www.mystudybro.com

Mathematics C4

Past Paper

This resource was created and owned by Pearson Edexcel

6666

Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	6	/	0	1	Signature	

Paper Reference(s)

6666/01

Edexcel GCE

Core Mathematics C4 Advanced

Thursday 12 June 2008 – Morning

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Green)Items included with question papers
Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

You must write your answer for each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

©2008 Edexcel Limited

Printer's Log. No. H30427A

W850/R6666/57570 3/3/3/3/

Examiner's use only

Team Leader's use only

Total

Turn over

advancing learning, changing lives

Leave blank

1.

This resource was created and owned by Pearson Edexcel

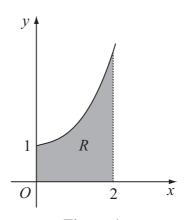


Figure 1

Figure 1 shows part of the curve with equation $y = e^{0.5x^2}$. The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, the y-axis and the line x = 2.

(a) Complete the table with the values of y corresponding to x = 0.8 and x = 1.6.

x	0	0.4	0.8	1.2	1.6	2
у	e^0	e ^{0.08}		$e^{0.72}$		e^2

(1)

(b) Use the trapezium rule with all the values in the table to find an approximate value for the area of R, giving your answer to 4 significant figures.

(3)

This resource was created and owned by Pearson Edexcel

6666

June 2008 6666 Core Mathematics C4 Mark Scheme

Question			Sch	neme					Marks
						4.4			
1. (a)	<u> </u>	0	0.4	0.8	1.2	1.6	2		
	у	e ⁰	e ^{0.08}	e ^{0.32}	e ^{0.72}	e ^{1.28}	e ²		
	or y	1	1.08329	1.37713	2.05443	3.59664	7.38906		
	"		•	•	'	av	er e ^{0.32} and e ¹ wrt 1.38 and nixture of e's decir	3.60 s and	B1 [1]
							Outside brace $\frac{1}{2} \times 0.4$ o		B1;
(b) Way 1	Area $\approx \frac{1}{2} \times$	0.4 ;× <u> </u>	$e^{0} + 2(e^{0.08} +$	$e^{0.32} + e^{0.72} +$	$+e^{1.28}+e^2$	ļ	For structu trape rule	zium	<u>M1</u> √
	$=0.2\times24.$	612031	64 = 4.92	22406 = <u>4.9</u>	22 (4sf)		<u>4</u>	.922	A1 cao [3]
Aliter (b) Way 2	Area ≈ 0.	$4 \times \left[\frac{e^0 + e^0}{2}\right]$	$\frac{e^{0.08}}{2} + \frac{e^{0.08} + e^{0.32}}{2}$	$\frac{1}{1} + \frac{e^{0.32} + e^{0.72}}{2} + \frac{e^{0.32} + e^{0.72}}{2}$	$\frac{e^{0.72}+e^{1.28}}{2}+\frac{e^{1.2}}{2}$	$\frac{(28+e^2)^2}{2}$ 0.4 and all terms	d a divisor of s inside brac	2 on kets.	B1
	which is e Area $\approx \frac{1}{2} \times$	•	ent to: $e^{0} + 2(e^{0.08} +$	$e^{0.32} + e^{0.72} +$	$e^{1.28} + e^{2}$	ordi middle	e of first and nates, two o e ordinates in ts ignoring th	f the nside	<u>M1</u> √
	$=0.2\times24.$	612031	64 = 4.92	22406 = <u>4.9</u>	22 (4sf)		4	.922	A1 cao [3]
									4 marks

Note an expression like Area $\approx \frac{1}{2} \times 0.4 + e^0 + 2(e^{0.08} + e^{0.32} + e^{0.72} + e^{1.28}) + e^2$ would score B1M1A0

Allow one term missing (slip!) in the () brackets for

The M1 mark for structure is for the material found in the curly brackets ie $\lceil \text{first } y \text{ ordinate} + 2(\text{intermediate ft } y \text{ ordinate}) + \text{final } y \text{ ordinate} \rceil$

