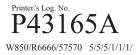
Summer 2014


www.mvstudvbro.com

Mathematics C4

Past Paper	This resource was created and owned by Pearson Edexcel	linematio	6666
Centre No.	Paper Reference Surname	Initia	l(s)
Candidate No.	6 6 6 6 1 Signature	I	
	Paper Reference(s) 66666/01	Examiner's use	e only
	Edexcel GCE		
		eam Leader's u	ise only
	Core Mathematics C4		
	Advanced	Question Number	Leave Blank
	Wednesday 18 June 2014 – Afternoon	1	
	Time: 1 hour 30 minutes	2	
		3	
	Materials required for examination Items included with question papers	4	
	Mathematical Formulae (Pink) Nil		
	Candidates may use any calculator allowed by the regulations of the Joint	6	
	Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have	7	
	retrievable mathematical formulae stored in them.	8	
Instructions to C	andidates		
In the boxes above, Check that you hav Answer ALL the qu You must write you	write your centre number, candidate number, your surname, initials and signature e the correct question paper.	- ·	
Information for	Candidates		
Full marks may be The marks for indiv There are 8 questio	hatical Formulae and Statistical Tables' is provided. obtained for answers to ALL questions. vidual questions and the parts of questions are shown in round brackets: e.g. (2). ns in this question paper. The total mark for this paper is 75. in this question paper. Any blank pages are indicated.		
Advice to Candi	dates		
	at your answers to parts of questions are clearly labelled.	-	
V	. Contract and the second se		

You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy. ©2014 Pearson Education Ltd.

Turn over

Total

Pape	This resource was created and owned by Pearson Edexcel	(
		Le bla
1.	A curve C has the equation	
	$x^3 + 2xy - x - y^3 - 20 = 0$	
	(a) Find $\frac{dy}{dx}$ in terms of x and y.	
	dx (5)	
	(b) Find an equation of the tangent to C at the point $(3, -2)$, giving your answer in the form $ax + by + c = 0$, where a, b and c are integers.	
	(2)	
2		<u> </u>

Summer 2014 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4

Question Number		Scheme	Marks
1.		$x^3 + 2xy - x - y^3 - 20 = 0$	
(a)		$\left\{ \underbrace{\underbrace{\underbrace{x}}_{x}}{\underbrace{x}} \times \right\} \underline{3x^2} + \left(\underbrace{2y + 2x \frac{dy}{dx}}_{x} \right) \underbrace{-1 - 3y^2 \frac{dy}{dx}}_{x} = 0$	M1 <u>A1</u> <u>B1</u>
		$3x^{2} + 2y - 1 + (2x - 3y^{2})\frac{dy}{dx} = 0$	
		$\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x} \text{or} \frac{1 - 3x^2 - 2y}{2x - 3y^2}$	A1 cso [5]
(b)	At P($(3, -2), m(\mathbf{T}) = \frac{dy}{dx} = \frac{3(3)^2 + 2(-2) - 1}{3(-2)^2 - 2(3)}; = \frac{22}{6} \text{ or } \frac{11}{3}$	
	and ei	ither T: $y - 2 = \frac{11}{3}(x - 3)$ see notes	M1
		or $(-2) = \left(\frac{11}{3}\right)(3) + c \implies c = \dots,$	
	T : 11	x - 3y - 39 = 0 or $K(11x - 3y - 39) = 0$	A1 cso
			[2] 7
	Altern	native method for part (a)	
(a)	$\left\{ \frac{\cancel{2x}}{\cancel{2x}} \times \right\} \underbrace{3x^2 \frac{dx}{dy}}_{} + \left(\underbrace{2y \frac{dx}{dy} + 2x}_{} \right) \underbrace{-\frac{dx}{dy} - 3y^2 = 0}_{}$		M1 <u>A1</u> <u>B1</u>
	$2x - 3y^{2} + (3x^{2} + 2y - 1)\frac{dx}{dy} = 0$		
	$dy = 3x^2 + 2y - 1$ $1 - 3x^2 - 2y$		A1 cso [5]
		Question 1 Notes	[0]
(a) General	Note	Writing down $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}$ or $\frac{1 - 3x^2 - 2y}{2x - 3y^2}$ from no working is full marks.	
	Note Writing down $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{2x - 3y^2}$ or $\frac{1 - 3x^2 - 2y}{3y^2 - 2x}$ from no working is M1A0B0M1A0		[1A0
	Note Few candidates will write $3x^2 + 2y + 2x dy - 1 - 3y^2 dy = 0$ leading to $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}$, o.e.		$\frac{y-1}{2x}$, o.e.
		This should get full marks.	
1. (a)	M1 Differentiates implicitly to include either $2x\frac{dy}{dx}$ or $-y^3 \rightarrow \pm k y^2 \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx}=\right)$).).
	A1 $x^3 \to 3x^2$ and $-x - y^3 - 20 = 0 \to -1 - 3y^2 \frac{dy}{dx} = 0$		
	B 1	$2xy \rightarrow 2y + 2x \frac{dy}{dx}$	
	Note	If an extra term appears then award 1^{st} A0.	

www.mystudybro.com This resource was created and owned by Pearson Edexcel

	T	
1. (a) ctd	Note	$3x^{2} + 2y + 2x\frac{dy}{dx} - 1 - 3y^{2}\frac{dy}{dx} \rightarrow 3x^{2} + 2y - 1 = 3y^{2}\frac{dy}{dx} - 2x\frac{dy}{dx}$
		will get 1^{st} A1 (implied) as the "= 0" can be implied by rearrangement of their equation.
	dM1	dependent on the first method mark being awarded.
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are <i>at least two terms</i> in $\frac{dy}{dx}$.
		ie + $(2x - 3y^2)\frac{dy}{dx} =$
	Note	Placing an extra $\frac{dy}{dx}$ at the beginning and then including it in their factorisation is fine for dM1.
	A1	For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$
		cso: If the candidate's solution is not completely correct, then do not give this mark.isw: You can, however, ignore subsequent working following on from correct solution.
1. (b)	M1	Some attempt to substitute both $x = 3$ and $y = -2$ into their $\frac{dy}{dx}$ which contains both x and y
		to find m_T and
		• either applies $y - 2 = (\text{their } m_T)(x - 3)$, where m_T is a numerical value.
		• or finds c by solving $(-2) = (\text{their } m_T)(3) + c$, where m_T is a numerical value.
	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$ is M0).
	A1	Accept any integer multiple of $11x - 3y - 39 = 0$ or $11x - 39 - 3y = 0$ or $-11x + 3y + 39 = 0$, where their tangent equation is equal to 0.
	cso	A correct solution is required from a correct $\frac{dy}{dr}$.
	isw	You can ignore subsequent working following a correct solution.
	<u>Altern</u>	ative method for part (a): Differentiating with respect to y
1. (a)	M1	Differentiates implicitly to include either $2y\frac{dx}{dy}$ or $x^3 \rightarrow \pm kx^2\frac{dx}{dy}$ or $-x \rightarrow -\frac{dx}{dy}$
		(Ignore $\left(\frac{\mathrm{d}x}{\mathrm{d}y}=\right)$).
	A1	$x^{3} \rightarrow 3x^{2} \frac{dx}{dy}$ and $-x - y^{3} - 20 = 0 \rightarrow -\frac{dx}{dy} - 3y^{2} = 0$
	B 1	$2xy \to 2y\frac{\mathrm{d}x}{\mathrm{d}y} + 2x$
	dM1	dependent on the first method mark being awarded.
		An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are <i>at least two terms</i> in $\frac{dx}{dy}$.
	A1	For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$
		cso: If the candidate's solution is not completely correct, then do not give this mark.

Summe Past Paper		www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathemat	ics C4 6666
2.	Given that t	the binomial expansion of $(1 + kx)^{-4}$, $ kx < 1$, is		Leave blank
		$1-6x+Ax^2+\ldots$		
	(a) find the	e value of the constant <i>k</i> ,		
	(a) find the		(2)	
	(b) find the	e value of the constant A, giving your answer in its simplest form.		
			(3)	

