www.mystudybro.com

Mathematics C3

Examiner's use only

Team Leader's use only

Question

1

2

3

4

5

6

7

8

Leave

Past Paper

This resource was created and owned by Pearson Edexcel

6665

Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	5	/	0	1	Signature	

Paper Reference(s)

6665/01

Edexcel GCE

Core Mathematics C3 Advanced

Thursday 16 June 2011 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)Items included with question papers
Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance wi Edexcel Limited copyright policy. ©2011 Edexcel Limited.

Printer's Log. No. P38159A

Turn over

Total

W850/R6665/57570 5/5/3/2

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Leave	
hlank	

Differentiate with respect to <i>x</i>	
(a) $\ln(x^2 + 3x + 5)$	(2)
(b) $\frac{\cos x}{x^2}$	(3)

Question Number	Scheme	Marks
1 (a)	$\frac{1}{(x^2+3x+5)} \times \dots , = \frac{2x+3}{(x^2+3x+5)}$	M1,A1 (2)
(b)	Applying $\frac{vu'-uv'}{v^2}$ $\frac{x^2 \times -\sin x - \cos x \times 2x}{(x^2)^2} = \frac{-x^2 \sin x - 2x \cos x}{x^4} = \frac{-x \sin x - 2\cos x}{x^3} \text{ oe}$	M1, A2,1,0 (3) 5 Marks
2 (a)	f(0.75) = -0.18 f(0.85) = 0.17 Change of sign, hence root between x=0.75 and x=0.85	M1 A1
(b)	Sub $x_0=0.8$ into $x_{n+1} = [\arcsin(1-0.5x_n)]^{\frac{1}{2}}$ to obtain x_1	(2) M1 A1
(c)	Awrt x_1 =0.80219 and x_2 =0.80133 Awrt x_3 = 0.80167 $f(0.801565) = -2.7 \times 10^{-5}$	A1 (3)
	$f(0.801575) = +8.6 \times 10^{-6}$ Change of sign and conclusion	M1A1 A1 (3)
	See Notes for continued iteration method	8 Marks

Past Paper

This resource was created and owned by Pearson Edexcel

Leave

blank

2.

$$f(x) = 2\sin(x^2) + x - 2, \quad 0 \le x < 2\pi$$

(a) Show that f(x) = 0 has a root α between x = 0.75 and x = 0.85

(2)

The equation f(x) = 0 can be written as $x = \left[\arcsin\left(1 - 0.5x\right)\right]^{\frac{1}{2}}$.

(b) Use the iterative formula

$$x_{n+1} = \left[\arcsin\left(1 - 0.5x_n\right)\right]^{\frac{1}{2}}, \quad x_0 = 0.8$$

to find the values of x_1 , x_2 and x_3 , giving your answers to 5 decimal places.

(3)

(c) Show that $\alpha = 0.80157$ is correct to 5 decimal places.

(3)

Question Number	Scheme	Marks
1 (a)	$\frac{1}{(x^2+3x+5)} \times \dots , = \frac{2x+3}{(x^2+3x+5)}$	M1,A1 (2)
(b)	Applying $\frac{vu'-uv'}{v^2}$ $\frac{x^2 \times -\sin x - \cos x \times 2x}{(x^2)^2} = \frac{-x^2 \sin x - 2x \cos x}{x^4} = \frac{-x \sin x - 2\cos x}{x^3} \text{ oe}$	M1, A2,1,0 (3) 5 Marks
2 (a)	f(0.75) = -0.18 f(0.85) = 0.17 Change of sign, hence root between x=0.75 and x=0.85	M1 A1
(b)	Sub $x_0=0.8$ into $x_{n+1} = [\arcsin(1-0.5x_n)]^{\frac{1}{2}}$ to obtain x_1	(2) M1 A1
(c)	Awrt x_1 =0.80219 and x_2 =0.80133 Awrt x_3 = 0.80167 $f(0.801565) = -2.7 \times 10^{-5}$	A1 (3)
	$f(0.801575) = +8.6 \times 10^{-6}$ Change of sign and conclusion	M1A1 A1 (3)
	See Notes for continued iteration method	8 Marks

Leave

3.

