www.mystudybro.com

Mathematics C4

Examiner's use only

Team Leader's use only

Question

Leave

Past Paper

This resource was created and owned by Pearson Edexcel

6666

Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	6	/	0	1	Signature	

Paper Reference(s)

6666/01

Edexcel GCE

Core Mathematics C4 Advanced Level

Tuesday 23 January 2007 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination

Items included with question papers

Mathematical Formulae (Green)

Nil

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Check that you have the correct question paper.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

You must write your answer for each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 20 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

©2007 Edexcel Limited.

 $\stackrel{\text{Printer's Log. No.}}{N23562A}$

Turn over

Total

W850/R6666/57570 3/3/3/3/3/3/6600

	$f(x) = (2 - 5x)^{-2}, x < \frac{2}{5}.$
	Find the binomial expansion of $f(x)$, in ascending powers of x , as far as the term in x^3 , giving each coefficient as a simplified fraction.
	(5)
_	
_	
_	
_	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C4 edexce

Past Paper (Mark Scheme)

January 2007 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme		Marks
1.	** represents a constant $f(x) = (2 - 5x)^{-2} = (2)^{-2} \left(1 - \frac{5x}{2}\right)^{-2} = \frac{1}{4} \left(1 - \frac{5x}{2}\right)^{-2}$	Takes 2 outside the bracket to give any of $(2)^{-2}$ or $\frac{1}{4}$.	B1
	$=\frac{1}{4}\left\{\frac{1+(-2)(^{*} x);+\frac{(-2)(-3)}{2!}(^{*} x)^{2}+\frac{(-2)(-3)(-4)}{3!}(^{*} x)^{3}+\ldots\right\}$	Expands $(1+**x)^{-2}$ to give an unsimplified 1+(-2)(**x);	M1
		A correct unsimplified {} expansion with candidate's (**x)	A1
	$=\frac{1}{4}\left\{1+(-2)(\frac{-5x}{2});+\frac{(-2)(-3)}{2!}(\frac{-5x}{2})^2+\frac{(-2)(-3)(-4)}{3!}(\frac{-5x}{2})^3+\ldots\right\}$		
	$=\frac{1}{4}\left\{1+5x;+\frac{75x^2}{4}+\frac{125x^3}{2}+\right\}$		
	$= \frac{1}{4} + \frac{5x}{4}; + \frac{75x^2}{16} + \frac{125x^3}{8} + \dots$	Anything that cancels to $\frac{1}{4} + \frac{5x}{4}$; Simplified $\frac{75x^2}{16} + \frac{125x^3}{8}$	A1;
	$= \frac{1}{4} + 1\frac{1}{4}x; + 4\frac{11}{16}x^2 + 15\frac{5}{8}x^3 + \dots$		[5]
			5 marks

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Past Paper (Mark Scheme)

) ⁻² B1
to an M1
() ;
ed on A1
x)
$\begin{bmatrix} \text{nat} \\ \frac{5x}{4} \end{bmatrix}, A1;$
A1
[5]
5 marks
in the state of th

Attempts using Maclaurin expansions need to be referred to your team leader.

Leave blank

2.

Figure 1

The curve with equation $y = \frac{1}{3(1+2x)}$, $x > -\frac{1}{2}$, is shown in Figure 1.

The region bounded by the lines $x = -\frac{1}{4}$, $x = \frac{1}{2}$, the x-axis and the curve is shown shaded in Figure 1.

This region is rotated through 360 degrees about the *x*-axis.

(a) Use calculus to find the exact value of the volume of the solid generated.

(5)

Figure 2

Figure 2 shows a paperweight with axis of symmetry AB where AB = 3 cm. A is a point on the top surface of the paperweight, and B is a point on the base of the paperweight. The paperweight is geometrically similar to the solid in part (a).

(b) Find the volume of this paperweight.

(2)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics C4

Question			
Number	Scheme		Marks
2. (a)	Volume = $\pi \int_{\frac{-1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \frac{\pi}{9} \int_{\frac{-1}{4}}^{\frac{1}{2}} \frac{1}{(1+2x)^2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
	$= \left(\frac{\pi}{9}\right) \int_{-\frac{1}{4}}^{\frac{1}{2}} \left(1 + 2x\right)^{-2} dx$	Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and $\frac{\pi}{9}$	M1
	$= \left(\frac{\pi}{9}\right) \left[\frac{(1+2x)^{-1}}{(-1)(2)}\right]_{-\frac{1}{4}}^{\frac{1}{2}}$	Integrating to give $\frac{\pm p(1+2x)^{-1}}{-\frac{1}{2}(1+2x)^{-1}}$	M1 A1
	$= \left(\frac{\pi}{9}\right) \left[-\frac{1}{2} (1+2x)^{-1} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
	$= \left(\frac{\pi}{9}\right) \left[\left(\frac{-1}{2(2)}\right) - \left(\frac{-1}{2(\frac{1}{2})}\right) \right]$		
	$= \left(\frac{\pi}{9}\right) \left[-\frac{1}{4} - (-1)\right]$		
	$=\frac{\pi}{12}$	Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef	A1 aef [5]
(b)	From Fig.1, AB = $\frac{1}{2} - \left(-\frac{1}{4}\right) = \frac{3}{4}$ units		ری
	As $\frac{3}{4}$ units \equiv 3cm		
	then scale factor $k = \frac{3}{\left(\frac{3}{4}\right)} = 4$.		
	Hence Volume of paperweight = $(4)^3 \left(\frac{\pi}{12}\right)$	$(4)^3 \times (\text{their answer to part (a)})$	M1
	$V = \frac{16\pi}{3} \text{ cm}^3 = 16.75516 \text{ cm}^3$	$\frac{\frac{16\pi}{3}}{\text{or } \frac{64\pi}{12}} \text{ or aef}$	A1
			[2]
	or implied) is not needed for the middle three marks of		7 marks