Question			[_
Number		Scheme	Marks	
2.	{(1 +	$kx)^{-4} = 1 + (-4)(kx) + \frac{(-4)(-4-1)}{2!}(kx)^{2} + \dots \bigg\}$		
(a)	Eithe	Either $(-4)k = -6$ or $(1 + kx)^{-4} = 1 + (-4)(kx)$ see notes		
		leading to $k = \frac{3}{2}$ $k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$		1
(b)		(-4)(-5) _{(k)²} Either $\frac{(-4)(-5)}{2!}$ or $(k)^2$ or $(kx)^2$	[2] M1	1
(0)	$\frac{(-4)(-5)}{2}(k)^{2}$ Either $\frac{(-4)(-5)}{2!}(k)^{2}$ or $\frac{(-4)(-5)}{2!}(kx)^{2}$		M1	
	$\begin{cases} A = \end{cases}$	$\frac{(-4)(-5)}{2!} \left(\frac{3}{2}\right)^2 \Rightarrow A = \frac{45}{2} \qquad \qquad$		1
			[3]	1 5
Note	In thi	Question 2 Notes		
Note		s question ignore part labelling and mark part (a) and part (b) together.		
	Note	Writing down $\{(1 + kx)^{-4}\} = 1 + (-4)(kx) + \frac{(-4)(-4 - 1)}{2!}(kx)^2 + \dots$		
		gets all the method marks in Q2. i.e. (a) M1 and (b) M1M1		
(a)	M1	Award M1 for		
		• either writing down $(-4)k = -6$ or $4k = 6$		
		 or expanding (1 + kx)⁻⁴ to give 1 + (-4)(kx) or writing down (-4)k x = -6 or (-4k) = -6x or -4k x = -6x 		
	A1	$k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$ from no incorrect sign errors.		
	Note Note	The M1 mark can be implied by a candidate writing down the correct value of k. Award M1 for writing down $4k = 6$ and then A1 for $k = 1.5$ (or equivalent).		
	Note	Award M0 for $4k = -6$ (if there is no evidence that $(1 + kx)^{-4}$ expands to give $1 + (-4)^{-4}$	(kx) +)	
	Note	$1 + (-4)(kx)$ leading to $(-4)k = 6$ leading to $k = \frac{3}{2}$ is M1A0.		
(b)	M1	For either $\frac{(-4)(-4-1)}{2!}$ or $\frac{(-4)(-5)}{2!}$ or 10 or $(k)^2$ or $(kx)^2$		
	M1	Either $\frac{(-4)(-4-1)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(kx)^2$ or $\frac{(-4)(-5)}{2!}(their k)^2$	or $10k^2$	1
	Note	Candidates are allowed to use 2 instead of 2!		
	A1	Uses $k = 1.5$ to give $A = \frac{45}{2}$ or 22.5		
	Note	$A = \frac{90}{4}$ which has not been simplified is A0.		
		Award A0 for $A = \frac{45}{2}x^2$.		
		Allow A1 for $A = \frac{45}{2}x^2$ followed by $A = \frac{45}{2}$		
	Note	$k = -1.5$ leading to $A = \frac{45}{2}$ or 22.5 is A0.		

6666

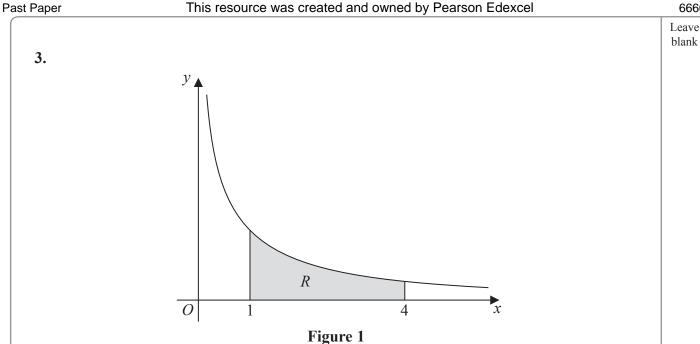


Figure 1 shows a sketch of part of the curve with equation $y = \frac{10}{2x + 5\sqrt{x}}$, x > 0

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis, and the lines with equations x = 1 and x = 4

The table below shows corresponding values of x and y for $y = \frac{10}{2x + 5\sqrt{x}}$

x	1	2	3	4
У	1.42857	0.90326		0.55556

(a) Complete the table above by giving the missing value of y to 5 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.

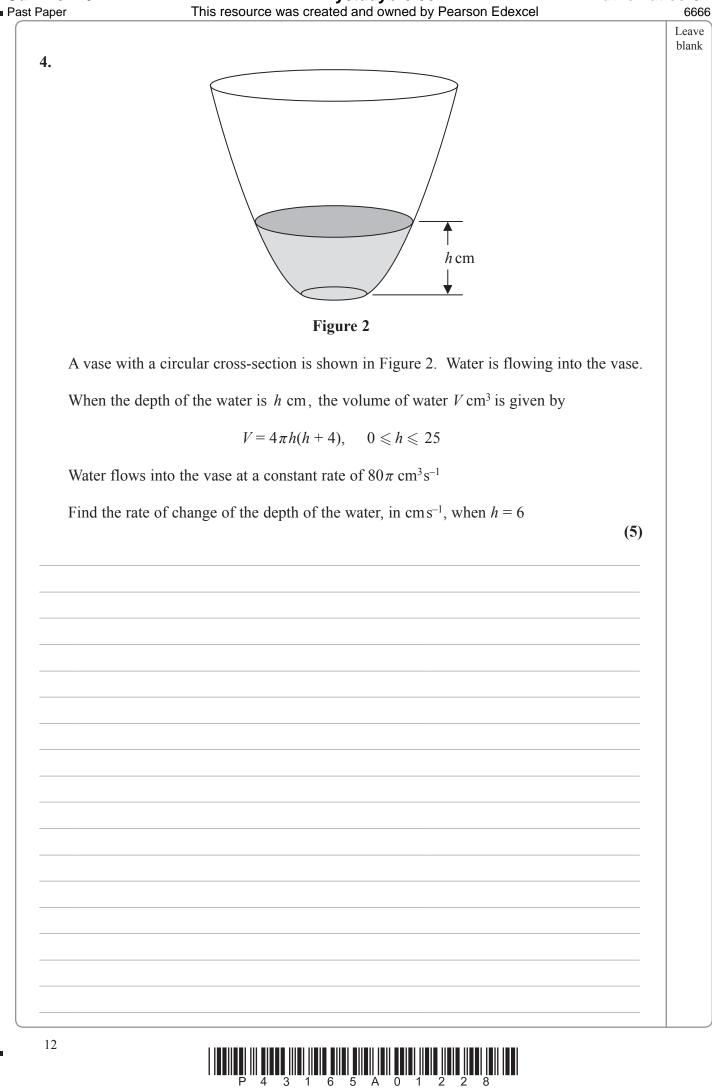
(3)

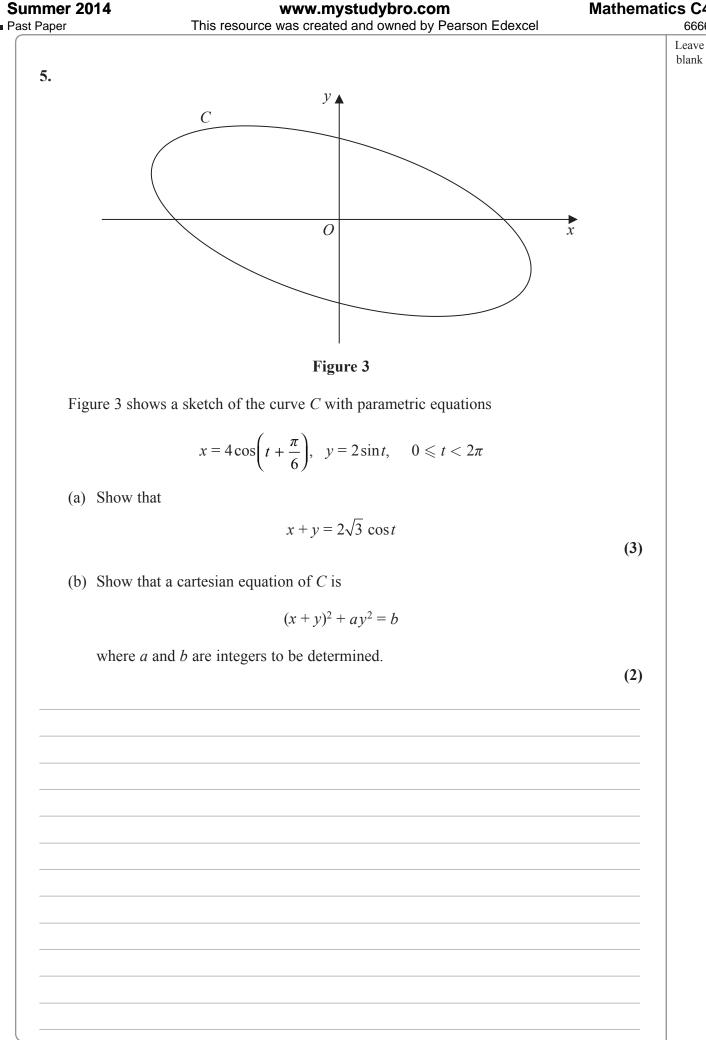
(c) By reference to the curve in Figure 1, state, giving a reason, whether your estimate in part (b) is an overestimate or an underestimate for the area of R.

