Winter 2009

www.mystudybro.com

Mathematics C1

This resource was created and owned by Pearson Edexcel Past Paper 6663 Surname Initial(s) Centre Paper Reference No. Signature Candidate 3 6 6 () 6 No. Paper Reference(s) 6663/01 Examiner's use only **Edexcel GCE** Team Leader's use only **Core Mathematics C1 Advanced Subsidiary** Question Leave Number Blank Friday 9 January 2009 – Morning 1 Time: 1 hour 30 minutes 2 3 4 Materials required for examination Items included with question papers 5 Mathematical Formulae (Green) Nil 6 Calculators may NOT be used in this examination. 7 8 9 10 **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. 11 Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 11 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated. **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner.

Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited.







Total

Turn over

| Winter    | 2009 |
|-----------|------|
| Past Pape | er   |

| t Paper       | This resource was created and owned by Pearson Edex  | cel             | 666      |
|---------------|------------------------------------------------------|-----------------|----------|
|               |                                                      |                 | Leave    |
|               | $\frac{1}{2}$                                        |                 |          |
| <b>1.</b> (a) | Write down the value of $125^3$ .                    | (1)             |          |
|               | 2                                                    | (1)             |          |
| (b)           | Find the value of $125^{-\frac{2}{3}}$ .             |                 |          |
|               |                                                      | (2)             |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      |                 |          |
|               |                                                      | (Total 3 marks) |          |
|               |                                                      | . /             |          |
|               |                                                      |                 | 3        |
|               | \$\$\$   \$   \$\$\$       \$\$     \$\$     \$\$  1 |                 | Turn ove |
|               |                                                      |                 |          |

### January 2009 6663 Core Mathematics C1 Mark Scheme

| Que<br>Num | stion<br>nber | Scheme                                                                                                                                                                            | Mark | ٢S         |
|------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|
| 1          | (a)<br>(b)    | 5 (±5 is B0)                                                                                                                                                                      | B1   | (1)        |
|            | (6)           | $\frac{1}{(\text{their 5})^2}$ or $\left(\frac{1}{\text{their 5}}\right)^2$                                                                                                       | M1   |            |
|            |               | $=\frac{1}{25}$ or 0.04 $(\pm\frac{1}{25} \text{ is A0})$                                                                                                                         | A1   | (2)<br>[3] |
|            | (b)           | M1 follow through their value of 5. Must have reciprocal and square.                                                                                                              |      |            |
|            |               | $5^{-2}$ is <u>not</u> sufficient to score this mark, unless $\frac{1}{5^2}$ follows this.                                                                                        |      |            |
|            |               | A negative introduced at any stage can score the M1 but not the A1,<br>e.g. $125^{-\frac{2}{3}} = \left(-\frac{1}{5}\right)^2 = \frac{1}{25}$ scores M1 A0                        |      |            |
|            |               | $125^{-\frac{2}{3}} = -\left(\frac{1}{5}\right)^2 = -\frac{1}{25}$ scores M1 A0.                                                                                                  |      |            |
|            |               | Correct answer with no working scores both marks.                                                                                                                                 |      |            |
|            |               | <u>Alternative</u> : $\frac{1}{\sqrt[3]{125^2}}$ or $\frac{1}{(125^2)^{\frac{1}{3}}}$ M1 (reciprocal and the correct number squared)<br>$\left(=\frac{1}{\sqrt[3]{15625}}\right)$ |      |            |
|            |               | $=\frac{1}{25}$ A1                                                                                                                                                                |      |            |