This resource was created and owned by Pearson Edexcel

Figure 1

Figure 1 shows part of the graph of y = f(x), $x \in \mathbb{R}$.

The graph consists of two line segments that meet at the point R(4,-3), as shown in Figure 1.

Sketch, on separate diagrams, the graphs of

(a)
$$y = 2f(x+4)$$
, (3)

(b)
$$y = |f(-x)|$$
. (3)

On each diagram, show the coordinates of the point corresponding to R.

Question Number	Scheme	Marks
3 (a)	∧y	
	V shape vertex on y axis &both branches of graph cross x axis	B1
	x 'y' co-ordinate of R is -6	B1
	(0,-6)	(3)
(b)	↑ ^y	
	(-4,3) W shape	B1
	2 vertices on the negative x axis. W in both quad 1 & quad 2.	B1dep
	R'=(-4,3)	B1
		(3)
		6 Marks
4 (a)	$y = 4 - \ln(x + 2)$ $\ln(x + 2) = 4 - y$ $x + 2 = e^{4-y}$	
	$x + 2 = e^{4-y}$ $x = e^{4-y} - 2$ $f^{-1}(x) = e^{4-x} - 2$ oe	M1 M1A1 (3)
(b)		
	$x \le 4$	B1 (1)
(c)	$fg(x) = 4 - \ln(e^{x^2} - 2 + 2)$	M1
	$fg(x) = 4 - x^2$	dM1A1 (3)
(d)	$fg(x) \le 4$	B1ft (1)
		8 Marks

Past Paper

This resource was created and owned by Pearson Edexcel

Leave

blank

4. The function f is defined by

 $f: x \mapsto 4 - \ln(x+2), \quad x \in \mathbb{R}, \ x \geqslant -1$

(a) Find $f^{-1}(x)$.

(3)

(b) Find the domain of f^{-1} .

(1)

The function g is defined by

$$g: x \mapsto e^{x^2} - 2, \quad x \in \mathbb{R}$$

(c) Find fg(x), giving your answer in its simplest form.

(3)

(d) Find the range of fg.

(1)

Question Number	Scheme	Marks
3 (a)	∧y	
	V shape vertex on y axis &both branches of graph cross x axis	B1
	x 'y' co-ordinate of R is -6	B1
	(0,-6)	(3)
(b)	↑ ^y	
	(-4,3) W shape	B1
	2 vertices on the negative x axis. W in both quad 1 & quad 2.	B1dep
	R'=(-4,3)	B1
		(3)
		6 Marks
4 (a)	$y = 4 - \ln(x + 2)$ $\ln(x + 2) = 4 - y$ $x + 2 = e^{4-y}$	
	$x + 2 = e^{4-y}$ $x = e^{4-y} - 2$ $f^{-1}(x) = e^{4-x} - 2$ oe	M1 M1A1 (3)
(b)		
	$x \le 4$	B1 (1)
(c)	$fg(x) = 4 - \ln(e^{x^2} - 2 + 2)$	M1
	$fg(x) = 4 - x^2$	dM1A1 (3)
(d)	$fg(x) \le 4$	B1ft (1)
		8 Marks

Past Paper

This resource was created and owned by Pearson Edexcel

Leave

blank

5. The mass, m grams, of a leaf t days after it has been picked from a tree is given by

 $m = p e^{-kt}$

where k and p are positive constants.

When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams.

(a) Write down the value of p.

(1)

(b) Show that $k = \frac{1}{4} \ln 3$.

(4)

(c) Find the value of t when $\frac{dm}{dt} = -0.6 \ln 3$.