(1)

(d) Use the substitution $u = \sqrt{x}$, or otherwise, to find the exact value of

$$\int_{1}^{4} \frac{10}{2x + 5\sqrt{x}} \, \mathrm{d}x$$


(6)


www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question		
Question Number	Scheme	Marks
3.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(a)	{At $x = 3$,} $y = 0.68212 (5 \text{ dp})$ 0.68212	B1 cao
	Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$	[1] B1 aef
(b)	$\frac{1}{2} \times 1 \times \left[1.42857 + 0.55556 + 2(0.90326 + \text{their } 0.68212) \right] $ For structure of []	M1
	- <u> </u>	
	$\left\{=\frac{1}{2}(5.15489)\right\}=2.577445=2.5774$ (4 dp) anything that rounds to 2.5774	A1
(a)	Oranationta	[3]
(c)	• Overestimate and a reason such as	
	• {top of} trapezia lie above the curve	
	 a diagram which gives reference to the extra area concave or convex 	
	• $\frac{d^2 y}{dx^2} > 0$ (can be implied)	B1
	dx .	
	 bends inwards curves downwards 	
		[1]
(d)	$\left\{ u = \sqrt{x} \Longrightarrow \right\} \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2} x^{-\frac{1}{2}} \text{ or } \frac{\mathrm{d}x}{\mathrm{d}u} = 2u$	B1
	$\int \frac{10}{2u^2 + 5u} \cdot 2u du \qquad \text{Either } \left\{ \int \right\} \frac{\pm k u}{\alpha u^2 \pm \beta u} \left\{ du \right\} \text{ or } \left\{ \int \right\} \frac{\pm k}{u \left(\alpha u^2 \pm \beta u \right)} \left\{ du \right\}$	M1
	$\pm \lambda \ln(2u+5) \text{ or } \pm \lambda \ln\left(u+\frac{5}{2}\right), \ \lambda \neq 0$	M1
	$\left\{ = \int \frac{20}{2u+5} du \right\} = \frac{20}{2} \ln(2u+5) $ with no other terms.	
	$\frac{20}{2u+5} \rightarrow \frac{20}{2}\ln(2u+5) \text{ or } 10\ln\left(u+\frac{5}{2}\right)$	A1 cso
	$\left\{ \left[\frac{20}{2}\ln(2u+5)\right]_{1}^{2} \right\} = 10\ln(2(2)+5) - 10\ln(2(1)+5) $ Substitutes limits of 2 and 1 in <i>u</i> (or 4 and 1 in <i>x</i>) and subtracts the correct way round.	M1
	$10\ln 9 - 10\ln 7$ or $10\ln\left(\frac{9}{7}\right)$ or $20\ln 3 - 10\ln 7$	A1 oe cso
		[6] 11
	Question 3 Notes	11
3. (a)	B1 0.68212 correct answer only. Look for this on the table or in the candidate's working.	
(b)	B1 Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ or equivalent.	
	M1 For structure of trapezium rule [
	NoteNo errors are allowed [eg. an omission of a y-ordinate or an extra y-ordinate or a repeated yA1anything that rounds to 2.5774	y ordinate].
	Note Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 2.51314)	4428)

1	r			
3. (b) contd	Note	Award B1M1A1 for $\frac{1}{2}(1.42857 + 0.55556) + (0.90326 + \text{their } 0.68212) = 2.577445$		
		Bracketing mistake: Unless the final answer implies that the calculation has been done correctly		
		award B1M0A0 for $\frac{1}{2} \times 1 + 1.42857 + 2(0.90326 + \text{their } 0.68212) + 0.55556$ (nb: answer of 5.65489).		
		1		
		award B1M0A0 for $\frac{1}{2} \times 1$ (1.42857 + 0.55556) + 2(0.90326 + their 0.68212) (nb: answer of 4.162825).		
		Alternative method: Adding individual trapezia		
		Area $\approx 1 \times \left[\frac{1.42857 + 0.90326}{2} + \frac{0.90326 + "0.68212"}{2} + \frac{"0.68212" + 0.55556}{2} \right] = 2.577445$		
	B 1	B1: 1 and a divisor of 2 on all terms inside brackets.		
	M1 A1	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2. A1: anything that rounds to 2.5774		
(c)	B1	Overestimate and either trapezia lie above curve or a diagram that gives reference to the extra area		
		eg. This diagram is sufficient. It must		
		show the top of a trapezium lying above the curve.		
		$d^2 y$		
		or concave or convex or $\frac{d^2 y}{dx^2} > 0$ (can be implied) or bends inwards or curves downwards.		
	Note	Reason of "gradient is negative" by itself is B0.		
(d)	B1	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \text{or} \mathrm{d}u = \frac{1}{2\sqrt{x}}\mathrm{d}x \text{or} 2\sqrt{x}\mathrm{d}u = \mathrm{d}x \text{or} \mathrm{d}x = 2u\mathrm{d}u \text{or} \frac{\mathrm{d}x}{\mathrm{d}u} = 2u \text{o.e.}$		
	M1	Applying the substitution and achieving $\left\{ \int \right\} \frac{\pm k u}{\alpha u^2 \pm \beta u} \left\{ du \right\}$ or $\left\{ \int \right\} \frac{\pm k}{u \left(\alpha u^2 \pm \beta u \right)} \left\{ du \right\}$,		
		$k, \alpha, \beta \neq 0$. Integral sign and du not required for this mark.		
	M1	Cancelling <i>u</i> and integrates to achieve $\pm \lambda \ln(2u+5)$ or $\pm \lambda \ln\left(u+\frac{5}{2}\right)$, $\lambda \neq 0$ with no other terms.		
	A1	cso. Integrates $\frac{20}{2u+5}$ to give $\frac{20}{2}\ln(2u+5)$ or $10\ln\left(u+\frac{5}{2}\right)$, un-simplified or simplified.		
	Note	BE CAREFUL! Candidates must be integrating $\frac{20}{2u+5}$ or equivalent.		
		So $\int \frac{10}{2u+5} du = 10 \ln(2u+5)$ WOULD BE A0 and final A0.		
	M1	Applies limits of 2 and 1 in u or 4 and 1 in x in their (i.e. any) changed function and subtracts the correct way round.		
	A1	Exact answers of either $10\ln 9 - 10\ln 7$ or $10\ln\left(\frac{9}{7}\right)$ or $20\ln 3 - 10\ln 7$ or $20\ln\left(\frac{3}{\sqrt{7}}\right)$ or $\ln\left(\frac{9^{10}}{7^{10}}\right)$		
		or equivalent. Correct solution only.		
	Note	You can ignore subsequent working which follows from a correct answer.		
	Note	A decimal answer of 2.513144283 (without a correct exact answer) is A0.		

Question			Maular
Number	4	Scheme	Marks
4.	$\frac{\mathrm{d}V}{\mathrm{d}t} =$	80π , $V = 4\pi h(h+4) = 4\pi h^2 + 16\pi h$,	
		$\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 16\pi \qquad \qquad \pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0 \\ 8\pi h + 16\pi \qquad \qquad$	M1
			A1
	($\times \frac{dh}{dt} = \frac{dV}{dt} \Rightarrow \left\{ 8\pi h + 16\pi \right\} \frac{dh}{dt} = 80\pi \qquad \left(\text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80\pi$	M1 oe
		$= \frac{dV}{dt} \div \frac{dV}{dh} \Rightarrow \begin{cases} \frac{dh}{dt} = 80\pi \times \frac{1}{8\pi h + 16\pi} & \text{or } 80\pi \div \text{Candidate's } \frac{dV}{dh} \end{cases}$	
	When	$h = 6, \left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \right\} \frac{1}{8\pi(6) + 16\pi} \times 80\pi \left\{=\frac{80\pi}{64\pi}\right\}$ dependent on the previous M1 see notes	dM1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 1$	1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$	
			[5] 5
	Altern	ative Method for the first M1A1	
	Produc	et rule: $\begin{cases} u = 4\pi h & v = h + 4 \\ \frac{du}{dh} = 4\pi & \frac{dv}{dh} = 1 \end{cases}$	
	TTOduc	$\frac{du}{dh} = 4\pi \qquad \frac{dv}{dh} = 1$	
	$\frac{\mathrm{d}V}{-}$	$\pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0$ $4\pi (h+4) + 4\pi h$ $\pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0$ $4\pi (h+4) + 4\pi h$	M1
	dh	$4\pi(h+4) + 4\pi h$	A1
		Question 4 Notes	
	M1	An expression of the form $\pm \alpha h \pm \beta$, $\alpha \neq 0$, $\beta \neq 0$. Can be simplified or un-simplifie	d.
	A1	Correct simplified or un-simplified differentiation of V.	
	Note	eg. $8\pi h + 16\pi$ or $4\pi(h+4) + 4\pi h$ or $8\pi(h+2)$ or equivalent. Some candidates will use the product rule to differentiate V with respect to h. (See Alt N	fethod 1).
	Note	$\frac{dV}{dL}$ does not have to be explicitly stated, but it should be clear that they are differentiation	
		dn	0
	M1	$\left(\text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h}\right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \text{or} 80\pi \div \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h}$	
	Note	Also allow 2 nd M1 for $\left(\text{Candidate's } \frac{dV}{dh} \right) \times \frac{dh}{dt} = 80$ or $80 \div \text{Candidate's } \frac{dV}{dh}$	
	Note	Give 2 nd M0 for $\left(\text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h} \right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 80 \pi t \text{ or } 80k \text{ or } 80\pi t \text{ or } 80k \div \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}t}$	$\frac{\mathrm{d}V}{\mathrm{d}h}$
	dM1	which is dependent on the previous M1 mark.	
		Substitutes $h = 6$ into an expression which is a result of a quotient of their $\frac{dV}{dh}$ and 80π ((or 80)
	A1	1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$ (units are not required).	
	Note	$\frac{80\pi}{64\pi}$ as a final answer is A0.	
	Note	Substituting $h = 6$ into a correct $\frac{dV}{dh}$ gives 64π but the final M1 mark can only be awar	ded if this
		is used as a quotient with 80π (or 80)	
L	1	1	