Note: $\frac{\pi}{9}$ (or implied) is not needed for the middle three marks of question 2(a).

www.mystudybro.com

Mathematics C4

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

edexcel

		CUCAC	
Question Number	Scheme		Marks
Aliter 2. (a)	Volume = $\pi \int_{-\frac{1}{4}}^{\frac{1}{2}} \left(\frac{1}{3(1+2x)} \right)^2 dx = \pi \int_{-\frac{1}{4}}^{\frac{1}{2}} \frac{1}{(3+6x)^2} dx$	Use of $V = \pi \int y^2 dx$. Can be implied. Ignore limits.	B1
Way 2	$= (\pi) \int_{-\frac{1}{4}}^{\frac{1}{2}} (3+6x)^{-2} dx$	Moving their power to the top. (Do not allow power of -1.) Can be implied. Ignore limits and π	M1
	$= (\pi) \left[\frac{(3+6x)^{-1}}{(-1)(6)} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$	Integrating to give $\frac{\pm p(3+6x)^{-1}}{-\frac{1}{6}(3+6x)^{-1}}$	M1 A1
	$= \left(\pi\right) \left[\begin{array}{c} -\frac{1}{6} (3+6x)^{-1} \\ \end{array} \right]_{-\frac{1}{4}}^{\frac{1}{2}}$		
	$= \left(\pi\right) \left[\left(\frac{-1}{6(6)}\right) - \left(\frac{-1}{6(\frac{3}{2})}\right) \right]$		
	$= \left(\pi\right) \left[-\frac{1}{36} - \left(-\frac{1}{9}\right) \right]$		
	$=\frac{\pi}{12}$	Use of limits to give exact values of $\frac{\pi}{12}$ or $\frac{3\pi}{36}$ or $\frac{2\pi}{24}$ or aef	A1 aef [5]

Note: π is not needed for the middle three marks of question 2(a).

Past Paper

This resource was created and owned by Pearson Edexcel

6666

Leave blank

3. A curve has parametric equations

$$x = 7\cos t - \cos 7t$$
, $y = 7\sin t - \sin 7t$, $\frac{\pi}{8} < t < \frac{\pi}{3}$.

(a) Find an expression for $\frac{dy}{dx}$ in terms of t. You need not simplify your answer.

(3)

(b) Find an equation of the normal to the curve at the point where $t = \frac{\pi}{6}$.

Give your answer in its simplest exact form.

(6)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics C4

edexcel

Question Number	Scheme		Marks
3. (a)	$x = 7\cos t - \cos 7t$, $y = 7\sin t - \sin 7t$,		
	$\frac{dx}{dt} = -7\sin t + 7\sin 7t, \frac{dy}{dt} = 7\cos t - 7\cos 7t$	Attempt to differentiate x and y with respect to t to give $\frac{dx}{dt}$ in the form $\pm A \sin t \pm B \sin 7t$ $\frac{dy}{dt}$ in the form $\pm C \cos t \pm D \cos 7t$	M1
		Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	A1
	$\therefore \frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t}$	Candidate's $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	B1 √
(1-)			اح
(b)	When $t = \frac{\pi}{6}$, $m(T) = \frac{dy}{dx} = \frac{7\cos\frac{\pi}{6} - 7\cos\frac{7\pi}{6}}{-7\sin\frac{\pi}{6} + 7\sin\frac{7\pi}{6}}$;	Substitutes $t = \frac{\pi}{6}$ or 30° into their $\frac{dy}{dx}$ expression;	M1
	$\frac{7\sqrt{3}}{2} - \left(-\frac{7\sqrt{3}}{2}\right)$ $7\sqrt{3}$	to give any of the four underlined expressions oe	Al cso
	$= \frac{\frac{7\sqrt{3}}{2} - \left(-\frac{7\sqrt{3}}{2}\right)}{\frac{-\frac{7}{2} - \frac{7}{2}}{2}} = \frac{7\sqrt{3}}{\frac{-7}{2}} = \frac{-\sqrt{3}}{2} = \underbrace{-awrt - 1.73}$	(must be correct solution only)	AI CSU
	Hence $m(N) = \frac{-1}{-\sqrt{3}}$ or $\frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	When $t = \frac{\pi}{6}$, $x = 7\cos\frac{\pi}{6} - \cos\frac{7\pi}{6} = \frac{7\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ $y = 7\sin\frac{\pi}{6} - \sin\frac{7\pi}{6} = \frac{7}{2} - \left(-\frac{1}{2}\right) = \frac{8}{2} = 4$	The point $(4\sqrt{3}, 4)$ or $(awrt 6.9, 4)$	B1
	N : $y-4=\frac{1}{\sqrt{3}}(x-4\sqrt{3})$	Finding an equation of a normal with their point and their normal gradient or finds c by using y = (their gradient)x + "c".	M1
	N: $\underline{y = \frac{1}{\sqrt{3}} x}$ or $\underline{y = \frac{\sqrt{3}}{3} x}$ or $\underline{3y = \sqrt{3}x}$	Correct simplified EXACT equation of <u>normal</u> . This is dependent on candidate using correct $(4\sqrt{3}, 4)$	<u>A1</u> oe
	or $4 = \frac{1}{\sqrt{3}} (4\sqrt{3}) + c \implies c = 4 - 4 = 0$		
	Hence N : $y = \frac{1}{\sqrt{3}}x$ or $y = \frac{\sqrt{3}}{3}x$ or $3y = \sqrt{3}x$		
			[6] 9 marks

