www.mystudybro.com

Mathematics C4

Examiner's use only

Team Leader's use only

Question

1

2

3

4

5

6

7

8

Past Paper

This resource was created and owned by Pearson Edexcel

6666

Centre No.				Paper Reference			Surname	Initial(s)			
Candidate No.			6	6	6	6	/	0	1	Signature	

Paper Reference(s)

6666/01

Edexcel GCE

Core Mathematics C4 Advanced

Monday 15 June 2009 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination

Mathematical Formulae (Orange or Green)

Items included with question papers

Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 8 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

©2009 Edexcel Limited.

Printer's Log. No. H34265A

Turn over

Total

W850/R6666/57570 4/5/5/3

Past Paper

Mathematics C4

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

000	2
Leave)

$f(x) = \frac{1}{\sqrt{(4+x)}}, \qquad x < 4$ Find the binomial expansion of $f(x)$ in ascending powers of x , up to and including the term
in x^3 . Give each coefficient as a simplified fraction.
(6)

June 2009 6666 Core Mathematics C4 Mark Scheme

Question Number	Scheme	Marks
Q1	$f(x) = \frac{1}{\sqrt{(4+x)}} = (4+x)^{-\frac{1}{2}}$	M1
	$= (4)^{-\frac{1}{2}} (1 + \dots)^{-1} \qquad \frac{1}{2} (1 + \dots)^{-1} \text{ or } \frac{1}{2\sqrt{1 + \dots}}$	B1
	$= \dots \left(1 + \left(-\frac{1}{2}\right)\left(\frac{x}{4}\right) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}\left(\frac{x}{4}\right)^2 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(\frac{x}{4}\right)^3 + \dots\right)$	M1 A1ft
	ft their $\left(\frac{x}{4}\right)$	
	$= \frac{1}{2} - \frac{1}{16}x, + \frac{3}{256}x^2 - \frac{5}{2048}x^3 + \dots$	A1, A1 (6)
		[6]
	Alternative	
	$f(x) = \frac{1}{\sqrt{(4+x)}} = (4+x)^{-\frac{1}{2}}$	M1
	$= \underline{4^{-\frac{1}{2}}} + \left(-\frac{1}{2}\right)4^{-\frac{3}{2}}x + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{1.2}4^{-\frac{5}{2}}x^2 + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{1.2.3}4^{-\frac{7}{2}}x^3 + \dots$	<u>B1</u> M1 A1
	$= \frac{1}{2} - \frac{1}{16}x_1 + \frac{3}{256}x^2 - \frac{5}{2048}x^3 + \dots$	A1, A1 (6)

Leave blank

2.

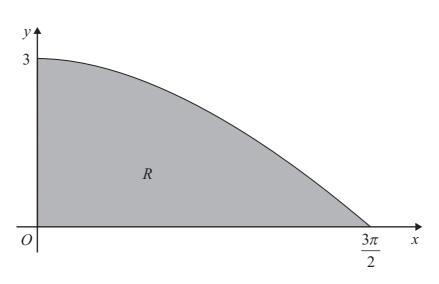


Figure 1

Figure 1 shows the finite region *R* bounded by the *x*-axis, the *y*-axis and the curve with equation $y = 3\cos\left(\frac{x}{3}\right)$, $0 \le x \le \frac{3\pi}{2}$.

The table shows corresponding values of x and y for $y = 3\cos\left(\frac{x}{3}\right)$.

x	0	$\frac{3\pi}{8}$	$\frac{3\pi}{4}$	$\frac{9\pi}{8}$	$\frac{3\pi}{2}$
у	3	2.77164	2.12132		0

(a) Complete the table above giving the missing value of y to 5 decimal places. (1)

(b) Using the trapezium rule, with all the values of y from the completed table, find an approximation for the area of R, giving your answer to 3 decimal places.

(4)

(c) Use integration to find the exact area of R.

(3)

Question Number		Scheme					
Q2	(a)	1.14805	awrt 1.14805	B1	(1)		
	(b)	$A \approx \frac{1}{2} \times \frac{3\pi}{8} (\dots)$		B1			
		$= \dots \left(3 + 2\left(2.77164 + 2.12132 + 1.14805\right) + 0\right)$	0 can be implied	M1			
		$= \frac{3\pi}{16} (3 + 2(2.77164 + 2.12132 + 1.14805))$	ft their (a)	A1ft			
		$= \frac{3\pi}{16} \times 15.08202 \dots = 8.884$	cao	A1	(4)		
	(c)	$\int 3\cos\left(\frac{x}{3}\right) dx = \frac{3\sin\left(\frac{x}{3}\right)}{\frac{1}{3}}$		M1 A1			
		$=9\sin\left(\frac{x}{3}\right)$					
		$A = \left[9\sin\left(\frac{x}{3}\right)\right]_0^{\frac{3\pi}{2}} = 9 - 0 = 9$	cao	A1	(3)		
					[8]		

■ Past Paper

2222

This resource was created and owned by Pearson Edexcel

Leave blank

- 3. $f(x) = \frac{4-2x}{(2x+1)(x+1)(x+3)} = \frac{A}{2x+1} + \frac{B}{x+1} + \frac{C}{x+3}$
 - (a) Find the values of the constants A, B and C.