Question	Sahama	Marks
Number	Scheme	Marks
5.	$x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$	
	Main Scheme	
(a)	$x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) \qquad \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$	M1 oe
	So, $\{x + y\} = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t$ Adds their expanded x (which is in terms of t) to $2\sin t$	dM1
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) + 2\sin t$	
	$=2\sqrt{3}\cos t$ * Correct proof	A1 * [3]
(a)	Alternative Method 1	
	$x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) \qquad \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$	M1 oe
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) = 2\sqrt{3}\cos t - 2\sin t$	
	So, $x = 2\sqrt{3}\cos t - y$ Forms an equation in x, y and t.	dM1
	$x + y = 2\sqrt{3}\cos t$ * Correct proof	A1 *
		[3]
	Main Scheme	
(b)	$\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only <i>x</i> 's and <i>y</i> 's.	M1
	$\Rightarrow \frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$	
	$\Rightarrow (x + y)^{2} + 3y^{2} = 12 \qquad (x + y)^{2} + 3y^{2} = 12$	A1
	${a = 3, b = 12}$	[2]
(b)	Alternative Method 1	
	$(x + y)^{2} = 12\cos^{2} t = 12(1 - \sin^{2} t) = 12 - 12\sin^{2} t$	
	So, $(x + y)^2 = 12 - 3y^2$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only <i>x</i> 's and <i>y</i> 's.	M1
	$\Rightarrow (x + y)^{2} + 3y^{2} = 12 \qquad (x + y)^{2} + 3y^{2} = 12$	A1
(b)	Alternative Method 2	[2]
\~/	$(x + y)^2 = 12\cos^2 t$	
	As $12\cos^2 t + 12\sin^2 t = 12$	
	then $(x + y)^2 + 3y^2 = 12$	M1, A1
		[2]
		5

		Question 5 Notes		
5. (a)	M1	$\cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right) \text{or} \cos\left(t + \frac{\pi}{6}\right) \to \left(\frac{\sqrt{3}}{2}\right) \cos t \pm \left(\frac{1}{2}\right) \sin t$		
	Note	If a candidate states $\cos(A + B) = \cos A \cos B \pm \sin A \sin B$, but there is an error <i>in its application</i>		
		then give M1.		
		warding the dM1 mark which is dependent on the first method mark		
Main	dM1	Adds their expanded x (which is in terms of t) to $2\sin t$		
	Note	Writing $x + y =$ is not needed in the Main Scheme method.		
Alt 1	dM1	Forms an equation in <i>x</i> , <i>y</i> and <i>t</i> .		
	A1*	Evidence of $\cos\left(\frac{\pi}{6}\right)$ and $\sin\left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors.		
	Note	${x + y} = 4\cos\left(t + \frac{\pi}{6}\right) + 2\sin t$, by itself is M0M0A0.		
(b)	M1	Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only <i>x</i> 's and <i>y</i> 's.		
	A1	leading $(x + y)^2 + 3y^2 = 12$		
	SC	Award Special Case B1B0 for a candidate who writes down either		
		• $(x + y)^2 + 3y^2 = 12$ from no working		
		• $a = 3, b = 12$, but <u>does not provide a correct proof</u> .		
	Note	Alternative method 2 is fine for M1 A1		
	Note	Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b \implies a = 3, b = 12$ is SC: B1B0		
	Note	Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b$ • states $a = 3, b = 12$		
		• and refers to either $\cos^2 t + \sin^2 t = 1$ or $12\cos^2 t + 12\sin^2 t = 12$		
		• and there is no incorrect working would get M1A1		

Paper	This resource was created and owned by Pearson Edexcel	
6. (i) Find		
	$\int x e^{4x} dx$	
	5	(3)
(ii) Find		
(II) T'IId	f 8 1	
	$\int \frac{8}{\left(2x-1\right)^3} \mathrm{d}x, x > \frac{1}{2}$	
		(2)
(iii) Given that y	$=\frac{\pi}{6}$ at $x = 0$, solve the differential equation	
(iii) Orven that y	6	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^x \operatorname{cosec} 2y \operatorname{cosec} y$	
	dx dx dv cosec 2y cosec y	(7)
		(7)

Question			
Number	Scheme	Mark	KS .
6 (i)	$\pm \alpha x e^{4x} - \int \beta e^{4x} \{ dx \}, \alpha \neq 0, \ \beta > 0$	M1	
0. (1)	$\int x e^{4x} dx = \frac{1}{4} x e^{4x} - \int \frac{1}{4} e^{4x} \{ dx \}$ $\frac{1}{4} x e^{4x} - \int \frac{1}{4} e^{4x} \{ dx \}$	A1	
	$=\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x} \{+c\}$ $\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$	A1	
	$\pm \lambda (2x-1)^{-2}$	M1	[3]
(ii)	$\int \frac{8}{(2x-1)^3} \mathrm{d}x = \frac{8(2x-1)^{-2}}{(2)(-2)} \left\{ + c \right\} \qquad \frac{8(2x-1)^{-2}}{(2)(-2)} \text{ or equivalent.}$	A1	
	$\left\{=-2(2x-1)^{-2}\left\{+c\right\}\right\}$ {Ignore subsequent working}.		[2]
(iii)	$\frac{dy}{dx} = e^x \operatorname{cosec} 2y \operatorname{cosec} y$ $y = \frac{\pi}{6}$ at $x = 0$		
	<u>Main Scheme</u>		
	$\int \frac{1}{\operatorname{cosec} 2y \operatorname{cosec} y} \mathrm{d}y = \int e^x \mathrm{d}x \qquad \text{or} \qquad \int \sin 2y \sin y \mathrm{d}y = \int e^x \mathrm{d}x$	B1 oe	
	$\int 2\sin y \cos y \sin y dy = \int e^x dx \qquad \text{Applying } \frac{1}{\csc 2y} \text{ or } \sin 2y \to 2\sin y \cos y$	M1	
	Integrates to give $\pm \mu \sin^3 y$	M1	
	$\frac{2}{3}\sin^3 y = e^x \left\{ + c \right\} \qquad \qquad 2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y$	A1	
	$\begin{array}{c} 3 \\ e^x \rightarrow e^x \end{array}$	B1	
	$\frac{2}{3}\sin^3\left(\frac{\pi}{6}\right) = e^0 + c$ or $\frac{2}{3}\left(\frac{1}{8}\right) - 1 = c$ Use of $y = \frac{\pi}{6}$ and $x = 0$	M1	
	$\begin{cases} \Rightarrow c = -\frac{11}{12} \end{cases} \text{giving} \frac{2}{3} \sin^3 y = e^x - \frac{11}{12} \end{cases} \text{in an integrated equation containing } c \\ \frac{2}{3} \sin^3 y = e^x - \frac{11}{12} \end{cases}$	A1	
	$\begin{bmatrix} -y & z & -z \\ 12 \end{bmatrix}$ $\begin{bmatrix} y & y & z & -z \\ 3 & y & -z & -z \\ 12 & 3 & 3 \end{bmatrix}$ $\begin{bmatrix} -y & z & -z \\ 12 $	AI	[7]
	Alternative Method 1		
	$\int \frac{1}{\operatorname{cosec} 2y \operatorname{cosec} y} \mathrm{d}y = \int e^x \mathrm{d}x \qquad \text{or} \qquad \int \sin 2y \sin y \mathrm{d}y = \int e^x \mathrm{d}x$	B1 oe	
	$\int -\frac{1}{2} (\cos 3y - \cos y) dy = \int e^x dx \qquad $	M1	
	Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$	M1	
	$-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \{+c\} \qquad -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right)$	A1	
	$e^x \rightarrow e^x$ as part of solving their DE.	B1	
	$-\frac{1}{2}\left(\frac{1}{3}\sin\left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^0 + c \text{ or } -\frac{1}{2}\left(\frac{1}{3} - \frac{1}{2}\right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{ in an integrated equation containing } c$	M1	
	$\begin{cases} \Rightarrow c = -\frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \\ \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = \frac{1}{6}\sin 3y + \frac{1}{6}\sin $	A1	
			[7]
			12