Mathematics C4

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	6666
edexce	21

		CUCAC	
Question Number	Scheme		Marks
Aliter 3. (a) Way 2	$x = 7\cos t - \cos 7t$, $y = 7\sin t - \sin 7t$,	Attempt to differentiate x and y with respect to t to give $\frac{dx}{dt}$ in the	M1
	$\frac{dx}{dt} = -7\sin t + 7\sin 7t, \frac{dy}{dt} = 7\cos t - 7\cos 7t$	$\begin{array}{c} \text{form} \pm A \sin t \pm B \sin 7t \\ \frac{\text{dy}}{\text{dt}} \text{in theform} \pm C \cos t \pm D \cos 7t \\ \text{Correct} \frac{\text{dx}}{\text{dt}} \text{and} \frac{\text{dy}}{\text{dt}} \end{array}$	A1
	$\frac{dy}{dx} = \frac{7\cos t - 7\cos 7t}{-7\sin t + 7\sin 7t} = \frac{-7(-2\sin 4t\sin 3t)}{-7(2\cos 4t\sin 3t)} = \tan 4t$	Candidate's $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$	B1 √ [3]
(b)	When $t = \frac{\pi}{6}$, $m(T) = \frac{dy}{dx} = \tan \frac{4\pi}{6}$;	Substitutes $t = \frac{\pi}{6}$ or 30° into their $\frac{dy}{dx}$ expression;	M1
	$= \frac{2(\frac{\sqrt{3}}{2})(1)}{2(-\frac{1}{2})(1)} = \frac{-\sqrt{3}}{2} = \frac{2}{2} = $	to give any of the three underlined expressions oe (must be correct solution only)	A1 cso
	Hence $m(\mathbf{N}) = \frac{-1}{-\sqrt{3}}$ or $\frac{1}{\sqrt{3}} = \text{awrt } 0.58$	Uses m(T) to 'correctly' find m(N). Can be ft from "their tangent gradient".	A1√ oe.
	When $t = \frac{\pi}{6}$, $x = 7\cos\frac{\pi}{6} - \cos\frac{7\pi}{6} = \frac{7\sqrt{3}}{2} - \left(-\frac{\sqrt{3}}{2}\right) = \frac{8\sqrt{3}}{2} = 4\sqrt{3}$ $y = 7\sin\frac{\pi}{6} - \sin\frac{7\pi}{6} = \frac{7}{2} - \left(-\frac{1}{2}\right) = \frac{8}{2} = 4$	The point $(4\sqrt{3}, 4)$ or $(awrt 6.9, 4)$	B1
	N: $y-4=\frac{1}{\sqrt{3}}(x-4\sqrt{3})$	Finding an equation of a normal with their point and their normal gradient or finds c by using y = (their gradient)x + "c".	M1
	N: $\underline{y = \frac{1}{\sqrt{3}}x}$ or $\underline{y = \frac{\sqrt{3}}{3}x}$ or $\underline{3y} = \sqrt{3x}$	Correct simplified EXACT equation of <u>normal</u> . This is dependent on candidate using correct $(4\sqrt{3}, 4)$	<u>A1</u> oe
	or $4 = \frac{1}{\sqrt{3}} \left(4\sqrt{3} \right) + c \implies c = 4 - 4 = 0$ Hence N: $\underline{y} = \frac{1}{\sqrt{3}} x$ or $\underline{y} = \frac{\sqrt{3}}{3} x$ or $\underline{3y} = \sqrt{3} x$		
	Hence N: $y = \frac{1}{\sqrt{3}}x$ or $y = \frac{\sqrt{3}}{3}x$ or $y = \sqrt{3}x$		[6]
			9 marks

Winter 2007

www.mystudybro.com

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

Beware: A candidate finding an m(T) = 0 can obtain A1ft for $m(N) \to \infty$, but obtains M0 if they write $y-4=\infty(x-4\sqrt{3})$. If they write, however, N: $x=4\sqrt{3}$, then they can score M1.

Beware: A candidate finding an $m(T) = \infty$ can obtain A1ft for m(N) = 0, and also obtains M1 if they write $y - 4 = 0(x - 4\sqrt{3})$ or y = 4.

www.mystudybro.com

Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

(a) Express $\frac{2x-1}{(x-1)(2x-3)}$ in partial fractions.

(3)

(b) Given that $x \ge 2$, find the general solution of the differential equation

 $(2x-3)(x-1)\frac{dy}{dx} = (2x-1)y$.

(5)

(c) Hence find the particular solution of this differential equation that satisfies y = 10 at x = 2, giving your answer in the form y = f(x).

(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
4. (a)	$\frac{2x-1}{(x-1)(2x-3)} \equiv \frac{A}{(x-1)} + \frac{B}{(2x-3)}$		
	$2x - 1 \equiv A(2x - 3) + B(x - 1)$ Let $x = \frac{3}{2}$, $2 = B(\frac{1}{2}) \Rightarrow B = 4$	Forming this identity. NB: A & B are not assigned in this question	M1
	Let $x = 1$, $1 = A(-1) \Rightarrow A = -1$	either one of $A = -1$ or $B = 4$. both correct for their A, B.	A1 A1
	giving $\frac{-1}{(x-1)} + \frac{4}{(2x-3)}$		[3]
(b) & (c)	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$ $= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Separates variables as shown Can be implied	B1
	$= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1 √ A1 [5]
	$y = 10, x = 2$ gives $c = \ln 10$	c = In10	B1
	$ \therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + \ln 10 $ $ \ln y = -\ln(x-1) + \ln(2x-3)^2 + \ln 10 $		
	$ln y = -ln(x-1) + ln(2x-3)^2 + ln 10$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(2x-3)^2}{(x-1)} \right) + \ln 10 \text{or}$ $\ln y = \ln \left(\frac{10(2x-3)^2}{(x-1)} \right)$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$y = \frac{10(2x-3)^2}{(x-1)}$	$y = \frac{10(2x-3)^2}{(x-1)}$ or aef. isw	
			[4]
			12 marks

