 2\theta$ and $\cos 2\theta$ (any of the three) – allow invisible brackets dM1: (dependent on both previous Ms). Uses $\sin^2 \theta = (1 - \cos^2 \theta)$ o.e. to replace all sin terms by cos terms A1: deduces result with no errors- allow recovery from invisible brackets or from occasional missing θ – need all 3 M marks

(b) M1: Replaces $\cos 3\theta$ and $\cos 2\theta$ by expression from (a) and by attempt at double angle formula resulting in expression in cosine only – may do this in one or several steps – allow slips $8\cos^3\theta - 6\cos\theta + (\cos^2\theta - \sin^2\theta) + 1 = 0$ is not yet enough for M mark- but

 $8\cos^3\theta - 6\cos\theta + (\cos^2\theta - (1 - \cos^2\theta) + 1 = 0$ would get M1 but not yet the A mark

A1: correct cubic shown with 3 terms

dM1: Solves by any valid method (factorising, formula, completion of square or calculator or implied by 3/4) to give at least one non zero value for $\cos \theta =$ A1: for 3/4

A1: 0.723 or answers which round to this and no extra answers in range. Do not accept degrees.

B1: for $\theta = \frac{\pi}{2}$ and π (allow decimals to 3sf 3.14 and 1.57 or degrees)

(ii) M1: States $\cos \theta = \sqrt{(1-x^2)}$, or see right angled triangle with sides 1, x and $\sqrt{(1-x^2)}$

M1: Implies $(\cot \theta) = \frac{\cos \theta}{\sin \theta}$ - not $(\cot \theta) = \frac{\cos}{\sin \theta}$ nor $(\cot \theta) = \frac{\cos}{\sin \theta}$

or indicates angle on diagram and implies ($\cot \theta$) = *adjacent* ÷ *opposite*

A1: Clear explanation No errors, printed answer achieved. Needs both M marks

Winter Past Pape	2014www.mystudybro.comMaThis resource was created and owned by Pearson Edexcel	thematics C3
		Leave
8.	The function f is defined by	
	f: $x \to 3 - 2e^{-x}$, $x \in \mathbb{R}$	
	(a) Find the inverse function, $f^{-1}(x)$ and give its domain.	
		(5)
	(b) Solve the equation $f^{-1}(x) = \ln x$.	(4)
	The equation $f(t) = ket$ where k is a positive constant has exactly one real solution	
	The equation $I(t) = kc$, where k is a positive constant, has exactly one real solution.	
	(c) Find the value of k .	(4)
26		

Question Number	Scheme			S		
8. (a)	Let $y = 3 - 2e^{-x}$, then $2e^{-x} = 3 - y$	$Or \ 2e^{-y} = 3 - x$	M1			
	$-x = \ln \frac{3-y}{2}$ and $x =$	$-y = \ln \frac{3-x}{2}$ and $y =$	M1			
	$x = -\ln\frac{3-y}{2}$	This mark earned with next for correct answer by this method	A1			
	$f^{-1}(x) = \ln \frac{2}{3-x}$ or $-\ln \frac{3-x}{2}$ o.e.					
	Domain is $x < 3$			(5)		
(b)	$\ln \frac{2}{3-x} = \ln x \to 2 = (3-x)x$					
	$x^2 - 3x + 2 = 0$					
	x = 2 or x = 1					
(c)	$3-2e^{-t} = ke^{t} \rightarrow ke^{2t} - 3e^{t} + 2 = 0 \text{ or } \rightarrow ke^{2t} - 3e^{t} = -2 \text{ o.e. (isw)}$					
	Use " $b^2 - 4ac = 0$ " or " $b^2 = 4ac$ " or attempts $e' = \frac{3 \pm \sqrt{9 - 8k}}{2k}$					
	So $k = 1.125$ o.e. e.g. $\frac{9}{8}$ or $1\frac{1}{8}$			(4) [13]		
Notes						

(a) M1: Puts y = f(x) and makes e^{-x} term subject of formula so $2e^{-x} = 3 - y$ or $e^{-x} = \frac{3 - y}{2}$ or even

 $-2e^{-x} = y - 3$ or $-e^{-x} = \frac{y - 3}{2}$ - allow sign slips. Allow f(x) instead of y in expression for both Ms

M1: Uses ln to get x =(This mark is for knowing that $\ln x$ is inverse of e^x so allow sign errors and weak log work. These errors will be penalised in the A mark.)

A1: completely correct log work giving a correct unsimplified answer for x = (then isw for this mark)A1: any correct answer - do not need to see LHS of equation but variable **must** be x not y

NB Possible answers include
$$\frac{\log \frac{2}{3-x}}{\log e}$$
, $-\ln(3-x) + \ln 2$, $-\ln\left(-\frac{1}{2}x + \frac{3}{2}\right)$, or $\ln \frac{-2}{x-3}$ etc

If x and y interchanged at start – see alternative in scheme. Note this method gives A1A1 or A0A0 **B1**: For x < 3 (independent mark); allow $(-\infty, 3)$, but $x \le 3$ is B0

(b) M1: Removes In correctly on both sides and multiplies across

A1: expands bracket to give three term quadratic equation, allow $x^2 - 3x = -2$

M1: Solves quadratic (may be implied by answers)

A1: Need both these correct answers

(c) M1: Sets $3-2e^{-t} = ke^{t}$ and attempts to multiply all terms by e^{t} or by e^{-t} (allow use of x instead of t) A1: three term quadratic – allow x or t so $ke^{2x} - 3e^x + 2 = 0$ or $ke^{2x} - 3e^x = -2$ or $k = 3e^{-t} - 2e^{-2t}$ etc **dM1**: Uses condition for equal roots to give expression in k – may not be simplified- or attempts to solve their quadratic equation in e' using formula or completion of the square A1: See scheme