| <b>er 2009</b><br>aper | www.mystudybro.com<br>This resource was created and owned by Pearson Edexcel | Mathema       | tics C<br>666  |
|------------------------|------------------------------------------------------------------------------|---------------|----------------|
|                        |                                                                              |               | Leave<br>blank |
| . Find                 | $\int (12x^5 - 8x^3 + 3) dx$ , giving each term in its simplest form.        |               |                |
|                        | J ` ´                                                                        | (4)           |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               |                |
|                        |                                                                              |               | 02             |
|                        | (Ta                                                                          | tal 1 marke)  |                |
|                        | (10                                                                          | ται τ mai κ5j |                |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Marks                      |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 2                  | $(I =)\frac{12}{6}x^{6} - \frac{8}{4}x^{4} + 3x + c$<br>= 2x <sup>6</sup> - 2x <sup>4</sup> + 3x + c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1<br>A1A1A1<br><b>[4]</b> |
|                    | M1 for an attempt to integrate $x^n \to x^{n+1}$<br>(i.e. $ax^6$ or $ax^4$ or $ax$ , where $a$ is any non-zero constant).<br>Also, this M mark can be scored for just the $+ c$ (seen at some stage), even if no other<br>terms are correct.<br>1 <sup>st</sup> A1 for $2x^6$<br>2 <sup>nd</sup> A1 for $-2x^4$<br>3 <sup>rd</sup> A1 for $3x + c$ (or $3x + k$ , etc., any appropriate letter can be used as the constant)<br>Allow $3x^1 + c$ , but not $\frac{3x^1}{1} + c$ .<br>Note that the A marks can be awarded at separate stages, e.g.<br>$\frac{12}{6}x^6 - 2x^4 + 3x$ scores $2^{nd}$ A1<br>$\frac{12}{6}x^6 - 2x^4 + 3x + c$ scores $3^{rd}$ A1<br>$2x^6 - 2x^4 + 3x$ scores $1^{st}$ A1 (even though the $c$ has now been lost).<br>Remember that all the A marks are dependent on the M mark.<br>If applicable, isw (ignore subsequent working) after a correct answer is seen. |                            |
|                    | Ignore wrong notation if the intention is clear, e.g. Answer $\int 2x^6 - 2x^4 + 3x + c  dx$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |

| 2 Expand and simplify $(a/7 + 2)(a/7 - 2)$                     |                 | Leave<br>blank |
|----------------------------------------------------------------|-----------------|----------------|
| <b>5.</b> Expand and simplify $(\sqrt{7} + 2)(\sqrt{7} - 2)$ . | (2)             |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 |                |
|                                                                |                 | 03             |
|                                                                | (Total 2 marks) |                |
|                                                                | (               | 5              |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Marks           |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 3                  | $\sqrt{7}^2 + 2\sqrt{7} - 2\sqrt{7} - 2^2$ , or 7 - 4 or an exact equivalent such as $\sqrt{49} - 2^2 = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1<br>A1<br>[2] |
|                    | M1 for an expanded expression. At worst, there can be <u>one wrong term</u> and<br><u>one wrong sign</u> , or <u>two wrong signs</u> .<br>e.g. $7+2\sqrt{7}-2\sqrt{7}-2$ is M1 (one wrong term $-2$ )<br>$7+2\sqrt{7}+2\sqrt{7}+4$ is M1 (two wrong signs $+2\sqrt{7}$ and $+4$ )<br>$7+2\sqrt{7}+2\sqrt{7}+2$ is M1 (one wrong term $+2$ , one wrong sign $+2\sqrt{7}$ )<br>$\sqrt{7}+2\sqrt{7}-2\sqrt{7}+4$ is M1 (one wrong term $\sqrt{7}$ , one wrong sign $+4$ )<br>$\sqrt{7}+2\sqrt{7}-2\sqrt{7}-2$ is M0 (two wrong terms $\sqrt{7}$ and $-2$ )<br>$7+\sqrt{14}-\sqrt{14}-4$ is M0 (two wrong terms $\sqrt{14}$ and $-\sqrt{14}$ )<br>If only 2 terms are given, they must be correct, i.e. $(7-4)$ or an equivalent<br>unsimplified version to score M1.<br>The terms can be seen <u>separately</u> for the M1.<br>Correct answer with <u>no working</u> scores both marks. |                 |

| Ainter 2<br>ast Pape | 2009 www.mystudybro.com<br>This resource was created and owned by Pearson Edexcel | Mathematic |
|----------------------|-----------------------------------------------------------------------------------|------------|
|                      |                                                                                   | I          |
|                      |                                                                                   | t          |
| 4.                   | A curve has equation $y = I(x)$ and passes through the point (4, 22).             |            |
|                      | Given that                                                                        |            |
|                      |                                                                                   |            |
|                      | $f'(x) = 3x^2 - 3x^{\frac{1}{2}} - 7,$                                            |            |
|                      |                                                                                   |            |
|                      | use integration to find $f(x)$ , giving each term in its simplest form.           |            |
|                      |                                                                                   | (5)        |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |
|                      |                                                                                   |            |