		Question	n 6 Notes	
6. (i)	M1	Integration by parts is applied in the form \pm		
		(must be in this form).	J	
	A1	$\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\}$ or equivalent.		
	A1	$\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$ with/without + c. Can be u	in-simplified.	
	isw	You can ignore subsequent working followi		
	SC	SPECIAL CASE: A candidate who uses u	$x = x$, $\frac{dv}{dx} = e^{4x}$, writes down the correct "by j	parts"
		formula, but makes only one error when applying it c	an be awarded Special Case M1.	
(ii)	M1	$\pm \lambda (2x-1)^{-2}, \lambda \neq 0$. Note that λ can be 1.		
	A1	$\frac{8(2x-1)^{-2}}{(2)(-2)}$ or $-2(2x-1)^{-2}$ or $\frac{-2}{(2x-1)^2}$	with/without $+ c$. Can be un-simplified.	
	Note	You can ignore subsequent working which f		
(iii)	B1	Separates variables as shown. dy and dx shipplied by later working. Ignore the integr	ould be in the correct positions, though this r al signs.	nark can be
	Note	Allow B1 for $\int \frac{1}{\csc 2y \csc y} = \int e^x$	-	
	M1	$\frac{1}{\csc 2y} \rightarrow 2\sin y \cos y \text{or} \sin 2y \rightarrow 2\sin y \cos y \text{or} \sin 2y \sin y \rightarrow \pm \lambda \cos 3y \pm \lambda \cos y$		
		seen anywhere in the candidate's working to		
	M1	Integrates to give $\pm \mu \sin^3 y$, $\mu \neq 0$ or $\pm \alpha$,	
	A1	$2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y$ (with no extra terms) or integrates to give $-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right)$		in y
	B1	Evidence that e^x has been integrated to give e^x as part of solving their DE.		
	M1	Some evidence of using both $y = \frac{\pi}{6}$ and $x = 0$ in an integrated or changed equation containing c.		aining <i>c</i> .
	Note	that is mark can be implied by the correct va		
	A1 $\frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ or $-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ or any equivalent correct answer.		ver.	
	Note You can ignore subsequent working which follows from a correct answer. Alternative Method 2 (Using integration by parts twice)			
	$\int \sin 2y \sin y dy = \int e^x dx$ B1 oe			B1 oe
			Applies integration by parts twice to give $\pm \alpha \cos y \sin 2y \pm \beta \sin y \cos 2y$	M2
	$\frac{1}{3}\cos y\sin^2$	$2y - \frac{2}{3}\sin y\cos 2y = e^x \left\{ + c \right\}$	$\frac{1}{3}\cos y\sin 2y - \frac{2}{3}\sin y\cos 2y$	A1
			(simplified or un-simplified) $e^x \rightarrow e^x$ as part of solving their DE.	B1
			as in the main scheme	M1
	$\frac{1}{3}\cos y\sin^2$	$2y - \frac{2}{3}\sin y\cos 2y = e^x - \frac{11}{12}$	$-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$	A1
				[7]

6666

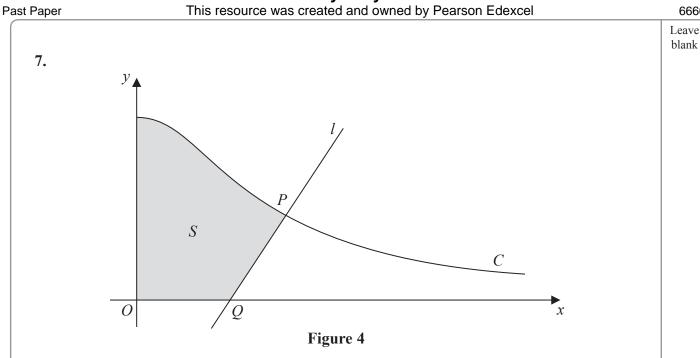


Figure 4 shows a sketch of part of the curve C with parametric equations

 $x = 3 \tan \theta$, $y = 4 \cos^2 \theta$, $0 \le \theta < \frac{\pi}{2}$

The point *P* lies on *C* and has coordinates (3, 2).

The line *l* is the normal to *C* at *P*. The normal cuts the *x*-axis at the point *Q*.

(a) Find the x coordinate of the point Q.

The finite region S, shown shaded in Figure 4, is bounded by the curve C, the x-axis, the y-axis and the line l. This shaded region is rotated 2π radians about the x-axis to form a solid of revolution.

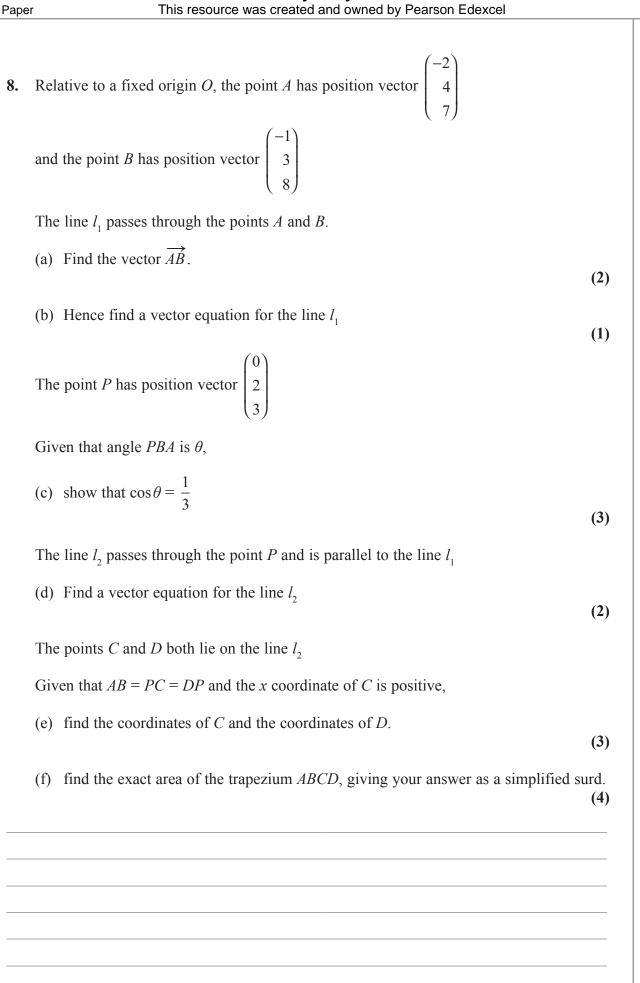
(b) Find the exact value of the volume of the solid of revolution, giving your answer in the form $p\pi + q\pi^2$, where p and q are rational numbers to be determined.

[You may use the formula $V = \frac{1}{3}\pi r^2 h$ for the volume of a cone.]

(9)

(6)

www.mystudybro.com This resource was created and owned by Pearson Edexcel


Mathematics C4

Question Number	Scheme		Marks	
7.	$x = 3\tan\theta$, $y = 4\cos^2\theta$ or $y = 2 + 2\cos 2\theta$, $0 \le \theta < \frac{\pi}{2}$.			
(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec^2\theta$, $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -8\cos\theta\sin\theta$ or $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -4\sin2\theta$			
	$\frac{dy}{dx} = \frac{-8\cos\theta\sin\theta}{3\sec^2\theta} \left\{ = -\frac{8}{3}\cos^3\theta\sin\theta = -\frac{4}{3}\sin2\theta\cos^2\theta \right\} $ their -	$\frac{\mathrm{d}y}{\mathrm{d}\theta}$ divided by their $\frac{\mathrm{d}x}{\mathrm{d}\theta}$	M1	
	$dx 3\sec^2\theta \left(\begin{array}{c} 3 \\ 3 \end{array}\right) = 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	Correct $\frac{dy}{dx}$	A1 oe	
	At $P(3, 2), \ \theta = \frac{\pi}{4}, \ \frac{dy}{dx} = -\frac{8}{3}\cos^3\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right) \left\{=-\frac{2}{3}\right\}$ substitut	Some evidence of	M1	
		applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1	
	Either N: $y - 2 = \frac{3}{2}(x - 3)$			
	or $2 = \left(\frac{3}{2}\right)(3) + c$	see notes	M1	
		$=\frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67	A1 cso	
	$\left(\mathbf{c} + \mathbf{c} + \mathbf{d} \mathbf{r} \right) = \left(\mathbf{c} \right)$		[6	6]
(b)	$\left\{\int y^2 dx = \int y^2 \frac{dx}{d\theta} d\theta \right\} = \left\{\int \right\} (4\cos^2\theta)^2 3\sec^2\theta \{d\theta\}$	see notes	M1	
	So, $\pi \int y^2 dx = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \{d\theta\}$	see notes	A1	
	$\int y^2 \mathrm{d}x = \int 48\cos^2\theta \mathrm{d}\theta$	$\int 48\cos^2\theta \{\mathrm{d}\theta\}$	A1	
	$= \{48\} \int \left(\frac{1+\cos 2\theta}{2}\right) d\theta \left\{= \int (24+24\cos 2\theta) d\theta\right\} $ Appli	es $\cos 2\theta = 2\cos^2 \theta - 1$	M1	
	· · · · · · · · · · · · · · · · · · ·	ent on the first method . For $\pm \alpha \theta \pm \beta \sin 2\theta$	dM1	
	$= \frac{48}{1 - \theta} + \frac{1}{2} \sin 2\theta$ $= 24\theta + 12 \sin 2\theta$	$\theta \rightarrow \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right)$	A1	
	$\int_{0}^{\frac{\pi}{4}} y^{2} dx \left\{ = 48 \left[\frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \right]_{0}^{\frac{\pi}{4}} \right\} = \left\{ 48 \right\} \left(\left(\frac{\pi}{8} + \frac{1}{4} \right) - \left(0 + 0 \right) \right) \left\{ = 6\pi + 12 \right\}$	Dependent on the third method mark.	dM1	
	{So $V = \pi \int_{0}^{\frac{\pi}{4}} y^2 dx = 6\pi^2 + 12\pi$ }			
		$=\frac{1}{3}\pi(2)^2(3-\text{their }(a))$	M1	
	$\left\{ \operatorname{Vol}(S) = 6\pi^2 + 12\pi - \frac{16\pi}{9} \right\} \Longrightarrow \operatorname{Vol}(S) = \frac{92}{9}\pi + 6\pi^2$	$\frac{92}{9}\pi + 6\pi^2$	A1	
		$\left\{p=\frac{92}{9}, \ q=6\right\}$	[9	9]
			1	15