(4)

(b) (i) Hence find $\int f(x) dx$.

(3)

(ii) Find $\int_0^2 f(x) dx$ in the form $\ln k$, where k is a constant.

(3)

Ques	stion nber	Scheme	Mar	ks
Q3	(a)	$f(x) = \frac{4-2x}{(2x+1)(x+1)(x+3)} = \frac{A}{2x+1} + \frac{B}{x+1} + \frac{C}{x+3}$ $4-2x = A(x+1)(x+3) + B(2x+1)(x+3) + C(2x+1)(x+1)$ A method for evaluating one constant	M1 M1	
		$x \to -\frac{1}{2}$, $5 = A(\frac{1}{2})(\frac{5}{2}) \Rightarrow A = 4$ any one correct constant $x \to -1$, $6 = B(-1)(2) \Rightarrow B = -3$	A1	
		$x \to -3$, $10 = C(-5)(-2) \Rightarrow C = 1$ all three constants correct	A1	(4)
	(b)	(i) $\int \left(\frac{4}{2x+1} - \frac{3}{x+1} + \frac{1}{x+3}\right) dx$		
		$= \frac{4}{2}\ln(2x+1) - 3\ln(x+1) + \ln(x+3) + C$ A1 two ln terms correct	M1 A1	ft
		All three ln terms correct and " $+C$ "; ft constants	A1ft	(3)
		(ii) $\left[2\ln(2x+1)-3\ln(x+1)+\ln(x+3)\right]_0^2$		
		$= (2 \ln 5 - 3 \ln 3 + \ln 5) - (2 \ln 1 - 3 \ln 1 + \ln 3)$	M1	
		$= 3 \ln 5 - 4 \ln 3$		
		$= \ln \left(\frac{5^3}{3^4} \right)$	M1	
		$= \ln\left(\frac{125}{81}\right)$	A1	(3)
				[10]

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6666

Leave

The curve C has the equation $ye^{-2x} = 2x + y^2$.	
(a) Find $\frac{dy}{dx}$ in terms of x and y.	(5)
The point P on C has coordinates $(0, 1)$.	
(b) Find the equation of the normal to C at P , giving y $ax + by + c = 0$, where a , b and c are integers.	
	(4)

	stion nber	Scheme	Ma	arks
Q4	(a)	$e^{-2x} \frac{dy}{dx} - 2y e^{-2x} = 2 + 2y \frac{dy}{dx}$ A1 correct RHS	- M1 A	1
		$\frac{\mathrm{d}}{\mathrm{d}x} \left(y \mathrm{e}^{-2x} \right) = \mathrm{e}^{-2x} \frac{\mathrm{d}y}{\mathrm{d}x} - 2y \mathrm{e}^{-2x}$	B1	
		$\left(e^{-2x} - 2y\right) \frac{dy}{dx} = 2 + 2y e^{-2x}$	M1	
		$\frac{dy}{dx} = \frac{2 + 2y e^{-2x}}{e^{-2x} - 2y}$	A1	(5)
	(b)	At P, $\frac{dy}{dx} = \frac{2 + 2e^0}{e^0 - 2} = -4$ Using $mm' = -1$	M1	
		$m' = \frac{1}{4}$	M1	
		$y-1=\frac{1}{4}(x-0)$	M1	
		x-4y+4=0 or any integer multiple	A1	(4)
				[9]
		Alternative for (a) differentiating implicitly with respect to y.		
		$e^{-2x} - 2y e^{-2x} \frac{dx}{dy} = 2 \frac{dx}{dy} + 2y$ A1 correct RHS	M1 A	1
		$\frac{\mathrm{d}}{\mathrm{d}y}\left(y\mathrm{e}^{-2x}\right) = \mathrm{e}^{-2x} - 2y\mathrm{e}^{-2x}\frac{\mathrm{d}x}{\mathrm{d}y}$	B1	
		$(2+2ye^{-2x})\frac{dx}{dy} = e^{-2x} - 2y$	M1	
		$\frac{dx}{dy} = \frac{e^{-2x} - 2y}{2 + 2y e^{-2x}}$		
		$\frac{dy}{dx} = \frac{2 + 2ye^{-2x}}{e^{-2x} - 2y}$	A1	(5)

6666 Leave

blank

5.