N 3 0 0 8 1 A 0 6 2 8

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Mark                      | S   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|
| 4                  | $(f(x) =) \frac{3x^3}{3} - \frac{3x^2}{\frac{3}{2}} - 7x(+c)$<br>= $x^3 - 2x^{\frac{3}{2}} - 7x(+c)$<br>f(4) = 22 $\Rightarrow$ 22 = 64 - 16 - 28 + c<br>c = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M1<br>A1A1<br>M1<br>A1cso | (5) |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | [5] |
|                    | 1 <sup>st</sup> M1 for an attempt to integrate $(x^3 \text{ or } x^{\frac{3}{2}} \text{ seen})$ . The <i>x</i> term is insufficient for<br>this mark and similarly the + <i>c</i> is insufficient.<br>1 <sup>st</sup> A1 for $\frac{3}{3}x^3$ or $-\frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$ (An unsimplified or simplified correct form)<br>2 <sup>nd</sup> A1 for all three <i>x</i> terms correct and simplified (the simplification may be<br>seen later). The + <i>c</i> is not required for this mark.<br>Allow $-7x^1$ , but <u>not</u> $-\frac{7x^1}{1}$ .<br>2 <sup>nd</sup> M1 for an attempt to use $x = 4$ <u>and</u> $y = 22$ in a changed function (even if<br>differentiated) to form an equation in <i>c</i> .<br>3 <sup>rd</sup> A1 for <i>c</i> = 2 with no earlier incorrect work (a final expression for f( <i>x</i> ) is not<br>required). |                           |     |

(3)

6663



#### Figure 1

Figure 1 shows a sketch of the curve C with equation y = f(x). There is a maximum at (0, 0), a minimum at (2, -1) and C passes through (3, 0).

On separate diagrams sketch the curve with equation

(a) 
$$y = f(x+3)$$
,  
(3)

(b) 
$$y = f(-x)$$
.

On each diagram show clearly the coordinates of the maximum point, the minimum point and any points of intersection with the *x*-axis.



| Question<br>Number |     | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Marks                                                       |
|--------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 5                  | (a) | Shape $\bigwedge$ , touching the x-axis maximum.<br>Through (0,0) & -3 marked on x or (-3,0) seen.<br>Allow (0,-3) if marked on the x Marked in the correct place, but 3 Min at (-1,-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | at its M1<br>x-axis, A1<br>-axis.<br>3, is A0.<br>A1<br>(3) |
|                    | (b) | Correct shape $\bigvee$<br>(top left - bottom right)<br>Through - 3 and max at (0, 0).<br>Marked in the correct place, but 3<br>(-2,-1)<br>Min at (-2,-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | B1<br>B1<br>B1<br>B1<br>B1<br>(3)<br>[6]                    |
|                    | (a) | M1 as described above. Be generous, even when the curve seems to be constraight line segments, but there must be a discernible 'curve' at the max 1 <sup>st</sup> A1 for curve passing through -3 and the origin. Max at (-3,0) 2 <sup>nd</sup> A1 for minimum at (-1,-1). Can simply be indicated on sketch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nposed of<br>and min.                                       |
|                    | (b) | <ul> <li>1<sup>st</sup> B1 for the correct shape. A negative cubic passing from top left to bottom right. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min.</li> <li>2<sup>nd</sup> B1 for curve passing through (-3,0) having a max at (0,0) and no other max.</li> <li>3<sup>rd</sup> B1 for minimum at (-2,-1) and no other minimum. If in correct quadrant but labelled, e.g. (-2,1), this is B0.</li> <li>In each part the (0, 0) does <u>not</u> need to be written to score the second mark having the curve pass through the origin is sufficient.</li> <li>The last mark (for the minimum) in each part is dependent on a sketch being attempted, and the sketch must show the minimum in approximately the correct place (not, for example, (-2, -1) marked in the wrong quadrant).</li> <li>The mark for the minimum is <u>not</u> given for the coordinates just marked on the axes <u>unless</u> these are clearly linked to the minimum by vertical and horizontal lines.</li> </ul> |                                                             |