■ Past Paper

	_	_	
ea	ıv	e	

(a) Use integration by parts to find $\int x e^x dx$.	
	(3)
(b) Hence find $\int x^2 e^x dx$.	
3	(3)

www.mystudybro.com Mathematics C4

This resource was created and owned by Pearson Edexcel

\sim	\sim	\sim	\sim
n	n	n	n

Question Number	Scheme	Ma	arks
2. (a)	$\begin{cases} u = x \implies \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^x \implies v = e^x \end{cases}$		
	$\int xe^x dx = xe^x - \int e^x .1 dx$ Use of 'integrate formula in the correct expression correct expression of the correct ex	(See note.)	
	$= x e^x - \int e^x dx$		
	$= xe^{x} - e^{x} (+ c)$ Correct integration w	ith/without $+ c$ A1	[3]
(b)	$\begin{cases} u = x^2 & \Rightarrow \frac{du}{dx} = 2x \\ \frac{dv}{dx} = e^x & \Rightarrow v = e^x \end{cases}$		
	$\int x^2 e^x dx = x^2 e^x - \int e^x . 2x dx$ Use of 'integration by in the corr Correct expression	rect direction.	
	$= x^2 e^x - 2 \int x e^x dx$		
	$= x^{2}e^{x} - 2(xe^{x} - e^{x}) + c$ Correct expression (seen at any stag You can ignore subsection)	ge! in part (b)) A1 I	SW [3]
	$\begin{cases} = x^2 e^x - 2x e^x + 2e^x + c \\ = e^x (x^2 - 2x + 2) + c \end{cases}$ Ignore subset	equent working	[2]
		6 m	narks

Note integration by parts in the **correct direction** means that u and $\frac{dv}{dx}$ must be assigned/used as u=x and $\frac{dv}{dx}=e^x$ in part (a)

+ c is not required in part (a).

Leave blank

3.

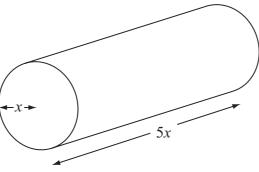


Figure 2

Figure 2 shows a right circular cylindrical metal rod which is expanding as it is heated. After t seconds the radius of the rod is x cm and the length of the rod is 5x cm. The cross-sectional area of the rod is increasing at the constant rate of 0.032 cm² s⁻¹.

(a) Find $\frac{dx}{dt}$ when the radius of the rod is 2 cm, giving your answer to 3 significant figures.

(b) Find the rate of increase of the volume of the rod when x = 2.

(4)

(4)

8 marks

Past Paper (Mark Scheme)

Question		
Number	Scheme	Marks
3. (a)	From question, $\frac{dA}{dt} = 0.032$ $\frac{dA}{dt} = 0$ or implied from	0.032 seen n working.
	$\left\{ A = \pi x^2 \implies \frac{\mathrm{d}A}{\mathrm{d}x} = \right\} 2\pi x$ 2\pi x by it or implied from	tself seen n working
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}t} \div \frac{\mathrm{d}A}{\mathrm{d}x} = (0.032) \frac{1}{2\pi x}; \left\{ = \frac{0.016}{\pi x} \right\}$ $0.032 \div \text{Candidate}$	date's $\frac{dA}{dx}$; M1;
	When $x = 2 \text{cm}$, $\frac{dx}{dt} = \frac{0.016}{2 \pi}$	
	Hence, $\frac{dx}{dt} = 0.002546479$ (cm s ⁻¹)	t 0.00255 A1 cso
		1.3
(b)	$V = \underline{\pi x^2(5x)} = \underline{5\pi x^3}$ $V = \underline{\pi x^2(5x)}$	or $5\pi x^3$ B1
	$\frac{\mathrm{d}V}{\mathrm{d}x} = 15\pi x^2$ $\frac{\mathrm{d}V}{\mathrm{d}x}$ or ft from cand in one	$\begin{array}{c} z \\ - = 15 \pi x^2 \\ \text{didate's } V \\ \text{e variable} \end{array}$
	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 15\pi x^2 \cdot \left(\frac{0.016}{\pi x}\right); \left\{= 0.24x\right\}$ Candidate's	$\frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$; M1 $\sqrt{}$
	When $x = 2 \text{cm}$, $\frac{\text{d}V}{\text{d}t} = 0.24(2) = \underline{0.48} (\text{cm}^3 \text{s}^{-1})$ $\underline{0.48} \text{or} \underline{8} \underline{8} \text{or} \underline{8} \underline{8}$	awrt 0.48 A1 cso