Past Paper

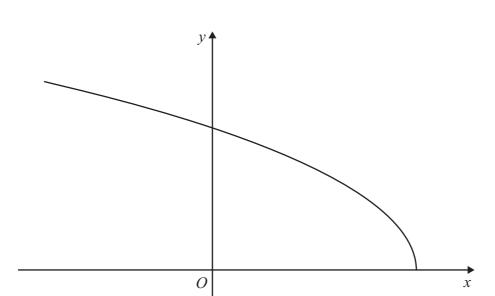


Figure 2

Figure 2 shows a sketch of the curve with parametric equations

$$x = 2\cos 2t$$
, $y = 6\sin t$, $0 \leqslant t \leqslant \frac{\pi}{2}$

(a) Find the gradient of the curve at the point where $t = \frac{\pi}{3}$.

(4)

(b) Find a cartesian equation of the curve in the form

$$y = f(x), -k \leqslant x \leqslant k,$$

stating the value of the constant k.

(4)

(c) Write down the range of f(x).

(2)

Ques Num		Scheme					
Q5	(a)	$\frac{dx}{dt} = -4\sin 2t, \frac{dy}{dt} = 6\cos t$ $\frac{dy}{dx} = -\frac{6\cos t}{4\sin 2t} \left(= -\frac{3}{4\sin t} \right)$ At $t = \frac{\pi}{3}$, $m = -\frac{3}{4 \times \frac{\sqrt{3}}{2}} = -\frac{\sqrt{3}}{2}$ accept equivalents, awrt -0.87	B1, B1 M1 A1	(4)			
	(b)	Use of $\cos 2t = 1 - 2\sin^2 t$ $\cos 2t = \frac{x}{2}, \sin t = \frac{y}{6}$ $\frac{x}{2} = 1 - 2\left(\frac{y}{6}\right)^2$	M1				
		Leading to $y = \sqrt{(18-9x)} \left(=3\sqrt{(2-x)}\right) \qquad \text{cao}$ $-2 \le x \le 2 \qquad \qquad k = 2$	A1 B1	(4)			
	(c)	$0 \le f(x) \le 6$ either $0 \le f(x)$ or $f(x) \le 6$ Fully correct. Accept $0 \le y \le 6$, $[0, 6]$	B1 B1	(2)			
				[10]			
		Alternatives to (a) where the parameter is eliminated					
		$y = \left(18 - 9x\right)^{\frac{1}{2}}$					
		$\frac{dy}{dx} = \frac{1}{2} (18 - 9x)^{-\frac{1}{2}} \times (-9)$	B1				
		At $t = \frac{\pi}{3}$, $x = \cos \frac{2\pi}{3} = -1$	B1				
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \times \frac{1}{\sqrt{(27)}} \times -9 = -\frac{\sqrt{3}}{2}$	M1 A1	(4)			
		$y^{2} = 18 - 9x$ $2y \frac{dy}{dx} = -9$	B1				
		At $t = \frac{\pi}{3}$, $y = 6\sin\frac{\pi}{3} = 3\sqrt{3}$	B1				
		$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{9}{2 \times 3\sqrt{3}} = -\frac{\sqrt{3}}{2}$	M1 A1	(4)			

Past Paper

6666

Leave

blank

6. (a) Find $\int \sqrt{(5-x)} dx$.

(2)

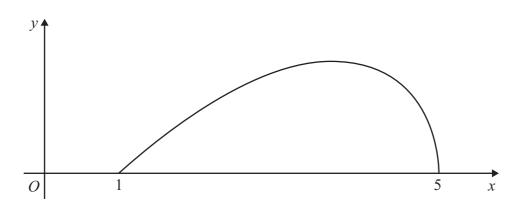


Figure 3

Figure 3 shows a sketch of the curve with equation

$$y = (x - 1) \sqrt{(5 - x)}, \quad 1 \le x \le 5$$

(b) (i) Using integration by parts, or otherwise, find

$$\int (x-1)\sqrt{(5-x)}\,\mathrm{d}x$$

(ii) Hence find $\int_1^5 (x-1)\sqrt{(5-x)} dx$.