(6)

Question	Scheme	Marks
Number		
5 (a)	p=7.5	B1 (1)
(b)	$2.5 = 7.5e^{-4k}$	M1
	$e^{-4k} = \frac{1}{3}$	M1
	$-4k = \ln(\frac{1}{3})$ $-4k = -\ln(3)$	dM1
	$-4k = -\ln(3)$ $k = \frac{1}{4}\ln(3)$	A1*
	See notes for additional correct solutions and the last A1	
		(4)
(c)	$\frac{dm}{dt} = -kpe^{-kt}$ ft on their <i>p</i> and <i>k</i>	M1A1ft
	$-\frac{1}{4}\ln 3 \times 7.5e^{-\frac{1}{4}(\ln 3)t} = -0.6\ln 3$	
	$e^{-\frac{1}{4}(ln3)t} = \frac{2.4}{7.5} = (0.32)$	M1A1
	$-\frac{1}{4}(\ln 3)t = \ln(0.32)$	dM1
	<i>t</i> =4.1486 4.15 or awrt 4.1	A1
		(6)
		11Marks

www.mystudybro.com

■ Past Paper

This resource was created and owned by Pearson Edexcel

Leave

blank

6.	(a)	Prove	that
-----------	-----	-------	------

$$\frac{1}{\sin 2\theta} - \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90n^{\circ}, \ n \in \mathbb{Z}$$

(4)

- (b) Hence, or otherwise,
 - (i) show that $\tan 15^\circ = 2 \sqrt{3}$,

(3)

(ii) solve, for $0 < x < 360^{\circ}$,

$$\csc 4x - \cot 4x = 1$$

(5)

Question Number	Scheme		Marks
6 (a)	$\frac{1}{\sin 2\theta} - \frac{\cos 2\theta}{\sin 2\theta} = \frac{1 - \cos 2\theta}{\sin 2\theta}$		M1
	$=\frac{2\sin^2\theta}{2\sin\theta\cos\theta}$		M1A1
	$=\frac{\sin\theta}{\cos\theta}=\tan\theta$	cso	A1* (4)
(b)(i)	$\tan 15^\circ = \frac{1}{\sin 30^\circ} - \frac{\cos 30^\circ}{\sin 30^\circ}$		M1
	$\tan 15^{\circ} = \frac{1}{\frac{1}{2}} - \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = 2 - \sqrt{3}$	CSO	dM1 A1*
(b)(ii)	$\tan 2x = 1$		M1
	$2x = 45^{\circ}$		A1
	$2x = 45^{\circ} + 180^{\circ}$		M1
	$x = 22.5^{\circ}, 112.5^{\circ}, 202.5^{\circ}, 292.5^{\circ}$		A1(any two) A1 (5)
	Alt for (b)(i) $\tan 15^{\circ} = \tan(60^{\circ} - 45^{\circ})$ or $\tan(45^{\circ} - 30^{\circ})$		12 Marks
	$\tan 15^{\circ} = \frac{\tan 60 - \tan 45}{1 + \tan 60 \tan 45} \text{ or } \frac{\tan 45 - \tan 30}{1 + \tan 45 \tan 30}$		M1
	$\tan 15^{\circ} = \frac{\sqrt{3} - 1}{1 + \sqrt{3}} \text{ or } \frac{1 - \frac{\sqrt{3}}{3}}{1 + \frac{\sqrt{3}}{3}}$		M1
	Rationalises to produce $tan15^{\circ} = 2 - \sqrt{3}$		A1*

Leave blank

7.

Past Paper

$$f(x) = \frac{4x - 5}{(2x + 1)(x - 3)} - \frac{2x}{x^2 - 9}, \qquad x \neq \pm 3, \ x \neq -\frac{1}{2}$$

(a) Show that

$$f(x) = \frac{5}{(2x+1)(x+3)}$$

(5)

The curve C has equation y = f(x). The point $P\left(-1, -\frac{5}{2}\right)$ lies on C.