| Question<br>Number |     | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks      |                          |
|--------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|
| 6                  | (a) | $2x^{\frac{3}{2}}$ or $p = \frac{3}{2}$ ( <u>Not</u> $2x\sqrt{x}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1         |                          |
|                    | (b) | $ \begin{array}{ccc} -x & \text{or} & -x^{1} & \text{or} & q = 1 \\ \left(\frac{dy}{dx}\right) & 20x^{3} + 2 \times \frac{3}{2}x^{\frac{1}{2}} - 1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B1 (<br>M1 | (2)                      |
|                    |     | $= \underline{20x^3 + 3x^{\frac{1}{2}} - 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1A1ftA1   | ft<br>(4)<br>[ <b>6]</b> |
|                    | (a) | $1^{st} B1  \text{for } p = 1.5 \text{ or exact equivalent} \\ 2^{nd} B1  \text{for } q = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |
|                    | (b) | M1 for an attempt to differentiate $x^n \to x^{n-1}$ (for any of the 4 terms)<br>1 <sup>st</sup> A1 for 20 $x^3$ (the -3 must 'disappear')                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                          |
|                    |     | $2^{nd}$ A1ft for $3x^{\frac{1}{2}}$ or $3\sqrt{x}$ . Follow through their <i>p</i> but they must be differentiating $2x^p$ , where <i>p</i> is a <u>fraction</u> , and the coefficient must be simplified if necessary.<br>$3^{rd}$ A1ft for $-1$ ( <u>not</u> the unsimplified $-x^0$ ), or follow through for correct differentiation of their $-x^q$ (i.e. coefficient of $x^q$ is $-1$ ). If ft is applied, the coefficient must be simplified if necessary.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                          |
|                    |     | 'Simplified' coefficient means $\frac{a}{b}$ where a and b are integers with no common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                          |
|                    |     | factors. Only a single + or – sign is allowed (e.g. – – must be replaced by +).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                          |
|                    |     | If there is a 'restart' in part (b) it can be marked independently of part (a), but marks for part (a) cannot be scored for work seen in (b).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                          |
|                    |     | <u>Multiplying</u> by $\sqrt{x}$ : (assuming this is a restart)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                          |
|                    |     | e.g. $y = 5x^4 \sqrt{x} - 3\sqrt{x} + 2x^2 - x^{7/2}$<br>$\left(\frac{dy}{dx}\right) = \frac{45}{2}x^{7/2} - \frac{3}{2}x^{-1/2} + 4x - \frac{3}{2}x^{1/2}$ scores M1 A0 A0 ( <i>p</i> not a fraction) A1ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                          |
|                    |     | Extra term included: This invalidates the final mark.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                          |
|                    |     | e.g. $y = 5x^4 - 3 + 2x^2 - x^{/2} - x^{/2}$<br>$\begin{pmatrix} dy \\ 20x^3 + 4x - 3x^{1/2} - 1x^{-1/2} \\ y = 1x^{-1/2} \\ y =$ |            |                          |
|                    |     | $\left(\frac{1}{dx}\right)^{20x} + 4x - \frac{1}{2}x^{2x} - \frac{1}{2}x^{2x}$ scores M1 A1 A0 ( <i>p</i> not a fraction) A0.<br>Numerator and denominator differentiated separately:<br>For this, neither of the last two (ft) marks should be awarded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                          |
|                    |     | <u>Quotient/product rule</u> :<br>Last two terms must be correct to score the last 2 marks. (If the M mark has not already been earned, it can be given for the quotient/product rule attempt.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                          |