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Leave

A curve has equation $3x^2 - y^2 + xy = 4$. The points P and Q lie on the curve. To of the tangent to the curve is $\frac{8}{3}$ at P and at Q .	he gradient
(a) Use implicit differentiation to show that $y - 2x = 0$ at P and at Q .	(6)
(b) Find the coordinates of P and Q .	(3)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question			Marks
Number	Scheme		Maiks
4. (a)	$3x^2 - y^2 + xy = 4$ (eqn *)		
		Differentiates implicitly to include either $\pm ky \frac{dy}{dx}$ or $x \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$)	M1
	$\left\{ \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \times \right\} \frac{6x - 2y}{dx} \cdot \frac{dy}{dx} + \left(y + x \frac{dy}{dx} \right) = \underline{0}$	Correct application $(\underline{})$ _of product rule	B1
	(MX) <u>ut</u> (<u>ut</u>)	$(3x^2 - y^2) \rightarrow \left(\underline{6x - 2y \frac{dy}{dx}}\right) \text{ and } (4 \rightarrow \underline{0})$	<u>A1</u>
	$\left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-6x - y}{x - 2y} \right\} \text{or} \left\{ \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{6x + y}{2y - x} \right\}$	not necessarily required.	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8}{3} \implies \frac{-6x - y}{x - 2y} = \frac{8}{3}$	Substituting $\frac{dy}{dx} = \frac{8}{3}$ into their equation.	M1 *
	giving $-18x - 3y = 8x - 16y$		
	giving $13y = 26x$	Attempt to combine either terms in x or terms in y together to give either ax or by .	dM1*
	Hence, $y = 2x \Rightarrow y - 2x = 0$	simplifying to give $y - 2x = 0$ AG	A1 cso [6]
(b)	At $P \& Q$, $y = 2x$. Substituting into eqn *		
	gives $3x^2 - (2x)^2 + x(2x) = 4$	Attempt replacing y by $2x$ in at least one of the y terms in eqn*	M1
	Simplifying gives, $x^2 = 4 \Rightarrow \underline{x = \pm 2}$	Either $x = 2$ or $x = -2$	<u>A1</u>
	$y = 2x \implies y = \pm 4$		
	Hence coordinates are $(2,4)$ and $(-2,-4)$	Both $(2,4)$ and $(-2,-4)$	<u>A1</u>
			[3]
			9 marks

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(a) Expand $\frac{1}{\sqrt{(4-3x)}}$, where $ x < \frac{4}{3}$, in ascending powers of x up to and including	the
term in x^2 . Simplify each term.	
term mw . Smipmy each term.	(5)
(b) Hence, or otherwise, find the first 3 terms in the expansion of $\frac{x+8}{\sqrt{(4-3x)}}$ as a segmentary powers of x.	eries
in ascending powers of x. $\sqrt{(4-3x)}$	
	(4)