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
4. (b) & (c) Way 2	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
way 2	$= \int \frac{-1}{(x-1)} + \frac{4}{(2x-3)} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(2x-3) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1√ A1
	See below for the award of B1	decide to award B1 here!!	B1
	$ln y = -ln(x-1) + ln(2x-3)^2 + c$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(2x-3)^2}{x-1} \right) + c$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$ln y = ln \left(\frac{A(2x-3)^2}{x-1} \right) \qquad \text{where } c = ln A$		
	or $e^{\ln y} = e^{\ln\left(\frac{(2x-3)^2}{x-1}\right) + c} = e^{\ln\left(\frac{(2x-3)^2}{x-1}\right)} e^{c}$		
	$y = \frac{A(2x-3)^2}{(x-1)}$		
	y = 10, x = 2 gives $A = 10$	A = 10 for $B1$	award above
	$y = \frac{10(2x-3)^2}{(x-1)}$	$y = \frac{10(2x-3)^2}{(x-1)}$ or aef & isw	A1 aef [5] & [4]

Note: The B1 mark (part (c)) should be awarded in the same place on ePEN as in the Way 1 approach.

Question Number	Scheme		Marks
(b) & (c)	$\int \frac{dy}{y} = \int \frac{(2x-1)}{(2x-3)(x-1)} dx$	Separates variables as shown Can be implied	B1
Way 3	$= \int \frac{-1}{(x-1)} + \frac{2}{(x-\frac{3}{2})} dx$	Replaces RHS with their partial fraction to be integrated.	M1√
	$\therefore \ln y = -\ln(x-1) + 2\ln(x-\frac{3}{2}) + c$	At least two terms in ln's At least two ln terms correct All three terms correct and '+ c'	M1 A1 √ A1 [5]
	y = 10, x = 2 gives $c = \ln 10 - 2 \ln \left(\frac{1}{2}\right) = \ln 40$	$c = \ln 10 - 2 \ln \left(\frac{1}{2}\right) \text{ or } c = \ln 40$	B1 oe
	$\therefore \ln y = -\ln(x-1) + 2\ln(x-\frac{3}{2}) + \ln 40$		
	$ln y = -ln(x-1) + ln(x-\frac{3}{2})^2 + ln 10$	Using the power law for logarithms	M1
	$\ln y = \ln \left(\frac{(x - \frac{3}{2})^2}{(x - 1)} \right) + \ln 40 \text{or}$ $\ln y = \ln \left(\frac{40 (x - \frac{3}{2})^2}{(x - 1)} \right)$	Using the product and/or quotient laws for logarithms to obtain a single RHS logarithmic term with/without constant c.	M1
	$y = \frac{40(x - \frac{3}{2})^2}{(x - 1)}$	$\frac{y = \frac{40(x - \frac{3}{2})^2}{(x - 1)}}{(x - 1)}$ or aef. isw	A1 aef [4]

Note: Please mark parts (b) and (c) together for any of the three ways.

- A set of curves is given by the equation $\sin x + \cos y = 0.5$.
 - (a) Use implicit differentiation to find an expression for $\frac{dy}{dx}$.

(2)

For $-\pi < x < \pi$ and $-\pi < y < \pi$,

(b) find the coordinates of the points where $\frac{dy}{dx} = 0$.

(5)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel **Mathematics C4**

Past Paper (Mark Scheme)

Question Number	Scheme		Marks
5. (a)	$\sin x + \cos y = 0.5$ (eqn *)		
	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{x}} \times\right\} \cos x - \sin y \frac{dy}{dx} = 0 \qquad (eqn \#)$	Differentiates implicitly to include $\pm \sin y \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$.)	M1
	$\frac{dy}{dx} = \frac{\cos x}{\sin y}$	$\frac{\cos x}{\sin y}$	A1 cso [2]
(b)	$\frac{dy}{dx} = 0 \implies \frac{\cos x}{\sin y} = 0 \implies \cos x = 0$	Candidate realises that they need to solve 'their numerator' = 0or candidate sets $\frac{dy}{dx} = 0$ in their (eqn #) and attempts to solve the resulting equation.	M1√
	giving $\underline{x = -\frac{\pi}{2}}$ or $\underline{x = \frac{\pi}{2}}$	both $\underline{x = -\frac{\pi}{2}, \frac{\pi}{2}}$ or $\underline{x = \pm 90^{\circ}}$ or awrt $\underline{x = \pm 1.57}$ required here	A1
	When $x = -\frac{\pi}{2}$, $\sin(-\frac{\pi}{2}) + \cos y = 0.5$ When $x = \frac{\pi}{2}$, $\sin(\frac{\pi}{2}) + \cos y = 0.5$	Substitutes either their $x = \frac{\pi}{2}$ or $x = -\frac{\pi}{2}$ into eqn *	M1
	⇒ $\cos y = 1.5$ ⇒ y has no solutions ⇒ $\cos y = -0.5$ ⇒ $y = \frac{2\pi}{3}$ or $-\frac{2\pi}{3}$	Only one of $y = \frac{2\pi}{3}$ or $\frac{-2\pi}{3}$ or $\frac{120^{\circ}}{}$ or $\frac{-120^{\circ}}{}$ or awrt $\frac{-2.09}{}$ or awrt $\frac{2.09}{}$	A1
	In specified range $(x, y) = \underline{\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)}$ and $\underline{\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)}$	Only exact coordinates of $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and $\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)$	A1
		Do not award this mark if candidate states other coordinates inside the required range.	
		the required range.	[5]
			7 marks