| ist Pape | <b>2009</b><br>r           | www.mystudybro.com<br>This resource was created and owned by Pearson Edexcel | Mathematics      |
|----------|----------------------------|------------------------------------------------------------------------------|------------------|
| 7.       | The equation $f$ for $x$ . | $kx^2 + 4x + (5 - k) = 0$ , where k is a constant, has 2 differen            | t real solutions |
|          | (a) Show that              | t <i>k</i> satisfies                                                         |                  |
|          |                            | $k^2 - 5k + 4 > 0.$                                                          | (3)              |
|          | (b) Hence fin              | d the set of possible values of $k$ .                                        | (4)              |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |
|          |                            |                                                                              |                  |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mark                                                 | s             |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------|
| 7 (a)              | $b^2 - 4ac > 0 \Rightarrow 16 - 4k(5-k) > 0$ or equiv., e.g. $16 > 4k(5-k)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |               |
|                    | So $k^2 - 5k + 4 > 0$ (Allow any order of terms, e.g. $4 - 5k + k^2 > 0$ ) (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1cso                                                | (3)           |
| (b)                | <u>Critical Values</u> $(k-4)(k-1) = 0$ $k = \dots$<br>k = 1 or 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1<br>A1                                             |               |
|                    | Choosing "outside" region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M1                                                   |               |
|                    | k < 1 or $k > 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1                                                   | (4)<br>[7]    |
|                    | For this question, ignore (a) and (b) labels and award marks wherever correct work is se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | een.                                                 |               |
| (a)                | M1 for attempting to use the discriminant of the initial equation (> 0 not required, but substitute<br>of <i>a</i> , <i>b</i> and <i>c</i> in the correct formula is required).<br>If the formula $b^2 - 4ac$ is seen, at least 2 of <i>a</i> , <i>b</i> and <i>c</i> must be correct.<br>If the formula $b^2 - 4ac$ is not seen, all 3 ( <i>a</i> , <i>b</i> and <i>c</i> ) must be correct.<br>This mark can still be scored if substitution in $b^2 - 4ac$ is within the quadratic formula.<br>This mark can also be scored by comparing $b^2$ and $4ac$ (with substitution).<br>However, use of $b^2 + 4ac$ is M0.<br>1 <sup>st</sup> A1 for fully correct expression, possibly unsimplified, with > symbol. NB must appear before<br>the last line, even if this is simply in a statement such as $b^2 - 4ac > 0$ or 'discriminant positive<br>Condone a bracketing slip, e.g. $16 - 4 \times k \times 5 - k$ if subsequent work is correct and convincing<br>$2^{nd}$ A1 for a fully correct derivation with no incorrect working seen.<br>Condone a bracketing slip if otherwise correct and convincing. |                                                      |               |
| (b)                | <ul> <li>1<sup>st</sup> M1 for attempt to solve an appropriate 3TQ</li> <li>1<sup>st</sup> A1 for both k = 1 and 4 (only the critical values are required, so accept, e.g. k &gt; 1 and 2<sup>nd</sup> M1 for choosing the "outside" region. A diagram or table alone is not sufficient. Follow through their values of k. The set of values must be 'narrowed down' to score this M mark listing every k &lt; 1, 1 &lt; k &lt; 4, k &gt; 4 is M0.</li> <li>2<sup>nd</sup> A1 for correct answer only, condone "k &lt; 1, k &gt; 4" and even "k &lt; 1 and k &gt; 4", but "1 &gt; k &gt; 4" is A0.</li> <li>** Often the statement k &gt; 1 and k &gt; 4 is followed by the correct final answer. Allow fu Seeing 1 and 4 used as critical values gives the first M1 A1 by implication.</li> <li>In part (b), condone working with x's except for the final mark, where the set of values not of values of k (i.e. 3 marks out of 4).</li> <li>Use of ≤ (or ≥) in the final answer loses the final mark.</li> </ul>                                                                                             | nd <i>k</i> > 4)<br>ything<br>11 marks.<br>must be a | . **<br>1 set |

(1)

(5)

Leave blank

- 8. The point P (1, a) lies on the curve with equation  $y = (x + 1)^2(2 x)$ .
  - (a) Find the value of *a*.
  - (b) On the axes below sketch the curves with the following equations:

y

- (i)  $y = (x + 1)^2(2 x)$ ,
- (ii)  $y = \frac{2}{x}$ .

On your diagram show clearly the coordinates of any points at which the curves meet the axes.

(c) With reference to your diagram in part (b) state the number of real solutions to the equation

$$(x+1)^2(2-x) = \frac{2}{x}.$$
(1)