1	1	١
	,	-1

(4)

Question Number	VIIAMA		;
Q6 (a)	$\int \sqrt{(5-x)} dx = \int (5-x)^{\frac{1}{2}} dx = \frac{(5-x)^{\frac{3}{2}}}{-\frac{3}{2}} (+C)$ $\left(= -\frac{2}{3} (5-x)^{\frac{3}{2}} + C \right)$	M1 A1	(2)
(b)	(i) $\int (x-1)\sqrt{(5-x)} dx = -\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}} + \frac{2}{3}\int (5-x)^{\frac{3}{2}} dx$ $= \qquad \qquad +\frac{2}{3} \times \frac{(5-x)^{\frac{5}{2}}}{-\frac{5}{2}} (+C)$ $= -\frac{2}{3}(x-1)(5-x)^{\frac{3}{2}} - \frac{4}{15}(5-x)^{\frac{5}{2}} (+C)$	M1 A1ft M1 A1	(4)
	(ii) $\left[-\frac{2}{3} (x-1) (5-x)^{\frac{3}{2}} - \frac{4}{15} (5-x)^{\frac{5}{2}} \right]_{1}^{5} = (0-0) - \left(0 - \frac{4}{15} \times 4^{\frac{5}{2}} \right)$ $= \frac{128}{15} \left(= 8 \frac{8}{15} \approx 8.53 \right) \text{awrt } 8.53$	M1 A1	(2) [8]
	Alternatives for (b) and (c) (b) $u^{2} = 5 - x \Rightarrow 2u \frac{du}{dx} = -1$ $\left(\Rightarrow \frac{dx}{du} = -2u \right)$ $\int (x-1)\sqrt{(5-x)} dx = \int (4-u^{2})u \frac{dx}{du} du = \int (4-u^{2})u(-2u) du$ $= \int (2u^{4} - 8u^{2}) du = \frac{2}{5}u^{5} - \frac{8}{3}u^{3} (+C)$ $= \frac{2}{5}(5-x)^{\frac{5}{2}} - \frac{8}{3}(5-x)^{\frac{3}{2}} (+C)$ (c) $x = 1 \Rightarrow u = 2, x = 5 \Rightarrow u = 0$ $\left[\frac{2}{5}u^{5} - \frac{8}{3}u^{3} \right]_{2}^{0} = (0-0) - \left(\frac{64}{5} - \frac{64}{3} \right)$	M1 A1 M1 A1	
	$= \frac{128}{15} \left(= 8 \frac{8}{15} \approx 8.53 \right)$ awrt 8.53	A1	(2)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6666 Leave

7.	Relative to a fixed origin O , the point A has position vector $(8\mathbf{i} + 13\mathbf{j} - 2\mathbf{k})$, the point B has position vector $(10\mathbf{i} + 14\mathbf{j} - 4\mathbf{k})$, and the point C has position vector $(9\mathbf{i} + 9\mathbf{j} + 6\mathbf{k})$.	bl
	The line l passes through the points A and B .	
	(a) Find a vector equation for the line <i>l</i> .	(3)
	(b) Find $ \overrightarrow{CB} $.	(2)
	(c) Find the size of the acute angle between the line segment <i>CB</i> and the line <i>l</i> , give your answer in degrees to 1 decimal place.	
		(3)
	(d) Find the shortest distance from the point C to the line l.	(3)
	The point X lies on l . Given that the vector \overrightarrow{CX} is perpendicular to l ,	
	(e) find the area of the triangle <i>CXB</i> , giving your answer to 3 significant figures.	(3)