Ouestion			
Question Number	Scheme		
	** represents a constant (which must be consistent for first accuracy mark)		
5. (a)	$\frac{1}{\sqrt{(4-3x)}} = (4-3x)^{-\frac{1}{2}} = \underline{(4)^{-\frac{1}{2}}} \left(1 - \frac{3x}{4}\right)^{-\frac{1}{2}} = \underline{\frac{1}{2}} \left(1 - \frac{3x}{4}\right)^{-\frac{1}{2}} $ $\underline{(4)^{-\frac{1}{2}}} \text{ or } \underline{\frac{1}{2}} \text{ outside brackets}$	<u>B1</u>	
	Expands $(1+**x)^{-\frac{1}{2}}$ to give a simplified or an un-simplified $1+(-\frac{1}{2})(**x)$	M1;	
	$= \frac{1}{2} \left[\frac{1 + (-\frac{1}{2})(**x); + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(**x)^2 + \dots}{2!} \right]$ A correct simplified or an unsimplified $\left[\frac{1}{2} \right]$ with candidate's followed through $(**x)$	A1 √	
	$=\frac{1}{2}\left[\begin{array}{c}1+(-\frac{1}{2})(-\frac{3x}{4})+\frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-\frac{3x}{4})^2+\dots\end{array}\right]$ Award SC M1 if you see $(-\frac{1}{2})(-\frac{3x}{4})+\frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(-\frac{3x}{4})^2+\dots\end{array}$		
	$\left\{ = \frac{1}{2} + \frac{3}{16}x; + \frac{27}{256}x^2 + \ldots \right\}$ Ignore subsequent working	,	
(b)	$(x+8)\left(\frac{1}{2} + \frac{3}{16}x + \frac{27}{256}x^2 + \dots\right)$ Writing $(x+8)$ multiplied by candidate's part (a) expansion.	M1	
	$= \frac{\frac{1}{2}x + \frac{3}{16}x^2 + \dots}{+4 + \frac{3}{2}x + \frac{27}{32}x^2 + \dots}$ Multiply out brackets to find a constant term, two x terms and two x^2 terms.	M1	
	$= 4 + 2x; + \frac{33}{32}x^2 +$ Anything that cancels to $4 + 2x; \frac{33}{32}x^2$		
		[4]	
		9 marks	

This resource was created and owned by Pearson Edexcel

6666

Leave blank

6. With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations

$$l_1$$
: $\mathbf{r} = (-9\mathbf{i} + 10\mathbf{k}) + \lambda(2\mathbf{i} + \mathbf{j} - \mathbf{k})$

$$l_2$$
: $\mathbf{r} = (3\mathbf{i} + \mathbf{j} + 17\mathbf{k}) + \mu(3\mathbf{i} - \mathbf{j} + 5\mathbf{k})$

where λ and μ are scalar parameters.

(a) Show that l_1 and l_2 meet and find the position vector of their point of intersection.

(6)

(b) Show that l_1 and l_2 are perpendicular to each other.

(2)

The point A has position vector $5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}$.

(c) Show that A lies on l_1 .

(1)

The point B is the image of A after reflection in the line l_2 .

(d) Find the position vector of *B*.

(3)

Mathematics C4

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
6. (a)	Lines meet where:		
	$\begin{bmatrix} -9 \\ 0 \\ 10 \end{bmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 17 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix}$		
	i: $-9 + 2\lambda = 3 + 3\mu$ (1) Any two of j: $\lambda = 1 - \mu$ (2) k: $10 - \lambda = 17 + 5\mu$ (3)	Need any two of these correct equations seen anywhere in part (a).	M1
	(1) - 2(2) gives: $-9 = 1 + 5\mu \implies \mu = -2$	Attempts to solve simultaneous equations to find one of either λ or μ	dM1
	(2) gives: $\lambda = 1 - 2 = 3$	Both $\lambda = 3$ & $\mu = -2$	A1
	$\mathbf{r} = \begin{pmatrix} -9\\0\\10 \end{pmatrix} + 3 \begin{pmatrix} 2\\1\\-1 \end{pmatrix} \text{or} \mathbf{r} = \begin{pmatrix} 3\\1\\17 \end{pmatrix} - 2 \begin{pmatrix} 3\\-1\\5 \end{pmatrix}$	Substitutes their value of either λ or μ into the line l_1 or l_2 respectively. This mark can be implied by any two correct components of $(-3,3,7)$.	ddM1
	Intersect at $\mathbf{r} = \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix}$ or $\mathbf{r} = -3\mathbf{i} + 3\mathbf{j} + 7\mathbf{k}$	$\frac{\begin{pmatrix} -3\\3\\7 \end{pmatrix}}{\text{or } (-3,3,7)}$	A1
	Either check k: $\lambda = 3$: LHS = $10 - \lambda = 10 - 3 = 7$ $\mu = -2$: RHS = $17 + 5\mu = 17 - 10 = 7$	Either check that $\lambda=3$, $\mu=-2$ in a third equation or check that $\lambda=3$, $\mu=-2$ give the same coordinates on the other line. Conclusion not needed.	B1
(b)	(As LHS = RHS then the lines intersect.) $\mathbf{d}_1 = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$, $\mathbf{d}_2 = 3\mathbf{i} - \mathbf{j} + 5\mathbf{k}$		[6]
(b)	$\mathbf{As} \mathbf{d}_1 \bullet \mathbf{d}_2 = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ -1 \\ 5 \end{pmatrix} = \underbrace{(2 \times 3) + (1 \times -1) + (-1 \times 5)}_{1} = 0$ Then l_1 is perpendicular to l_2 .	Dot product calculation between the two direction vectors: $\underbrace{(2\times3)+(1\times-1)+(-1\times5)}_{\text{or }6-1-5}$ Result '=0' and	M1
	Then 11 is perpendicular to 12.	appropriate conclusion	A1 [2]