х



| Que:<br>Num | stion<br>Iber |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Scheme                                                                                                                                          | Mar  | ks                |
|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------|
| 8           | (a)           | $(a=) (1+1)^{2} (2-1) = \underline{4}$ (1, 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | or $y = 4$ is also acceptable                                                                                                                   | B1   | (1)               |
|             | (D)           | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (i) Shape $\bigvee$ or $\bigwedge$ anywhere                                                                                                     | B1   |                   |
|             |               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Min at $(-1,0)$ can be $-1$ on <i>x</i> -axis.<br>Allow $(0,-1)$ if marked on the <i>x</i> -axis.<br>Marked in the correct place, but 1, is B0. | B1   |                   |
|             |               | -1, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2, 0) and (0, 2) can be 2 on axes                                                                                                              | B1   |                   |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ii)<br>Top branch in 1 <sup>st</sup> quadrant with 2<br>intersections                                                                          | B1   |                   |
|             |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Bottom branch in 3 <sup>rd</sup> quadrant (ignore any intersections)                                                                            | B1   | (5)               |
|             | (c)           | (2 intersections therefore) $\underline{2}$ (roots)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 | B1ft | (1)<br><b>[7]</b> |
|             | (b)           | <ul> <li>1<sup>st</sup> B1 for shape or Can be anywhere, but there must be one max. and one min. and no further max. and min. turning points. Shape: Be generous, even when the curve seems to be composed of straight line segments, but there must be a discernible 'curve' at the max. and min.</li> <li>2<sup>nd</sup> B1 for minimum at (-1,0) (even if there is an additional minimum point shown)</li> <li>3<sup>rd</sup> B1 for the sketch meeting axes at (2, 0) and (0, 2). They can simply mark 2 on the axes. The marks for minimum and intersections are dependent upon having a sketch.</li> <li>Answers on the diagram for min. and intersections take precedence over answers seen elsewhere.</li> </ul> |                                                                                                                                                 |      |                   |
|             |               | other curve. The curve can 'touch' the axes.<br>A curve of (roughly) the correct shape is required, but be very generous, even when the arc<br>appears to turn 'inwards' rather than approaching the axes, and when the curve looks like<br>two straight lines with a small curve at the join.<br>Allow, for example, shapes like these:                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                 |      |                   |
|             |               | 5 <sup>th</sup> B1 for a branch fully in the 3 <sup>rd</sup> quadrant (ignore any intersections with the other curve for this branch). The curve can 'touch' the axes.<br>A curve of (roughly) the correct shape is required, but be very generous, even when the arc appears to turn 'inwards' rather than approaching the axes.                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                 |      | is<br>arc         |
|             | (c)           | B1ft for a statement about the number of roots - compatible with their sketch. No sketch is B0.<br>The answer 2 <u>incompatible with the sketch</u> is B0 (ignore any algebra seen).<br>If the sketch shows the 2 correct intersections <u>and</u> , for example, one other intersection, the answer here should be 3, not 2, to score the mark.                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                 |      | ).<br>ne          |

| Winter :<br>Past Pape | <b>2009</b>    | www.mystudybro.com<br>This resource was created and owned by Pearson Edexcel | Mathematics C |
|-----------------------|----------------|------------------------------------------------------------------------------|---------------|
|                       |                |                                                                              | Leav          |
| 9.                    | The first term | m of an arithmetic series is $a$ and the common difference is $d$ .          |               |
|                       | The 18th term  | m of the series is 25 and the 21st term of the series is $32\frac{1}{2}$ .   |               |
|                       | (a) Use this   | information to write down two equations for $a$ and $d$ .                    | (2)           |
|                       | (b) Show th    | hat $a = -17.5$ and find the value of <i>d</i> .                             | (2)           |
|                       | The sum of t   | the first $n$ terms of the series is 2750.                                   |               |
|                       | (c) Show th    | hat <i>n</i> is given by                                                     |               |
|                       |                | $n^2 - 15n = 55 \times 40.$                                                  |               |
|                       |                |                                                                              | (4)           |
|                       | (d) Hence fi   | ind the value of <i>n</i> .                                                  | (3)           |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |
|                       |                |                                                                              |               |