		Question 7 Notes
7. (a)	1 st M1	Applies their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$ or applies $\frac{dy}{d\theta}$ multiplied by their $\frac{d\theta}{dx}$
	SC	Award Special Case 1 st M1 if both $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ are both correct.
	1 st A1	Correct $\frac{dy}{dx}$ i.e. $\frac{-8\cos\theta\sin\theta}{3\sec^2\theta}$ or $-\frac{8}{3}\cos^3\theta\sin\theta$ or $-\frac{4}{3}\sin2\theta\cos^2\theta$ or any equivalent form.
	2 nd M1	Some evidence of substituting $\theta = \frac{\pi}{4}$ or $\theta = 45^{\circ}$ into their $\frac{dy}{dx}$
	Note	For 3 rd M1 and 4 th M1, $m(\mathbf{T})$ must be found by using $\frac{dy}{dx}$.
	3 rd M1	applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$. Numerical value for $m(\mathbf{N})$ is required here.
	4 th M1	• Applies $y - 2 = (\text{their } m_N)(x - 3)$, where m(N) is a numerical value,
		• or <i>finds c</i> by solving $2 = (\text{their } m_N)3 + c$, where m(N) is a numerical value,
		and $m_N = -\frac{1}{\text{their } m(\mathbf{T})}$ or $m_N = \frac{1}{\text{their } m(\mathbf{T})}$ or $m_N = -\text{their } m(\mathbf{T})$.
	Note	This mark can be implied by subsequent working.
	2 nd A1	$x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67 from a correct solution only.
(b)	1 st M1	Applying $\int y^2 dx$ as $y^2 \frac{dx}{d\theta}$ with their $\frac{dx}{d\theta}$. Ignore π or $\frac{1}{3}\pi$ outside integral.
	Note	You can ignore the omission of an integral sign and/or $d\theta$ for the 1 st M1.
	Note	Allow 1 st M1 for $\int (\cos^2 \theta)^2 \times$ "their 3sec ² θ " d θ or $\int 4(\cos^2 \theta)^2 \times$ "their 3sec ² θ " d θ
	1 st A1	Correct expression $\left\{\pi \int y^2 dx\right\} = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \left\{d\theta\right\}$ (Allow the omission of $d\theta$)
	Note	IMPORTANT: The π can be recovered later, but as a correct statement only.
	2 nd A1	$\left\{\int y^2 dx\right\} = \int 48\cos^2\theta \left\{d\theta\right\}.$ (Ignore $d\theta$). Note: 48 can be written as 24(2) for example.
	2 nd M1	Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied .)
	3 rd dM1*	which is dependent on the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified.
	3 rd A1	which is dependent on the 3^{rd} M1 mark and the 1^{st} M1 mark.
	5 11	Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified.
		This can be implied by $k\cos^2\theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified.
	4 th dM1	which is dependent on the 3 rd M1 mark and the 1 st M1 mark.
		Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ
	5 th M1	Applies $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 (3 - \text{their part}(a) \text{ answer}).$
	Note	Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their} \frac{5}{3}}^{3} \left(\frac{3}{2}x - \frac{5}{2}\right)^{2} \{dx\}$, which includes the correct limits.
	4 th A1	$\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$
	Note Note	A decimal answer of 91.33168464 (without a correct exact answer) is A0. The π in the volume formula is only needed for the 1 st A1 mark and the final accuracy mark.

7.		Working with a Cartesian Equation
		A cartesian equation for C is $y = \frac{36}{x^2 + 9}$
(a)	1 st M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \lambda x \left(\pm \alpha x^2 \pm \beta\right)^{-2} \text{or} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\pm \lambda x}{\left(\pm \alpha x^2 \pm \beta\right)^2}$
	1 st A1	$\frac{dy}{dx} = -36(x^2+9)^{-2}(2x) \text{or} \frac{dy}{dx} = \frac{-72x}{(x^2+9)^2} \text{un-simplified or simplified.}$
	2 nd dM1	Dependent on the 1 st M1 mark if a candidate uses this method
		For substituting $x = 3$ into their $\frac{dy}{dx}$
		i.e. at $P(3, 2)$, $\frac{dy}{dx} = \frac{-72(3)}{(3^2 + 9)^2} \left\{ = -\frac{2}{3} \right\}$
		From this point onwards the original scheme can be applied.
(b)	1 st M1	For $\int \left(\frac{\pm \lambda}{\pm \alpha x^2 \pm \beta}\right)^2 \{dx\}$ (π not required for this mark)
	A1	For $\pi \int \left(\frac{36}{x^2+9}\right)^2 \{dx\}$ (π required for this mark)
		To integrate, a substitution of $x = 3\tan\theta$ is required which will lead to $\int 48\cos^2\theta d\theta$ and so
		from this point onwards the original scheme can be applied.
		Another cartesian equation for <i>C</i> is $x^2 = \frac{36}{y} - 9$
(a)	1 st M1	$\pm \alpha x = \pm \frac{\beta}{y^2} \frac{dy}{dx}$ or $\pm \alpha x \frac{dx}{dy} = \pm \frac{\beta}{y^2}$
	1 st A1	$2x = -\frac{36}{y^2}\frac{dy}{dx}$ or $2x\frac{dx}{dy} = -\frac{36}{y^2}$
	2 nd dM1	Dependent on the 1 st M1 mark if a candidate uses this method
		For substituting $x = 3$ to find $\frac{dy}{dx}$
		i.e. at $P(3, 2), 2(3) = -\frac{36}{4} \frac{dy}{dx} \Rightarrow \frac{dy}{dx} =$
		From this point onwards the original scheme can be applied.
L	1	

Leave blank

Question				
Number	Scheme		Marks	S
8.	$\overrightarrow{OA} = -2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$, $\overrightarrow{OB} = -\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ & $\overrightarrow{OP} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$			
(a)	$\overrightarrow{AB} = \pm \left((-\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}) - (-2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}) \right); = \mathbf{i} - \mathbf{j} + \mathbf{k}$		M1; A1	
				[2]
(b)	$\{l_1: \mathbf{r}\} = \begin{pmatrix} -2\\4\\-7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix} \text{ or } \{\mathbf{r}\} = \begin{pmatrix} -1\\3\\-8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}$		B1ft	
(0)	$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 7 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 8 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$		Din	
				[1]
(c)	$\begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$			
	$\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} - \begin{pmatrix} 0\\2\\3 \end{pmatrix} = \begin{pmatrix} -1\\1\\5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$		M1	
	$\{\cos \theta =\} \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\left \overrightarrow{AB}\right \cdot \left \overrightarrow{PB}\right } = \frac{\begin{pmatrix}1\\-1\\1\\1\end{pmatrix}}{\sqrt{(1)^2 + (-1)^2 + (1)^2}} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2}$ $\{\cos \theta\} = \frac{-1 - 1 + 5}{\sqrt{3} \cdot \sqrt{27}} = \frac{3}{9} = \frac{1}{3}$	Applies dot product formula between		
		their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$	M1	
	$\{\cos\theta =\} \frac{AB \bullet PB}{ AB BB } = \frac{(1)(5)}{ AB BB }$			
	$\begin{vmatrix} AB \\ \cdot PB \end{vmatrix} = \sqrt{(1)^2 + (-1)^2 + (1)^2} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2}$	and their $(\overrightarrow{PB} \text{ or } \overrightarrow{BP})$.		
	$\{\cos\theta\} = \frac{-1-1+5}{\sqrt{3}} = \frac{3}{9} = \frac{1}{3}$	Correct proof	A1 cso	
				[3]
		$\mathbf{p} + \mu \mathbf{d}$, $\mathbf{p} \neq 0$, $\mathbf{d} \neq 0$ with		
(d)	$\{l_2: \mathbf{r} = \} \begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix} $ either $\mathbf{p} = 0\mathbf{i} + 2\mathbf{j} + \mathbf{j}$	3k or \mathbf{d} = their \overrightarrow{AB} , or a	M1	
	$\begin{pmatrix} v_2 & v_1 \\ 3 \end{pmatrix} \begin{pmatrix} z \\ 1 \end{pmatrix}$	multiple of their AB.		
		Correct vector equation.	A1 ft	[4]
	(0) (1) (1) (0) (1)	Either \overrightarrow{OP} + their \overrightarrow{AB}		[2]
	$\overrightarrow{OC} = \begin{vmatrix} 0 \\ 2 \end{vmatrix} + \begin{vmatrix} -1 \\ -1 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ or $\overrightarrow{OD} = \begin{vmatrix} 0 \\ 2 \end{vmatrix} - \begin{vmatrix} -1 \\ -1 \end{vmatrix}$	or \overrightarrow{OP} – their \overrightarrow{AB}	M1	
(e)	$\begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ At least	one set of coordinates are	A1 ft	
	$\{C(1,1,4), D(-1,3,2)\}$ Both sets	correct. of coordinates are correct.	A1 ft	
	$\overrightarrow{OC} = \begin{pmatrix} 0\\2\\3 \end{pmatrix} + \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\4 \end{pmatrix} \text{or} \overrightarrow{OD} = \begin{pmatrix} 0\\2\\3 \end{pmatrix} - \begin{pmatrix} 1\\-1\\1 \end{pmatrix} = At \text{ least}$ $\{C(1,1,4), D(-1,3,2)\} \qquad \qquad \text{Both sets}$	or coordinates are correct.	7 11 It	[3]
(f)	$\frac{h}{\sqrt{(-1)^2 + (1)^2 + (5)^2}} = \sin \theta$	$\frac{h}{\text{their } \overline{PB} } = \sin \theta$	M1	
Way 1		I I _		
	$h = \sqrt{27}\sin(70.5) \left\{ = \sqrt{27}\frac{\sqrt{8}}{3} = 2\sqrt{6} = \text{awrt } 4.9 \right\} \qquad \qquad \sqrt{27}$	$\sin(70.5)$ or $\sqrt{27} \cdot \frac{\sqrt{8}}{3}$	A 1	
	$n = \sqrt{27} \sin(70.3) = \sqrt{27} = 2\sqrt{0} = 4 \sin(70.3)$	or awrt 4.9 or equivalent	A1 oe	
	1 1	(their AB + their CD)	dM1	
	$\left\{=\frac{1}{2}2\sqrt{6}\left(3\sqrt{3}\right)=3\sqrt{18}\right\}=\underline{9\sqrt{2}}$	$9\sqrt{2}$	A1 cao	
				[4]
				15