(b) Find an equation of the normal to C at P.

1	0/	
•	וה	

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question	Scheme	Marks
Number	2 0 (1.1.2)(12)	D1
7 (a)	$x^2 - 9 = (x+3)(x-3)$	B1
	$\frac{4x-5}{(2x+1)(x-3)} - \frac{2x}{(x+3)(x-3)}$	
	$(4x-5)(x+3) \qquad \qquad 2x(2x+1)$	M1
	$=\frac{(4x-5)(x+3)}{(2x+1)(x-3)(x+3)}-\frac{2x(2x+1)}{(2x+1)(x+3)(x-3)}$	IVII
	$=\frac{5x-15}{(2x+1)(x-3)(x+3)}$	
	$-\frac{(2x+1)(x-3)(x+3)}{(2x+1)(x-3)(x+3)}$	M1A1
	$=\frac{5(x-3)}{(2x+1)(x-3)(x+3)}=\frac{5}{(2x+1)(x+3)}$	A1*
	(2x+1)(x-3)(x+3) $(2x+1)(x+3)$	(5)
(b)	$f(x) = \frac{5}{2x^2 + 7x + 3}$	
	$f(x) = \frac{1}{2x^2 + 7x + 3}$	
	$f'(x) = \frac{-5(4x+7)}{(2x^2+7x+3)^2}$	M1 M1 A1
	$f'\left(-1\right) = -\frac{15}{4}$	M1A1
	Uses $m_1m_2=-1$ to give gradient of normal= $\frac{4}{15}$	M1
	$\frac{y - (-\frac{5}{2})}{(x1)} = their \frac{4}{15}$	M1
	$y + \frac{5}{2} = \frac{4}{15}(x+1)$ or any equivalent form	A1
		(8)
		13 Marks

Leave

blank

(a) Express $2\cos 3x - 3\sin 3x$ in the form $R\cos(3x + \alpha)$, where R and α are constants, R > 0and $0 < \alpha < \frac{\pi}{2}$. Give your answers to 3 significant figures. **(4)**

 $f(x) = e^{2x} \cos 3x$

(b) Show that f'(x) can be written in the form

$$f'(x) = R e^{2x} \cos(3x + \alpha)$$

where R and α are the constants found in part (a).

(5)

(c) Hence, or otherwise, find the smallest positive value of x for which the curve with equation y = f(x) has a turning point.

(3)