| Question<br>Number |            | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mar                   | ks          |  |
|--------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------|--|
| 9                  | (a)<br>(b) | a + 17d = 25 or equiv. (for 1 <sup>st</sup> B1), $a + 20d = 32.5$ or equiv. (for 2 <sup>nd</sup> B1),<br><u>Solving</u> (Subtract) $3d = 7.5$ so $d = 2.5$<br>$a = 32.5 - 20 \times 2.5$ so $a = -17.5$ (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1, B1<br>M1<br>A1cso | (2)<br>(2)  |  |
|                    | (c)        | $2750 = \frac{n}{2} \left[ -35 + \frac{5}{2} (n-1) \right]$<br>{ $4 \times 2750 = n(5n-75)$ }<br>$4 \times 550 = n(n-15)$<br>$n^2 - 15n = 55 \times 40$ (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1A1ft<br>M1<br>A1cso | (4)         |  |
|                    | (d)        | $n^{2} - 15n - 55 \times 40 = 0  \text{or}  n^{2} - 15n - 2200 = 0$ $(n - 55)(n + 40) = 0 \qquad n = \dots$ $\underline{n = 55}  \text{(ignore - 40)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1<br>M1<br>A1        | (3)<br>[11] |  |
|                    | (a)        | Mark parts (a) and (b) as 'one part', ignoring labelling.<br><u>Alternative</u> :<br>$1^{\text{st}} \text{B1:} d = 2.5 \text{ or equiv. or } d = \frac{32.5 - 25}{2}$ . No method required, but $a = -17.5$ must not be assumed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |             |  |
|                    | (b)        | <ul> <li>2<sup>nd</sup> B1: Either a +17d = 25 or a + 20d = 32.5 seen, or used with a value of d or for 'listing terms' or similar methods, 'counting back' 17 (or 20) terms.</li> <li>M1: In main scheme: for a full method (allow numerical or sign slips) leading to solution for d or a without assuming a = -17.5<br/>In alternative scheme: for using a d value to find a value for a</li> </ul>                                                                                                                                                                                                                                                                                                                          |                       |             |  |
|                    |            | A1: Finding correct values for both <i>a</i> and <i>d</i> (allowing equiv. fractions such as $d = \frac{15}{6}$ ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | with no               |             |  |
|                    | (c)        | In the main scheme, if the given <i>a</i> is used to find <i>d</i> from one of the equations, then allow M1A1 if both values are <u>checked</u> in the $2^{nd}$ equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |             |  |
|                    | (d)        | 1 <sup>st</sup> M1 for attempt to form equation with correct $S_n$ formula and 2750, with values of <i>a</i> and <i>d</i> .<br>1 <sup>st</sup> A1ft for a correct equation following through their <i>d</i> .<br>2 <sup>nd</sup> M1 for expanding and simplifying to a 3 term quadratic.<br>2 <sup>nd</sup> A1 for correct working leading to printed result (no incorrect working seen).                                                                                                                                                                                                                                                                                                                                       |                       |             |  |
|                    |            | 1 <sup>st</sup> M1 forming the correct $3TQ = 0$ . Can condone missing "= 0" but all terms must be on one side.<br>First M1 can be implied (perhaps seen in (c), but there must be an attempt at (d) for it to be scored).<br>2 <sup>nd</sup> M1 for attempt to solve 3TQ, by factorisation, formula or completing the square (see general marking principles at end of scheme). If this mark is earned for the 'completing the square' method or if the factors are written down directly, the 1 <sup>st</sup> M1 is given by implication.<br>A1 for <i>n</i> = 55 dependent on both Ms. Ignore – 40 if seen.<br>No working or 'trial and improvement' methods in (d) score all 3 marks for the answer 55, otherwise no marks. |                       |             |  |

www.mystudybro.com This resource was created and owned by Pearson Edexcel 6663 Leave blank 10. The line  $l_1$  passes through the point A (2, 5) and has gradient  $-\frac{1}{2}$ . (a) Find an equation of  $l_1$ , giving your answer in the form y = mx + c. (3) The point *B* has coordinates (-2, 7). (b) Show that *B* lies on  $l_1$ . (1) (c) Find the length of AB, giving your answer in the form  $k\sqrt{5}$ , where k is an integer. (3) The point C lies on  $l_1$  and has x-coordinate equal to p. The length of AC is 5 units. (d) Show that *p* satisfies  $p^2 - 4p - 16 = 0.$ (4)