Question Number	SCHOMO		5
Q7 (a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 10 \\ 14 \\ -4 \end{pmatrix} - \begin{pmatrix} 8 \\ 13 \\ -2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$ or $\overrightarrow{BA} = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$ $\mathbf{r} = \begin{pmatrix} 8 \\ 13 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 10 \\ 14 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}$ accept equivalents	M1	(3)
	$\mathbf{r} = \begin{bmatrix} 13 \\ -2 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -2 \end{bmatrix} \text{ or } \mathbf{r} = \begin{bmatrix} 14 \\ -4 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ -2 \end{bmatrix} $ accept equivalents	M1 A1ft	(3)
(b)	$\overrightarrow{CB} = \overrightarrow{OB} - \overrightarrow{OC} = \begin{pmatrix} 10\\14\\-4 \end{pmatrix} - \begin{pmatrix} 9\\9\\6 \end{pmatrix} = \begin{pmatrix} 1\\5\\-10 \end{pmatrix} \qquad \text{or } \overrightarrow{BC} = \begin{pmatrix} -1\\-5\\10 \end{pmatrix}$		
	$CB = \sqrt{(1^2 + 5^2 + (-10)^2)} = \sqrt{(126)} (= 3\sqrt{14} \approx 11.2)$ awrt 11.2	M1 A1	(2)
(c)	$\overrightarrow{CB}.\overrightarrow{AB} = \left \overrightarrow{CB} \right \left \overrightarrow{AB} \right \cos \theta$		
	$(\pm)(2+5+20) = \sqrt{126}\sqrt{9}\cos\theta$ $\cos\theta = \frac{3}{\sqrt{14}} \implies \theta \approx 36.7^{\circ}$ awrt 36.7°	M1 A1	(3)
(d)			
	$\frac{d}{\sqrt{126}} = \sin \theta$ $d = 3\sqrt{5} (\approx 6.7)$ awrt 6.7	M1 A1ft	(3)
(e)	$BX^2 = BC^2 - d^2 = 126 - 45 = 81$	M1	
	! $CBX = \frac{1}{2} \times BX \times d = \frac{1}{2} \times 9 \times 3\sqrt{5} = \frac{27\sqrt{5}}{2} (\approx 30.2)$ awrt 30.1 or 30.2	M1 A1	(3)
			[14]
	Alternative for (e)		
	$! CBX = \frac{1}{2} \times d \times BC \sin \angle XCB$	M1	
	$= \frac{1}{2} \times 3\sqrt{5} \times \sqrt{126} \sin(90 - 36.7)^{\circ}$ sine of correct angle	M1	
	≈ 30.2 $\frac{27\sqrt{5}}{2}$, awrt 30.1 or 30.2	A1	(3)

Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

8. (a) Using the identity $\cos 2\theta = 1 - 2\sin^2\theta$, find $\int \sin^2\theta \, d\theta$.

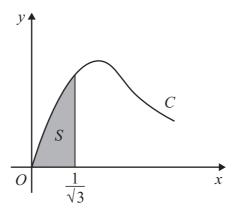


Figure 4

Figure 4 shows part of the curve C with parametric equations

$$x = \tan \theta$$
, $y = 2\sin 2\theta$, $0 \leqslant \theta < \frac{\pi}{2}$

The finite shaded region *S* shown in Figure 4 is bounded by *C*, the line $x = \frac{1}{\sqrt{3}}$ and the *x*-axis. This shaded region is rotated through 2π radians about the *x*-axis to form a solid of revolution.

(b) Show that the volume of the solid of revolution formed is given by the integral

$$k \int_0^{\frac{\pi}{6}} \sin^2 \theta \, d\theta$$

where k is a constant.

(5)

(c) Hence find the exact value for this volume, giving your answer in the form $p\pi^2 + q\pi\sqrt{3}$, where p and q are constants.

(3)

Que: Nun		SCHAMA		Marks	
Q8	(a)	$\int \sin^2\theta d\theta = \frac{1}{2} \int (1 - \cos 2\theta) d\theta = \frac{1}{2} \theta - \frac{1}{4} \sin 2\theta (+C)$	M1 A	\1	(2)
	(b)	$x = \tan \theta \implies \frac{\mathrm{d}x}{\mathrm{d}\theta} = \sec^2 \theta$			
		$\pi \int y^2 dx = \pi \int y^2 \frac{dx}{d\theta} d\theta = \pi \int (2\sin 2\theta)^2 \sec^2 \theta d\theta$	M1 A	\1	
		$=\pi \int \frac{\left(2 \times 2 \sin \theta \cos \theta\right)^2}{\cos^2 \theta} d\theta$	M1		
		$=16\pi\int\sin^2\theta\mathrm{d}\theta$ $k=16\pi$	A1		
		$x = 0 \implies \tan \theta = 0 \implies \theta = 0, x = \frac{1}{\sqrt{3}} \implies \tan \theta = \frac{1}{\sqrt{3}} \implies \theta = \frac{\pi}{6}$	B1		(5)
		$\left(V = 16\pi \int_0^{\frac{\pi}{6}} \sin^2 \theta \mathrm{d}\theta\right)$			
	(c)	$V = 16\pi \left[\frac{1}{2}\theta - \frac{\sin 2\theta}{4} \right]_0^{\frac{\pi}{6}}$	M1		
		$=16\pi \left[\left(\frac{\pi}{12} - \frac{1}{4} \sin \frac{\pi}{3} \right) - (0-0) \right]$ Use of correct limits	M1		
		$=16\pi \left(\frac{\pi}{12} - \frac{\sqrt{3}}{8}\right) = \frac{4}{3}\pi^2 - 2\pi\sqrt{3}$ $p = \frac{4}{3}, q = -2$	A1		(3)
				[′	10]