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Given that $y = 2^x$, and using the result $2^x = e^{x \ln 2}$, or otherwise, show that $\frac{dy}{dx} = 2$	(2)
Find the gradient of the curve with equation $y = 2^{(x^2)}$ at the point with coord (2,16).	linates
(=, = =)	(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	viatriei	matic	5 64
$\supset \subset$	ΔY	്ര	6666
	I		

6 marks

Question Number	Scheme		Ma	arks
6.	$y = 2^x = e^{x \ln 2}$			
	$y = 2^{x} = e^{x \ln 2}$ $\frac{dy}{dx} = \ln 2 \cdot e^{x \ln 2}$	$\frac{dy}{dx} = ln 2.e^{xln 2}$	M1	
Way 1	Hence $\frac{dy}{dx} = \ln 2 \cdot (2^x) = 2^x \ln 2$ AG	2 ^x ln 2 AG	A1	cso
Aliter				[2]
(a)	$ln y = ln(2^x)$ leads to $ln y = x ln 2$	Takes logs of both sides, then uses the power law of logarithms		
Way 2	$\frac{1}{y}\frac{dy}{dx} = \ln 2$	and differentiates implicitly to give $\frac{1}{y} \frac{dy}{dx} = \ln 2$	M1	
	Hence $\frac{dy}{dx} = y \ln 2 = 2^x \ln 2$ AG	2 ^x ln2 AG	A1	
(b)	$y = 2^{(x^2)} \implies \frac{dy}{dx} = 2x. \ 2^{(x^2)}. \ln 2$	$\begin{array}{c} \text{Ax } 2^{(x^2)} \\ \text{2x. } 2^{(x^2)}.\text{ln 2} \\ \text{or 2x. y.ln 2 if y is defined} \end{array}$	M1 A1	[2]
	When $x = 2$, $\frac{dy}{dx} = 2(2)2^4 \ln 2$	Substitutes $x = 2$ into their $\frac{dy}{dx}$ which is of the form $\pm k 2^{(x^2)}$ or Ax $2^{(x^2)}$	M1	
	$\frac{dy}{dx} = \frac{64 \ln 2}{} = 44.3614$	<u>64ln2</u> or awrt 44.4	A1	[4]
				[4]
I			_	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C4 edexce

Past Paper (Mark Scheme)

· · · · · · · · · · · · · · · · · · ·		
Question Number	Scheme	Marks
Aliter		
6. (b)	$ln y = ln(2^{x^2})$ leads to $ln y = x^2 ln 2$	
Way 2		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M1
	$\frac{1}{y} \frac{dy}{dx} = 2x. \ln 2$	A1
	When $x = 2$, $\frac{dy}{dx} = 2(2)2^4 \ln 2$ Substitutes $x = 2$ into their $\frac{dy}{dx}$ which is of the form $\pm k 2^{(x^2)}$ or Ax $2^{(x^2)}$	M1
	$\frac{dy}{dx} = \frac{64 \ln 2}{dx} = 44.3614$ 64 ln 2 or awrt 44.4	A1
		[4]

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6666

The point A has position vector $\mathbf{a} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and the point B has position $\mathbf{b} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$, relative to an origin O.	vector
(a) Find the position vector of the point C , with position vector \mathbf{c} , given by	
c = a + b.	
	(1)
(b) Show that <i>OACB</i> is a rectangle, and find its exact area.	(6)
The diagonals of the rectangle, AB and OC , meet at the point D .	
(c) Write down the position vector of the point <i>D</i> .	
	(1)
(d) Find the size of the angle <i>ADC</i> .	(6)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C4

Past Paper (Mark Scheme)

Question Number	Scheme	Marks
	$\mathbf{a} = \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \Rightarrow \overrightarrow{OA} = 3$ $\mathbf{b} = \overrightarrow{OB} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} \Rightarrow \overrightarrow{OB} = \sqrt{18}$ $\overrightarrow{BC} = \pm (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \Rightarrow \overrightarrow{BC} = 3$ $\overrightarrow{AC} = \pm (\mathbf{i} + \mathbf{j} - 4\mathbf{k}) \Rightarrow \overrightarrow{AC} = \sqrt{18}$ $\mathbf{c} = \overrightarrow{OC} = 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$ $\overrightarrow{OA} \bullet \overrightarrow{OB} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} = \underbrace{2 + 2 - 4} = 0 \text{or}$ $\overrightarrow{BO} \bullet \overrightarrow{BC} = \begin{pmatrix} -1 \\ -1 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix} = \underbrace{-2 - 2 + 4} = 0 \text{or}$ $\overrightarrow{An} \text{ attempt to take the dot product between either \overline{OA} and \overline{OB}}$ $\overrightarrow{OA} \text{ and \overline{AC}, \overline{AC} and \overline{BC}}$ $\overrightarrow{OA} \text{ and \overline{AC}, \overline{AC} and \overline{BC}}$ $\overrightarrow{OA} \text{ and \overline{AC}, \overline{AC} and \overline{BC}}$ $\overrightarrow{OA} \text{ or \overline{OB} and \overline{BC}}$ $\overrightarrow{OB} \text{ and \overline{BC}}$ $\overrightarrow{OB} \text{ or \overline{OB} and \overline{BC}}$ Showing the result is equal to zero.	B1 cao [1] <u>M1</u> A1
	$\overrightarrow{AO} \bullet \overrightarrow{AC} = \begin{pmatrix} -2 \\ -2 \\ -1 \end{pmatrix} \bullet \begin{pmatrix} 1 \\ 1 \\ -4 \end{pmatrix} = \underline{-2 - 2 + 4} = 0$ and therefore OA is perpendicular to OB and hence OACB is a rectangle. $ \underbrace{\text{perpendicular and OACB is a rectangle}}_{OACB \text{ is a rectangle}} $	A1 cso
	Using distance formula to find either the correct height or width. Area = $3 \times \sqrt{18} = 3\sqrt{18} = 9\sqrt{2}$ Multiplying the rectangle's height by its width. exact value of $3\sqrt{18}$, $9\sqrt{2}$, $\sqrt{162}$ or aef	M1 M1 A1
(c)	$\overrightarrow{OD} = \mathbf{d} = \frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$ $\underline{\frac{1}{2} (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})}$	[6] B1 [1]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C4