6. (c) Equating i; $-9+2\lambda=5 \Rightarrow \lambda=7$ $\mathbf{r} = \begin{bmatrix} -9 \\ 10 \\ 10 \end{bmatrix} + 7 \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ 7 \\ 3 \end{bmatrix}$ Substitutes candidate's $\lambda=7$ into the line l_1 and finds $5\mathbf{i}+7\mathbf{j}+3\mathbf{k}$. The conclusion on this occasion is not needed. (d) Let $\overrightarrow{OX} = -3\mathbf{i}+3\mathbf{j}+7\mathbf{k}$ be point of intersection $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{bmatrix} -3 \\ 3 \\ 7 \end{bmatrix} - \begin{bmatrix} 5 \\ 7 \\ 3 \end{bmatrix} = \begin{bmatrix} -8 \\ -4 \\ 4 \end{bmatrix}$ Finding the difference between their \overrightarrow{OX} (can be implied) and \overrightarrow{OA} . $\overrightarrow{AX} = \pm \begin{bmatrix} -3 \\ 3 \\ 7 \end{bmatrix} - \begin{bmatrix} 5 \\ 7 \\ 3 \end{bmatrix}$ $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AX}$ $\overrightarrow{OB} = \begin{bmatrix} 5 \\ 7 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} -8 \\ -4 \\ 4 \end{bmatrix}$ $\overrightarrow{OB} = \begin{bmatrix} -11 \\ 11 \end{bmatrix} \text{ or } \overrightarrow{OB} = -11\mathbf{i} - \mathbf{j} + 11\mathbf{k}$ $\overrightarrow{OB} = -11\mathbf{i} - \mathbf{j} + 11\mathbf{k}$	Question Number	Scheme	Marks
Finding the difference between their \overrightarrow{OX} (can be implied) and \overrightarrow{OA} . $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} - \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} = \begin{pmatrix} -8 \\ -4 \\ 4 \end{pmatrix}$ $\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AX}$ $\overrightarrow{OB} = \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} + 2\begin{pmatrix} -8 \\ -4 \\ 4 \end{pmatrix}$ $\overrightarrow{OB} = \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} + 2\begin{pmatrix} -8 \\ -4 \\ 4 \end{pmatrix}$ $\overrightarrow{OM} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix} \text{ or } \overrightarrow{OB} = -11\mathbf{i} - \mathbf{j} + 11\mathbf{k}$ $\overrightarrow{OM} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix} \text{ or } -11\mathbf{i} - \mathbf{j} + 11\mathbf{k}$ $\overrightarrow{OM} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix} \text{ or } -11\mathbf{i} - \mathbf{j} + 11\mathbf{k}$ $\overrightarrow{OM} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix} \text{ or } -11\mathbf{i} - \mathbf{j} + 11\mathbf{k}$ $\overrightarrow{OM} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix} \text{ or } -11\mathbf{i} - \mathbf{j} + 11\mathbf{k}$ $\overrightarrow{OM} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix} \text{ or } -11\mathbf{i} - \mathbf{j} + 11\mathbf{k}$ $\overrightarrow{OM} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix} \text{ or } -11\mathbf{i} - \mathbf{j} + 11\mathbf{k}$ $\overrightarrow{OM} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix} \text{ or } -11\mathbf{i} - \mathbf{j} + 11\mathbf{k}$		$\mathbf{r} = \begin{pmatrix} -9 \\ 0 \\ 10 \end{pmatrix} + 7 \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix}$ Substitutes candidate's $\lambda = 7$ into the line l_1 and finds $5\mathbf{i} + 7\mathbf{j} + 3\mathbf{k}$. The conclusion on this occasion is	B1 [1]
$\overline{OB} = \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} -8 \\ -4 \\ 4 \end{pmatrix}$ $\begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} \text{their } \overline{AX} \end{pmatrix}$ $\text{dM1} $ Hence, $\overline{OB} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix}$ or $\overline{OB} = \underline{-11\mathbf{i} - \mathbf{j} + 11\mathbf{k}}$ $\text{or } \underline{(-11, -1, 11)}$ $\text{or } \underline{(-11, -1, 11)}$	(d)	Finding the difference between their \overrightarrow{OX} (can be implied) and \overrightarrow{OA} . $\overrightarrow{AX} = \overrightarrow{OX} - \overrightarrow{OA} = \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} - \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix} = \begin{pmatrix} -8 \\ -4 \\ 4 \end{pmatrix}$ $\overrightarrow{AX} = \pm \begin{pmatrix} \begin{pmatrix} -3 \\ 3 \\ 7 \end{pmatrix} - \begin{pmatrix} 5 \\ 7 \\ 3 \end{pmatrix}$	M1 ñ
or $(-11, -1, 11)$			dM1√
		Hence, $\overrightarrow{OB} = \begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix}$ or $\overrightarrow{OB} = \underline{-11\mathbf{i} - \mathbf{j} + 11\mathbf{k}}$ $\underbrace{\begin{pmatrix} -11 \\ -1 \\ 11 \end{pmatrix}}$ or $\underline{-11\mathbf{i} - \mathbf{j} + 11\mathbf{k}}$ or $\underline{(-11, -1, 11)}$	A1 [3]