8 (a) $R^2 = 2^2 + 3^2$ $R = \sqrt{13} \text{ or } 3.61 \dots$ M1 A1 $\tan \alpha = \frac{3}{2}$ M1 A1 $\alpha = 0.983 \dots$ M1	
(b) $f'(x) = 2e^{2x}\cos 3x - 3e^{2x}\sin 3x \qquad M1A^{2}$ $= e^{2x}(2\cos 3x - 3\sin 3x) \qquad M1$ $= e^{2x}(R\cos(3x + \alpha)) \qquad A1^{*}\cos(3x + \alpha) \qquad A1^{*}\cos(3x + \alpha) \qquad M1$ $= Re^{2x}\cos(3x + \alpha) \qquad M1$ $= Re^{2x}\cos(3x + \alpha) \qquad M1$ $3x + \alpha = \frac{\pi}{2} \qquad M1$ $x = 0.196 \text{awrt } 0.20 \qquad A1$ $Alternative to part (c) \Rightarrow \qquad f'(x) = 0 \Rightarrow 2\cos 3x - 3\sin 3x = 0 \qquad M1$ $\tan 3x = \frac{2}{3} \qquad M1$	
$= e^{2x}(2\cos 3x - 3\sin 3x)$ $= e^{2x}(R\cos(3x + \alpha))$ $= Re^{2x}\cos(3x + \alpha)$ $= Re^{2x}\cos(3x + \alpha)$ A1* of the following of the follo	
$= e^{2x}(2\cos 3x - 3\sin 3x)$ $= e^{2x}(R\cos(3x + \alpha))$ $= Re^{2x}\cos(3x + \alpha)$ $= Re^{2x}\cos(3x + \alpha)$ A1* of the following of the follo	(4)
$= e^{2x}(R\cos(3x + \alpha))$ $= Re^{2x}\cos(3x + \alpha)$ $f'(x) = 0 \Rightarrow \cos(3x + \alpha) = 0$ $3x + \alpha = \frac{\pi}{2}$ M1 $x = 0.196 \text{awrt } 0.20$ Alternative to part (c) \Rightarrow $f'(x) = 0 \Rightarrow 2\cos 3x - 3\sin 3x = 0$ $\tan 3x = \frac{2}{3}$ M1	A 1
$= Re^{2x}\cos(3x + \alpha)$ $f'(x) = 0 \Rightarrow \cos(3x + \alpha) = 0$ $3x + \alpha = \frac{\pi}{2}$ M1 $x = 0.196 \text{awrt } 0.20$ Alternative to part (c) \Rightarrow $f'(x) = 0 \Rightarrow 2\cos 3x - 3\sin 3x = 0$ $\tan 3x = \frac{2}{3}$ M1 $A1 \Rightarrow \cos(3x + \alpha)$ M1 $x = 0.196 \text{awrt } 0.20$ M1 $1 \Rightarrow \cos(3x + \alpha) = 0$ $x = 0.196 \text{awrt } 0.20$ M1 $1 \Rightarrow \cos(3x + \alpha) = 0$ $1 \Rightarrow \cos(3x + \alpha) = 0$ $1 \Rightarrow \cos(3x + \alpha) = 0$ M1	
$f'(x) = 0 \Rightarrow \cos(3x + \alpha) = 0$ $3x + \alpha = \frac{\pi}{2}$ M1 $x = 0.196 \text{awrt } 0.20$ Alternative to part (c) \Rightarrow $f'(x) = 0 \Rightarrow 2\cos 3x - 3\sin 3x = 0$ $\tan 3x = \frac{2}{3}$ M1 M1	
(c) $3x + \alpha = \frac{\pi}{2}$ M1 $x = 0.196 \text{ awrt } 0.20$ A1 $Alternative \text{ to part } (c) \Rightarrow$ $f'(x) = 0 \Rightarrow 2\cos 3x - 3\sin 3x = 0$ M1 $\tan 3x = \frac{2}{3}$ M1	Ю
(c) $3x + \alpha = \frac{\pi}{2}$ M1 $x=0.196 \text{ awrt } 0.20$ A1 $Alternative to part (c) \Rightarrow$ $f'(x) = 0 \Rightarrow 2\cos 3x - 3\sin 3x = 0$ M1 $\tan 3x = \frac{2}{3}$ M1	(5)
$3x + \alpha = \frac{\pi}{2}$ M1 $x=0.196 \text{ awrt } 0.20$ A1 1 Alternative to part (c) \Rightarrow M1 $tan3x = \frac{2}{3}$ M1	
Alternative to part (c) \Rightarrow $f'(x) = 0 \Rightarrow 2\cos 3x - 3\sin 3x = 0$ $\tan 3x = \frac{2}{3}$ M1	
Alternative to part (c) \Rightarrow $f'(x) = 0 \Rightarrow 2\cos 3x - 3\sin 3x = 0$ $\tan 3x = \frac{2}{3}$ M1	
Alternative to part (c) \Rightarrow $f'(x) = 0 \Rightarrow 2\cos 3x - 3\sin 3x = 0$ $\tan 3x = \frac{2}{3}$ M1	(3)
$f'(x) = 0 \Rightarrow 2\cos 3x - 3\sin 3x = 0$ $\tan 3x = \frac{2}{3}$ M1	? Marks
$\tan 3x = \frac{2}{3}$ M1	
x=0.196 awrt 0.20 A1	
	(3)