8. (f)	Helpful Diagram! Area $\triangle APB = 4.2426$ $A \begin{bmatrix} -2\\4\\7 \end{bmatrix}$ $\overline{DA} = \overline{PB} = \begin{bmatrix} -1\\1\\5 \end{bmatrix}$ $\overline{PA} = \overline{CB} = \begin{bmatrix} -2\\2\\4 \\1\\5 \end{bmatrix}$ $\overline{PA} = \overline{CB} = \begin{bmatrix} -2\\2\\4 \\1\\5 \end{bmatrix}$ $\overline{PA} = \overline{CB} = \begin{bmatrix} -2\\2\\4 \\1\\4 \end{bmatrix}$ $\overline{PA} = \overline{CB} = \begin{bmatrix} -2\\2\\4 \\4 \end{bmatrix}$	-)= 4.8989
	$D \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix} \qquad \qquad$	
	$\overrightarrow{PA} = \overrightarrow{CB} = \begin{pmatrix} -2\\ 2\\ 4 \end{pmatrix}$ and $\overrightarrow{AB} = \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}$, so $BC \perp AB$ Candidates do not need to prove this result for part (f)	
8. (f) Way 2	$h = \left \overrightarrow{CB} \right = \sqrt{(-2)^2 + (2)^2 + (4)^2} = \sqrt{24} = 2\sqrt{6} = 4.8989$ Attempts $\left \overrightarrow{PA} \right $ or $\left \overrightarrow{CB} \right $ $\left \overrightarrow{PA} \right = \left \overrightarrow{CB} \right = \sqrt{24}$	M1 A1 oe
	Area $ABCD = \frac{1}{2}\sqrt{24}(\sqrt{3} + 2\sqrt{3})$ or $\frac{1}{2}\sqrt{24}\sqrt{3} + \sqrt{24}\sqrt{3}$ $\frac{1}{2}h(\text{their } AB + \text{their } CD)$	dM1 oe
	$= \frac{9\sqrt{2}}{9\sqrt{2}}$	A1 cso [4]
Way3	Finds the area of either triangle APB or APD or BCP and triples the result.	
8. (f)	Area $\Delta APB = \frac{1}{2}\sqrt{3}(3\sqrt{3})\sin\theta$ Attempts $\frac{1}{2}$ (their <i>AB</i>)(their <i>PB</i>) $\sin\theta$	M1
	$= \frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5) \qquad \qquad \frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5) \text{ or } 3\sqrt{2}$ or awrt 4.24 or equivalent	A1
	Area $ABCD = 3(3\sqrt{2})$ $3 \times \text{Area of } \Delta APB$	dM1
	$= 9\sqrt{2} \qquad \qquad 9\sqrt{2}$	A1 cso [4]
L		r 1

		Question 8 Notes	
8. (a)	M1	Finding the difference (either way) between \overrightarrow{OB} and \overrightarrow{OA} . If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the differ	ence.
	A1	$\mathbf{i} - \mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ or $(1, -1, 1)$ or benefit of the doubt -1	
(b)	B1ft	$\{\mathbf{r}\} = \begin{pmatrix} -2\\4\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \text{or} \{\mathbf{r}\} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \text{ with } \overrightarrow{AB} \text{ or } \overrightarrow{BA} \text{ correctly followed thr}$	ough from (a).
	Note	$\mathbf{r} = $ is not needed.	
(c)	M1	An attempt to find either the vector \overrightarrow{PB} or \overrightarrow{BP} . If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the differ	ence.
	M1	Applies dot product formula between their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ and their $(\overrightarrow{PB} \text{ or } \overrightarrow{BP})$.	
	A1	Obtains $\{\cos\theta\} = \frac{1}{3}$ by correct solution only.	
	Note	If candidate starts by applying $\frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\left \overrightarrow{AB}\right \cdot \left \overrightarrow{PB}\right }$ correctly (without reference to $\cos\theta =$)	
		they can gain both 2^{nd} M1 and A1 mark.	
	Note	Award the final A1 mark if candidate achieves $\{\cos \theta\} = \frac{1}{3}$ by either taking the dot produce	et between
		(i) $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$ or (ii) $\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$. Ignore if any of these vectors are labelled	d incorrectly.
	Note	Award final A0, cso for those candidates who take the dot product between (iii) $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$ or (iv) $\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$	
		They will usually find $\{\cos\theta\} = -\frac{1}{3}$ or may fudge $\{\cos\theta\} = \frac{1}{3}$.	
		If these candidates give a convincing detailed explanation which must include reference to of their vectors then this can be given A1 cso	the direction
(a)	A 14 and	active Mathed 1. The Cocine Dule	
(c)	$\frac{\text{Alternative Method 1: The Cosine Rule}}{\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP}} = \begin{pmatrix} -1\\ 3\\ 8 \end{pmatrix} - \begin{pmatrix} 0\\ 2\\ 3 \end{pmatrix} = \begin{pmatrix} -1\\ 1\\ 5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\ -1\\ -5 \end{pmatrix} $ Mark in the same way as the main scheme. M1		M1
		$\overrightarrow{PB} = \sqrt{27}, \overrightarrow{AB} = \sqrt{3} \text{ and } \overrightarrow{PA} = \sqrt{24}$	
	$\left(\sqrt{24}\right)$	$a^{2} = (\sqrt{27})^{2} + (\sqrt{3})^{2} - 2(\sqrt{27})(\sqrt{3})\cos\theta$ Applies the cosine rule the correct way round $= \frac{27 + 3 - 24}{18} = \frac{1}{3}$ Correct proof	M1 oe
	$\cos\theta$	$=\frac{27+3-24}{18}=\frac{1}{2}$ Correct proof	A1 cso
		10 5	[3]