www.mystudybro.com

■ Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

7. (a) Express $\frac{2}{4-y^2}$ in partial fractions.

(3)

(b) Hence obtain the solution of

(3

$$2\cot x \, \frac{\mathrm{d}y}{\mathrm{d}x} = (4 - y^2)$$

for which y = 0 at $x = \frac{\pi}{3}$, giving your answer in the form $\sec^2 x = g(y)$.

(8)

Past Paper (Mark Scheme)

Question Number	Scheme	٨	Marks
7. (a)	$\frac{2}{4-y^2} \equiv \frac{2}{(2-y)(2+y)} \equiv \frac{A}{(2-y)} + \frac{B}{(2+y)}$		
	2 = A(2+y) + B(2-y) NB: A & B are not the second second in the second	assigned in M1	
	Let $y = -2$, $2 = B(4) \implies B = \frac{1}{2}$		
	Let $y = 2$, $2 = A(4) \Rightarrow A = \frac{1}{2}$ Either one of $A = \frac{1}{2}$	$=\frac{1}{2} \text{ or } B = \frac{1}{2}$ A1	
	giving $\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)}$ $\frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2-y)}$	$\frac{\frac{1}{2}}{(2+y)}$, aef $\underline{\underline{A1}}$	cao
	(If no working seen, but candidate writes down <i>correct partial fraction</i> then award all three marks. If no working is seen but one of <i>A</i> or <i>B</i> is incorrect then M0A0A0.)		[3]