edexcel

Past Paper (Mark Scheme)	

Question Number	Scheme		Marks
(d)	using dot product formula $\overrightarrow{DA} = \pm \left(\frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k}\right) \& \overrightarrow{DC} = \pm \left(\frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - \frac{3}{2}\mathbf{k}\right)$ or $\overrightarrow{BA} = \pm \left(\mathbf{i} + \mathbf{j} + 5\mathbf{k}\right) \& \overrightarrow{OC} = \pm \left(3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}\right)$	Identifies a set of two relevant vectors Correct vectors ±	M1 A1
Way 1	$\cos D = (\pm) \frac{\begin{pmatrix} 0.5 \\ 0.5 \\ 2.5 \end{pmatrix} \bullet \begin{pmatrix} 1.5 \\ 1.5 \\ -1.5 \end{pmatrix}}{\frac{\sqrt{27}}{2} \cdot \frac{\sqrt{27}}{2}} = (\pm) \frac{\frac{3}{4} + \frac{3}{4} - \frac{15}{4}}{\frac{27}{4}} = (\pm) \frac{1}{3}$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u> <u>application of dot product formula.</u>	dM1
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than $180^{\circ} - D$.	ddM1√
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]
Aliter (d)	using dot product formula and direction vectors $d\overrightarrow{BA} = \pm (\mathbf{i} + \mathbf{j} + 5\mathbf{k}) \qquad \& d\overrightarrow{OC} = \pm (\mathbf{i} + \mathbf{j} - \mathbf{k})$	Identifies a set of two direction vectors Correct vectors ±	M1 A1
Way 2	$\cos D = (\pm) \frac{\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 5 \end{pmatrix}}{\sqrt{3} \cdot \sqrt{27}} = (\pm) \frac{1+1-5}{\sqrt{3} \cdot \sqrt{27}} = (\pm) \frac{1}{3}$	Applies dot product formula on multiples of these vectors. <u>Correct ft.</u> <u>application of dot product formula.</u>	dM1
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than 180° – D.	ddM1√
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C4

edexcel

Question Number	Scheme		Marks				
Aliter	using dot product formula and similar triangles						
(d)	$d\overrightarrow{OA} = (2\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ & $d\overrightarrow{OC} = (\mathbf{i} + \mathbf{j} - \mathbf{k})$	Identifies a set of two direction vectors	M1				
(u)		Correct vectors	A1				
Way 3	$\cos\left(\frac{1}{2}D\right) = \frac{\begin{pmatrix} 2\\2\\1 \end{pmatrix} \bullet \begin{pmatrix} 1\\1\\-1 \end{pmatrix}}{\sqrt{9} \cdot \sqrt{3}} = \frac{2+2-1}{\sqrt{9} \cdot \sqrt{3}} = \frac{1}{\sqrt{3}}$	Applies dot product formula on multiples of these vectors. Correct ft.	dM1				
	$\sqrt{9}.\sqrt{3}$ $\sqrt{9}.\sqrt{3}$ $\sqrt{3}$	application of dot product formula. Attempts to find the	A1√				
	$D = 2 \cos^{-1} \left(\frac{1}{\sqrt{3}} \right)$	correct angle D by doubling their angle for $\frac{1}{2}D$.	ddM1√				
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]				
Aliter (d) Way 4	$ \overline{DA} = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k} , \overline{DC} = \frac{3}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - \frac{3}{2}\mathbf{k} , \overline{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} $						
J	$\left \overline{DA} \right = \frac{\sqrt{27}}{2} \ , \left \overline{DC} \right = \frac{\sqrt{27}}{2} \ , \left \overline{AC} \right = \sqrt{18}$	Attempts to find all the lengths of all three edges of \triangle ADC	M1				
		All Correct	A1				
	$\cos D = \frac{\left(\frac{\sqrt{27}}{2}\right)^{2} + \left(\frac{\sqrt{27}}{2}\right)^{2} - \left(\sqrt{18}\right)^{2}}{2\left(\frac{\sqrt{27}}{2}\right)\left(\frac{\sqrt{27}}{2}\right)} = -\frac{1}{3}$	Using the cosine rule formula with correct 'subtraction'.	dM1				
	$\frac{2\left(\frac{\sqrt{27}}{2}\right)\left(\frac{\sqrt{27}}{2}\right)}{2}$	Correct ft application of the cosine rule formula	A1√				
	$D = \cos^{-1}\left(-\frac{1}{3}\right)$	Attempts to find the correct angle D rather than $180^{\circ} - D$.	ddM1√				
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]				