$\overline{PB} = \overline{OB} - \overline{OP} = \begin{pmatrix} -1\\ 3\\ 8 \end{pmatrix} - \begin{pmatrix} 0\\ 2\\ 3 \end{pmatrix} = \begin{pmatrix} -1\\ 1\\ 5 \end{pmatrix} \text{ or } \overline{BP} = \begin{pmatrix} 1\\ -1\\ -5 \end{pmatrix} \qquad \text{Mark in the same way} \\ \text{ as the main scheme.} \\ \text{HI}$ Either $(\sqrt{24})^2 + (\sqrt{3})^2 = (\sqrt{27})^2$ or $\overline{AB} \cdot \overline{PA} = \begin{pmatrix} -1\\ -1\\ 1 \end{pmatrix} \cdot \begin{pmatrix} -2\\ 2\\ 4 \end{pmatrix} = -2 - 2 + 4 = 0$ Confirms $APAB$ is right-angled M1 Al cso $\text{So, } \left\{ \cos\theta = \frac{AB}{BB} \Rightarrow \right\} \cos\theta = \frac{\sqrt{3}}{\sqrt{27}} = \frac{1}{3}$ Correct proof (d) M1 Writing down a line in the form $\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$ with either $\mathbf{a} = \begin{pmatrix} 0\\ 2\\ 3 \end{pmatrix}$ or $\mathbf{d} = \text{their } \overline{AB}$ $\mathbf{d} = \text{their } \overline{AB}$ $\mathbf{d} = \text{their } \overline{AB}$, or a multiple of their \overline{AB} found in part (a). Alft Writing $\begin{pmatrix} 0\\ 2\\ 3 \end{pmatrix} + \mu \begin{pmatrix} -1\\ 1\\ 1 \end{pmatrix}$ or $\begin{pmatrix} 0\\ 2\\ 3\\ 3 \end{pmatrix} + \mu \mathbf{d}$, where $\mathbf{d} = \text{their } \overline{AB}$ or a multiple of their \overline{AB} found in part (a). Note $\mathbf{r} = \text{ is not needed.}$ Note Using the same scalar parameter as in part (b) is fine for A1. (e) M1 Either \overline{OP} + their \overline{AB} or \overline{OP} - their \overline{AB} . Note This can be implied at least two out of three correct components for either their C or their D. Alft Way 1: $\frac{h}{\text{their } \overline{PB} } = \sin\theta$ Way 2: Attempts $ \overline{PA} $ or $ \overline{CB} $	8. (c)	Alternative Method 2: Right-Angled Trigonometry		
(d) M1 $ \begin{array}{c} \operatorname{Confirms} \Delta PAB \text{ is right-angled} \\ \operatorname{So}, \left\{ \cos\theta = \frac{AB}{PB} \Rightarrow \right\} \cos\theta = \frac{\sqrt{3}}{\sqrt{27}} = \frac{1}{3} \\ \operatorname{Correct proof} \\ \operatorname{Al \ coo} \\ \operatorname{Correct \ proof} \\ \operatorname{Al \ coo} \\ \operatorname{Correct \ proof} \\ \operatorname{Al \ coo} \\ \operatorname{Correct \ proof} \\ \operatorname{Correct \ proof} \\ \operatorname{Al \ coo} \\ \operatorname{Correct \ proof} \\ \operatorname{Correct \ proof} \\ \operatorname{Al \ coo} \\ \operatorname{Correct \ proof} \\ Correct \ p$		$\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} - \begin{pmatrix} 0\\2\\3 \end{pmatrix} = \begin{pmatrix} -1\\1\\5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$ Mark in the same way as the main scheme.		
$So, \left\{ \cos\theta = \frac{AB}{PB} \Rightarrow \right\} \cos\theta = \frac{\sqrt{3}}{\sqrt{27}} = \frac{1}{3}$ $(d) MI Writing down a line in the form \mathbf{p} + \lambda \mathbf{d} or \mathbf{p} + \mu \mathbf{d} with either \mathbf{a} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} or \mathbf{d} = \text{their } \overline{AB} \ \mathbf{d} = \text{their } A$				
(3) or a multiple of their \overline{AB} found in part (a). Alft Writing $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ or $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu d$, where $\mathbf{d} =$ their \overline{AB} or a multiple of their \overline{AB} found in part (a). Note $\mathbf{r} =$ is not needed. Note Using the same scalar parameter as in part (b) is fine for A1. (e) M1 Either \overline{OP} + their \overline{AB} or \overline{OP} - their \overline{AB} . This can be implied at least two out of three correct components for either their <i>C</i> or their <i>D</i> . Alft At least one set of coordinates are correct. Ignore labelling of <i>C</i> , <i>D</i> Note You can follow through either or both accuracy marks in this part using their \overline{AB} from part (a). (f) M1 Way 1: $\frac{h}{\text{their} \overline{PB} } = \sin \theta$ Way 2: Attempts $ \overline{PA} $ or $ \overline{CB} $		So, $\left\{\cos\theta = \frac{AB}{PB} \Rightarrow \right\} \cos\theta = \frac{\sqrt{3}}{\sqrt{27}} = \frac{1}{3}$ Correct proof A1 cso		
(e) M1 Either \overrightarrow{OP} + their \overrightarrow{AB} or \overrightarrow{OP} - their \overrightarrow{AB} . Note \overrightarrow{AIft} Writing $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ or $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu d$, where \mathbf{d} = their \overrightarrow{AB} or a multiple of their \overrightarrow{AB} found in part (a). Note \mathbf{r} = is not needed. Using the same scalar parameter as in part (b) is fine for A1. (e) M1 Either \overrightarrow{OP} + their \overrightarrow{AB} or \overrightarrow{OP} - their \overrightarrow{AB} . This can be implied at least two out of three correct components for either their <i>C</i> or their <i>D</i> . Alft At least one set of coordinates are correct. Ignore labelling of <i>C</i> , <i>D</i> Note You can follow through either or both accuracy marks in this part using their \overrightarrow{AB} from part (a). (f) M1 Way 1: $\frac{h}{\text{their } \overrightarrow{PB} } = \sin \theta$ Way 2: Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $	(d)	M1	Writing down a line in the form $\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$ with either $\mathbf{a} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$ or $\mathbf{d} =$ their \overrightarrow{AB} $\mathbf{d} =$ their \overrightarrow{AB} ,	
(e) Note $\mathbf{r} = \text{ is not needed.}$ Note Using the same scalar parameter as in part (b) is fine for A1. (e) M1 Either \overrightarrow{OP} + their \overrightarrow{AB} or \overrightarrow{OP} - their \overrightarrow{AB} . Note This can be implied at least two out of three correct components for either their <i>C</i> or their <i>D</i> . A1ft At least one set of coordinates are correct. Ignore labelling of <i>C</i> , <i>D</i> Note You can follow through either or both accuracy marks in this part using their \overrightarrow{AB} from part (a). (f) M1 Way 1: $\frac{h}{\text{their } \overrightarrow{PB} } = \sin \theta$ Way 2: Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $			or a multiple of their \overrightarrow{AB} found in part (a).	
NoteUsing the same scalar parameter as in part (b) is fine for A1.(e)M1Either \overrightarrow{OP} + their \overrightarrow{AB} or \overrightarrow{OP} - their \overrightarrow{AB} .NoteThis can be implied at least two out of three correct components for either their C or their D. A1ftA1ftAt least one set of coordinates are correct. Ignore labelling of C, DA1ftBoth sets of coordinates are correct. Ignore labelling of C, DNoteYou can follow through either or both accuracy marks in this part using their \overrightarrow{AB} from part (a).(f)M1Way 1: $\frac{h}{\text{their } \overrightarrow{PB} } = \sin \theta$ Way 2: Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $		A1ft	Writing $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$ or $\begin{pmatrix} 0\\2\\3 \end{pmatrix} + \mu \mathbf{d}$, where \mathbf{d} = their \overrightarrow{AB} or a multiple of their \overrightarrow{AB} found in part (a).	
Note A1ftThis can be implied at least two out of three correct components for either their C or their D. At least one set of coordinates are correct. Ignore labelling of C, DA1ftBoth sets of coordinates are correct. Ignore labelling of C, DNoteYou can follow through either or both accuracy marks in this part using their \overline{AB} from part (a).(f)M1Way 1: $\frac{h}{\text{their} \overline{PB} } = \sin \theta$ Way 2: Attempts $ \overline{PA} $ or $ \overline{CB} $				
(f) M1 Way 1: $\frac{h}{\text{their } \overrightarrow{PB} } = \sin \theta$ Way 2: Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $	(e)	Note A1ft	This can be implied at least two out of three correct components for either their C or their D . At least one set of coordinates are correct. Ignore labelling of C , D	
(f) M1 Way 1: $\frac{1}{\text{their } \overrightarrow{PB} } = \sin \theta$ Way 2: Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $		Note	You can follow through either or both accuracy marks in this part using their \overrightarrow{AB} from part (a).	
	(f)	M1	Way 1: $\frac{1}{\text{their} \overrightarrow{PB} } = \sin \theta$	
Way 3: Attempts – (their PB)(their AB) $\sin \theta$			Way 2: Attempts $ PA $ or $ CB $ Way 3: Attempts $\frac{1}{2}$ (their PB)(their AB)sin θ	
Note Finding <i>AD</i> by itself is M0.		Note	-	
A1 Either • $h = \sqrt{27} \sin(70.5)$ or $ \overrightarrow{PA} = \overrightarrow{CB} = \sqrt{24}$ or equivalent. (See Way 1 and Way 2) or • the area of either triangle <i>APB</i> or <i>APD</i> or <i>BDP</i> = $\frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5)$ o.e. (See Way 3).		A1	• $h = \sqrt{27} \sin(70.5)$ or $\left \overrightarrow{PA} \right = \left \overrightarrow{CB} \right = \sqrt{24}$ or equivalent. (See Way 1 and Way 2) or	
$\frac{1}{2}$ dM1 which is dependent on the 1 st M1 mark. A full method to find the area of trapezium <i>ABCD</i> . (See Way 1, Way 2 and Way 3).			A full method to find the area of trapezium ABCD. (See Way 1, Way 2 and Way 3).	
A1 $9\sqrt{2}$ from a correct solution only.NoteA decimal answer of 12.7279 (without a correct exact answer) is A0.				