This resource was	created and	owned by	Pearson	Edexcel

Question Number	Scheme		Marks
7. (b)	$\int \frac{2}{4 - y^2} \mathrm{d}y = \int \frac{1}{\cot x} \mathrm{d}x$	Separates variables as shown. Can be implied. Ignore the integral signs, and the '2'.	B1
	$\int \frac{\frac{1}{2}}{(2-y)} + \frac{\frac{1}{2}}{(2+y)} dy = \int \tan x dx$		
		$ln(\sec x)$ or $-ln(\cos x)$	B1
		Either $\pm a \ln(\lambda - y)$ or $\pm b \ln(\lambda + y)$	M1;
	$\therefore -\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) + (c)$	their $\int \frac{1}{\cot x} dx = LHS$ correct with ft	_
		for their \boldsymbol{A} and \boldsymbol{B} and no error with the "2" with or without $+c$	A1 √
		Use of $y = 0$ and $x = \frac{\pi}{3}$ in an	
	$y = 0, x = \frac{\pi}{3} \implies -\frac{1}{2} \ln 2 + \frac{1}{2} \ln 2 = \ln \left(\frac{1}{\cos(\frac{\pi}{3})} \right) + c$	integrated equation containing c	M1*
	$\left\{0 = \ln 2 + c \implies \underline{c = -\ln 2}\right\}$		
	$-\frac{1}{2}\ln(2-y) + \frac{1}{2}\ln(2+y) = \ln(\sec x) - \ln 2$		
	$\frac{1}{2}\ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)$	Using either the quotient (or product) or power laws for logarithms CORRECTLY.	M1
	$ \ln\left(\frac{2+y}{2-y}\right) = 2\ln\left(\frac{\sec x}{2}\right) $		
	$ \ln\left(\frac{2+y}{2-y}\right) = \ln\left(\frac{\sec x}{2}\right)^2 $	Using the log laws correctly to obtain a single log term on both sides of the equation.	dM1*
	$\frac{2+y}{2-y} = \frac{\sec^2 x}{4}$		
	Hence, $\sec^2 x = \frac{8+4y}{2-y}$	$\sec^2 x = \frac{8+4y}{2-y}$	
			[8]
			11 marks

8.

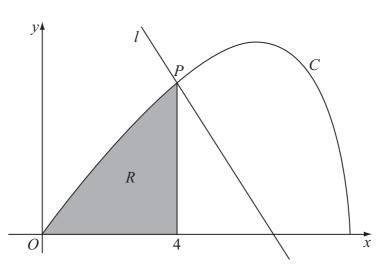


Figure 3

Figure 3 shows the curve C with parametric equations

$$x = 8\cos t$$
, $y = 4\sin 2t$, $0 \le t \le \frac{\pi}{2}$.

The point P lies on C and has coordinates $(4, 2\sqrt{3})$.

(a) Find the value of t at the point P.

(2)

The line l is a normal to C at P.

(b) Show that an equation for *l* is $y = -x\sqrt{3} + 6\sqrt{3}$.

(6)

The finite region R is enclosed by the curve C, the x-axis and the line x = 4, as shown shaded in Figure 3.

- (c) Show that the area of R is given by the integral $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 64 \sin^2 t \cos t \, dt.$ (4)
- (d) Use this integral to find the area of R, giving your answer in the form $a + b\sqrt{3}$, where a and b are constants to be determined.

(4)