Mathematics C4

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
Aliter (d) Way 5	using trigonometry on a right angled triangle $\overrightarrow{DA} = \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \frac{5}{2}\mathbf{k} \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$		
way 3	Let X be the midpoint of AC $\left \overline{DA} \right = \frac{\sqrt{27}}{2}$, $\left \overline{DX} \right = \frac{1}{2} \left \overline{OA} \right = \frac{3}{2}$, $\left \overline{AX} \right = \frac{1}{2} \left \overline{AC} \right = \frac{1}{2} \sqrt{18}$	Attempts to find two out of the three lengths in Δ ADX	M1
	(hypotenuse), (adjacent) , (opposite)	Any two correct	A1
	$\sin(\frac{1}{2}D) = \frac{\frac{\sqrt{18}}{2}}{\frac{\sqrt{27}}{2}}$, $\cos(\frac{1}{2}D) = \frac{\frac{3}{2}}{\frac{\sqrt{27}}{2}}$ or $\tan(\frac{1}{2}D) = \frac{\frac{\sqrt{18}}{2}}{\frac{3}{2}}$	Uses correct sohcahtoa to find ½D Correct ft application of sohcahtoa	dM1 A1√
	eg. $D = 2 \tan^{-1} \left(\frac{\frac{\sqrt{18}}{2}}{\frac{3}{2}} \right)$	Attempts to find the correct angle D by doubling their angle for $\frac{1}{2}D$.	ddM1√
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]
Aliter (d)	using trigonometry on a right angled similar triangle OAC $\overrightarrow{OC} = 3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}$ $\overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ $\overrightarrow{AC} = \mathbf{i} + \mathbf{j} - 4\mathbf{k}$		
Way 6	$\left \overrightarrow{OC} \right = \sqrt{27}$, $\left \overrightarrow{OA} \right = 3$, $\left \overrightarrow{AC} \right = \sqrt{18}$ (hypotenuse), (adjacent), (opposite)	Attempts to find two out of the three lengths in \triangle OAC	M1
	(Lipeonius), (aujacono), (opposite)	Any two correct	A1
	$\sin(\frac{1}{2}D) = \frac{\sqrt{18}}{\sqrt{27}}$, $\cos(\frac{1}{2}D) = \frac{3}{\sqrt{27}}$ or $\tan(\frac{1}{2}D) = \frac{\sqrt{18}}{3}$	Uses correct sohcahtoa to find $\frac{1}{2}D$ Correct ft application	dM1
	V21	of sohcahtoa	A1√
	eg. $D = 2 \tan^{-1} \left(\frac{\sqrt{18}}{3} \right)$	Attempts to find the correct angle D by doubling their angle for $\frac{1}{2}D$.	ddM1√
	D = 109.47122°	109.5° or awrt109° or 1.91°	A1 [6]

Question Number	Scheme		Marks
Aliter			
7. (b) (i)	$\mathbf{c} = \overrightarrow{OC} = \pm (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$ $\overrightarrow{AB} = \pm (-\mathbf{i} - \mathbf{j} - 5\mathbf{k})$		
Way 2			
	$ \overline{OC} = \sqrt{(3)^2 + (3)^2 + (-3)^2} = \sqrt{(1)^2 + (1)^2 + (-5)^2} = \overline{AB} $	A complete method of proving that the diagonals are equal.	M1
	As $ \overrightarrow{OC} = \overrightarrow{AB} = \sqrt{27}$	Correct result.	A1
	then the <u>diagonals are equal</u> , and OACB is a <u>rectangle</u> .	diagonals are equal and OACB is a rectangle	A1 cso [3]
	$\mathbf{a} = \overrightarrow{OA} = 2\mathbf{i} + 2\mathbf{j} + \mathbf{k} \Rightarrow \left \overrightarrow{OA} \right = 3$		
	$\mathbf{b} = \overrightarrow{OB} = \mathbf{i} + \mathbf{j} - 4\mathbf{k} \implies \left \overrightarrow{OB} \right = \sqrt{18}$		
	$\overrightarrow{BC} = \pm (2\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \Rightarrow \overrightarrow{BC} = 3$		
	$\overrightarrow{AC} = \pm (\mathbf{i} + \mathbf{j} - 4\mathbf{k}) \Rightarrow \overrightarrow{AC} = \sqrt{18}$		
	$\mathbf{c} = \overrightarrow{OC} = \pm (3\mathbf{i} + 3\mathbf{j} - 3\mathbf{k}) \Rightarrow \left \overrightarrow{OC} \right = \sqrt{27}$		
	$\overrightarrow{AB} = \pm (-\mathbf{i} - \mathbf{j} - 5\mathbf{k}) \Rightarrow \overrightarrow{AB} = \sqrt{27}$		
Aliter			
	$(OA)^2 + (AC)^2 = (OC)^2$ or $(BC)^2 + (OB)^2 = (OC)^2$		
7. (b) (i)	or $(OA)^2 + (OB)^2 = (AB)^2$ or equivalent		
***	or $(BC)^2 + (AC)^2 = (AB)^2$		
Way 3		A complete method of	
	$\Rightarrow (3)^2 + (\sqrt{18})^2 = \left(\sqrt{27}\right)^2$	proving that Pythagoras holds using their values.	M1
		<u>Correct result</u>	A1
	and therefore OA is perpendicular to OB	perpendicular and	
	or AC is <u>perpendicular</u> to BC and hence <u>OACB</u> is a rectangle.	OACB is a rectangle	A1 cso
	- -		[3]
			14 marks

www.mystudybro.com

This resource was created and owned by Pearson Edexcel Past Paper

Leave blank

8.

$$I = \int_0^5 e^{\sqrt{(3x+1)}} \, \mathrm{d}x.$$

(a) Given that $y = e^{\sqrt{(3x+1)}}$, complete the table with the values of y corresponding to x = 2, 3 and 4.

x	0	1	2	3	4	5
y	e^1	e^2				e^4

(2)

(b) Use the trapezium rule, with all the values of y in the completed table, to obtain an estimate for the original integral I, giving your answer to 4 significant figures.