Question	Schomo		Marks
Number	Scheme		Marks
8. (a)	At $P(4, 2\sqrt{3})$ either $\underline{4 = 8\cos t}$ or $\underline{2\sqrt{3} = 4\sin 2t}$	$4 = 8\cos t \text{or} 2\sqrt{3} = 4\sin 2t$	M1
	\Rightarrow only solution is $\underline{t = \frac{\pi}{3}}$ where 0 ,, t ,, $\frac{\pi}{2}$	$ \underline{t = \frac{\pi}{3}} $ or awrt 1.05 (radians) only stated in the range 0,, t ,, $\frac{\pi}{2}$	A1 [2]
(b)	$x = 8\cos t , \qquad y = 4\sin 2t$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = -8\sin t \;, \frac{\mathrm{d}y}{\mathrm{d}t} = 8\cos 2t$	Attempt to differentiate both x and y wrt t to give $\pm p \sin t$ and $\pm q \cos 2t$ respectively Correct $\frac{dx}{dt}$ and $\frac{dy}{dt}$	M1 A1
	At P, $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{8\cos\left(\frac{2\pi}{3}\right)}{-8\sin\left(\frac{\pi}{3}\right)}$	Divides in correct way round and attempts to substitute their value of t (in degrees or radians) into their $\frac{\mathrm{d} y}{\mathrm{d} x}$ expression.	M1*
	$\left\{ = \frac{8\left(-\frac{1}{2}\right)}{\left(-8\right)\left(\frac{\sqrt{3}}{2}\right)} = \frac{1}{\sqrt{3}} = \text{awrt } 0.58 \right\}$	You may need to check candidate's substitutions for M1* Note the next two method	
		marks are dependent on M1*	
	Hence $m(\mathbf{N}) = -\sqrt{3}$ or $\frac{-1}{\frac{1}{\sqrt{3}}}$	Uses $m(\mathbf{N}) = -\frac{1}{\text{their } m(\mathbf{T})}$.	dM1*
	N : $y-2\sqrt{3}=-\sqrt{3}(x-4)$	Uses $y-2\sqrt{3} = (\text{their } m_N)(x-4)$ or finds c using $x=4$ and $y=2\sqrt{3}$ and uses $y=(\text{their } m_N)x+"c"$.	dM1*
	N : $y = -\sqrt{3}x + 6\sqrt{3}$ AG	$y = -\sqrt{3}x + 6\sqrt{3}$	A1 cso AG
	or $2\sqrt{3} = -\sqrt{3}(4) + c \implies c = 2\sqrt{3} + 4\sqrt{3} = 6\sqrt{3}$ so N: $\left[\underline{y} = -\sqrt{3}x + 6\sqrt{3} \right]$		
			[6]

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question	Scheme		Marks
8. (c)	$A = \int_{0}^{4} y dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} 4\sin 2t \cdot (-8\sin t) dt$	attempt at $A = \int y \frac{dx}{dt} dt$ correct expression (ignore limits and dt)	M1 A1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32\sin 2t \cdot \sin t dt = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -32(2\sin t \cos t) \cdot \sin t dt$	Seeing $\sin 2t = 2\sin t \cos t$ anywhere in PART (c).	M1
	$A = \int_{\frac{\pi}{2}}^{\frac{\pi}{3}} -64 \cdot \sin^2 t \cos t dt$ $A = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} 64 \cdot \sin^2 t \cos t dt$	Correct proof. Appreciation of how the negative sign affects the limits. Note that the answer is given in the question.	A1 AG
			[4]
(d)	{Using substitution $u = \sin t \implies \frac{\mathrm{d}u}{\mathrm{d}t} = \cos t$ } {change limits: when $t = \frac{\pi}{3}$, $u = \frac{\sqrt{3}}{2}$ &t when $t = \frac{\pi}{2}$, $u = 1$ }		
	$A = 64 \left[\frac{\sin^3 t}{3} \right]_{\frac{\pi}{3}}^{\frac{\pi}{2}}$ or $A = 64 \left[\frac{u^3}{3} \right]_{\frac{\sqrt{3}}{2}}^{1}$	$k \sin^3 t$ or ku^3 with $u = \sin t$ Correct integration ignoring limits.	M1 A1
	$A = 64 \left[\frac{1}{3} - \left(\frac{1}{3} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} \right) \right]$	Substitutes limits of either $\left(t=\frac{\pi}{2} \text{ and } t=\frac{\pi}{3}\right)$ or $\left(u=1 \text{ and } u=\frac{\sqrt{3}}{2}\right)$ and subtracts the correct way round.	dM1
	$A = 64\left(\frac{1}{3} - \frac{1}{8}\sqrt{3}\right) = \frac{64}{3} - 8\sqrt{3}$	$\frac{64}{3} - 8\sqrt{3}$	A1 aef
		Aef in the form $a+b\sqrt{3}$, with awrt 21.3 and anything that cancels to $a=\frac{64}{3}$ and $b=-8$.	[4]
	(Note that $a = \frac{64}{3}$, $b = -8$)		
			16 marks