(3)

(c) Use the substitution $t = \sqrt{3x+1}$ to show that I may be expressed as $\int_a^b kte^t dt$, giving the values of a, b and k.

(5)

(d) Use integration by parts to evaluate this integral, and hence find the value of I correct to 4 significant figures, showing all the steps in your working.

(5)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4

Question Number			Scheme					Marks
8. (a)								
	X	0	1	2	3	4	5	
	у	e ¹	e^2	$e^{\sqrt{7}}$	$\mathbf{e}^{\sqrt{10}}$	$e^{\sqrt{13}}$	e^4	
	or y	2.71828	7.38906	14.09403	23.62434		54.59815	
						Either $e^{\sqrt{7}}$, $e^{\sqrt{10}}$ and $e^{\sqrt{13}}$	
							.1, 23.6 and 36.8	
							r e to the power	
					(0)		2.65, 3.16, 3.61	
					(0)		ecimals and e's) east two correct	B1
							B1	
								[2]
(b)	1	(, ,				Outside	brackets $\frac{1}{2} \times 1$	B1;
	$1 \approx \frac{1}{2} \times 1$	$: \times e^1 + 2(e^2)$	$+ e^{\sqrt{7}} + e^{\sqrt{10}}$	$+ e^{\sqrt{13}} + e^4$		For structu	ire of trapezium	_
	2 (M1√
						_		
	1 ,	04 4050007	440.50	270440	0.0 (4.0		110.6	A1
	$=\frac{1}{2}\times 2$	21.1352227	= 110.56	676113 = <u>11</u>	<u>U.b</u> (4s1)		<u>110.6</u>	cao
								[3]

Beware: In part (b) candidates can add up the individual trapezia:

$$(b) I \approx \tfrac{1}{2}.1 \Big(\underline{e^1 + e^2} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^2 + e^{\sqrt{7}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{7}} + e^{\sqrt{10}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{10}} + e^{\sqrt{13}}} \Big) + \tfrac{1}{2}.1 \Big(\underline{e^{\sqrt{13}} + e^4} \Big)$$

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics C4

Use of 'integration by

Correct expression with a

Substitutes their changed

limits into the integrand

either 2e⁴ or awrt 109.2

parts' formula in the correct direction.

constant factor k.

Correct integration

a constant factor k

and subtracts oe.

with/without

A1

A1

A1

dM1 oe

15 marks

[5]

Past Paper (Mark Scheme)

		edexi	.el :::
Question Number	Scheme		Marks
	$t = (3x+1)^{\frac{1}{2}} \implies \frac{dt}{dx} = \frac{1}{2} \cdot 3 \cdot (3x+1)^{-\frac{1}{2}}$	$A(3x+1)^{-\frac{1}{2}} \text{ or } t \frac{dt}{dx} = A$	M1
(c)	$t = (3x+1)^{\frac{1}{2}} \implies \frac{dt}{dx} = \frac{1}{2} \cdot 3 \cdot (3x+1)^{-\frac{1}{2}}$ or $t^2 = 3x+1 \implies 2t \frac{dt}{dx} = 3$	A(3x+1) ^{-1/2} or $t \frac{dt}{dx} = A$ $\frac{3}{2}(3x+1)^{-1/2}$ or $2t \frac{dt}{dx} = 3$	A1
	so $\frac{dt}{dx} = \frac{3}{2.(3x+1)^{\frac{1}{2}}} = \frac{3}{2t} \implies \frac{dx}{dt} = \frac{2t}{3}$	Candidate obtains either $\frac{dt}{dx}$ or $\frac{dx}{dt}$ in terms of t	
	$\therefore I = \int e^{\sqrt{(3x+1)}} \ dx = \int e^t \ \frac{dx}{dt} . dt = \int e^t . \frac{2t}{3} . dt$	and moves on to substitute this into I to convert an integral wrt x to an integral wrt t.	dM1
	$\therefore I = \int \frac{2}{3} t e^{t} dt$	$\int \frac{2}{3} t e^t$	A1
	change limits: when $x = 0$, $t = 1$ & when $x = 5$, $t = 4$	changes limits $x \to t$ so that $0 \to 1$ and $5 \to 4$	B1
	Hence $I = \int_{1}^{4} \frac{2}{3} te^{t} dt$; where $a = 1$, $b = 4$, $k = \frac{2}{3}$		
	·		[5]
(d)	$ \begin{cases} u = t & \Rightarrow & \frac{du}{dt} = 1 \\ \frac{dv}{dt} = e^t & \Rightarrow & v = e^t \end{cases} $	Let k be any constant for the first three marks of this part.	

Note: dM1 denotes a method mark which is dependent upon the award of the previous method mark

 $k \int t e^t dt = k \left(t e^t - \int e^t .1 dt \right)$

 $= k \left(\underline{t e^t - e^t} \right) + c$

 $\therefore \int_{1}^{4} \frac{2}{3} t e^{t} dt = \frac{2}{3} \left\{ \left(4e^{4} - e^{4} \right) - \left(e^{1} - e^{1} \right) \right\}$

 $=\frac{2}{3}(3e^4)=\underline{2e^4}=109.1963...$

ddM1 denotes a method mark which is dependent upon the award of the previous two method marks.