| Ques<br>Num | stion<br>ber | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marks              |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 10          | (a)          | $y-5 = -\frac{1}{2}(x-2)$ or equivalent, e.g. $\frac{y-5}{x-2} = -\frac{1}{2}$ , $y = -\frac{1}{2}x+6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1A1,<br>A1cao (3) |
|             | (b)          | $x = -2 \Rightarrow y = -\frac{1}{2}(-2) + 6 = 7$ (therefore <i>B</i> lies on the line)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1 (1)             |
|             |              | (or equivalent verification methods)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
|             | (c)          | $(AB^{2} =) (2 - 2)^{2} + (7 - 5)^{2}, = 16 + 4 = 20, AB = \sqrt{20} = 2\sqrt{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (3) MI, AI, AI     |
|             |              | <i>C</i> is $(p, -\frac{1}{2}p+6)$ , so $AC^2 = (p-2)^2 + \left(-\frac{1}{2}p+6-5\right)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1                 |
|             | (d)          | Therefore $25 = p^2 - 4p + 4 + \frac{1}{4}p^2 - p + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1                 |
|             |              | $25 = 1.25p^2 - 5p + 5$ or $100 = 5p^2 - 20p + 20$ (or better, RHS simplified to 3 terms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | A1                 |
|             |              | Leading to: $0 = p^2 - 4p - 16$ (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [11]               |
|             | (a)          | <ul> <li>M1 A1 The version in the scheme above can be written down directly (for 2 marks), and M1 A0 can be allowed if there is just one slip (sign or number).</li> <li>If the 5 and 2 are the wrong way round the M mark can still be given if a correct formula (e.g. y - y<sub>1</sub> = m(x - x<sub>1</sub>)) is seen, otherwise M0.</li> <li>If (2, 5) is substituted into y = mx + c to find c, the M mark is for attempting this and the 1<sup>st</sup> A mark is for c = 6.</li> <li>Correct answer without working or from a sketch scores full marks.</li> </ul> |                    |
|             | (b)          | A conclusion/comment is not required, except when the method used is to establish that the line through $(-2,7)$ with gradient $-\frac{1}{2}$ has the same eqn. as found in part (a),                                                                                                                                                                                                                                                                                                                                                                                       |                    |
|             |              | of to establish that the line through $(-2, 7)$ and $(2, 3)$ has gradient $-\frac{1}{2}$ . In these cases                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |
|             | (c)          | M1 for attempting $AB^2$ or $AB$ . Allow one slip (sign or number) <u>inside</u> a bracket,<br>i.e. do not allow $(22)^2 - (7-5)^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |
|             |              | 1 <sup>st</sup> A1 for 20 (condone bracketing slips such as $-2^2 = 4$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |
|             |              | $2^{nd}$ A1 for $2\sqrt{5}$ or $k = 2$ (Ignore ± here).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |
|             | (d)          | 1 <sup>st</sup> M1 for $(p-2)^2$ + (linear function of $p$ ) <sup>2</sup> . The linear function may be unsimplified                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |
|             |              | but must be equivalent to $ap + b$ , $a \neq 0$ , $b \neq 0$ .<br>$2^{nd}$ M1 (dependent on $1^{st}$ M) for forming an equation in <i>p</i> (using 25 or 5) and<br>attempting (perhaps not very well) to multiply out both brackets.<br>$1^{st}$ A1 for collecting like <i>p</i> terms and having a correct expression.<br>$2^{nd}$ A1 for correct work leading to printed answer.<br>Alternative, using the result:                                                                                                                                                        |                    |
|             |              | Solve the quadratic $(p = 2 \pm 2\sqrt{5})$ and use one or both of the two solutions to find the                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |
|             |              | length of $AC^2$ or $C_1C_2^2$ : e.g. $AC^2 = (2 + 2\sqrt{5} - 2)^2 + (5 - \sqrt{5} - 5)^2$ scores 1 <sup>st</sup> M1, and 1 <sup>st</sup> A1 if fully correct.                                                                                                                                                                                                                                                                                                                                                                                                             |                    |
|             |              | Finding the length of $AC$ or $AC^2$ for both values of $p$ , or finding $C_1C_2$ with some evidence of halving (or intending to halve) scores the 2 <sup>nd</sup> M1.                                                                                                                                                                                                                                                                                                                                                                                                      |                    |
|             |              | Getting $AC = 5$ for both values of p, or showing $\frac{1}{2}C_1C_2 = 5$ scores the 2 <sup>nd</sup> A1 (cso).                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |

| <b>11.</b> The curve <i>C</i> has equation $y = 9 - 4x - \frac{8}{x}$ , $x > 0$ .         The point <i>P</i> on <i>C</i> has <i>x</i> -coordinate equal to 2.         (a) Show that the equation of the tangent to <i>C</i> at the point <i>P</i> is $y = 1 - 2x$ .         (b) Find an equation of the normal to <i>C</i> at the point <i>P</i> .         (c) Find the area of the tangent <i>A PB</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6663           |     | st Paper This res                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|-------------------------------------------------|
| 11. The curve <i>C</i> has equation<br>$y = 9 - 4x - \frac{8}{x},  x > 0.$ The point <i>P</i> on <i>C</i> has <i>x</i> -coordinate equal to 2.<br>(a) Show that the equation of the tangent to <i>C</i> at the point <i>P</i> is $y = 1 - 2x$ .<br>(b) Find an equation of the normal to <i>C</i> at the point <i>P</i> .<br>(c) Find the area of triangle <i>APB</i> .<br>(d)<br>(e) Find the area of triangle <i>APB</i> .<br>(f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Leave<br>blank |     |                                                 |
| $y = 9 - 4x - \frac{8}{x},  x > 0.$ The point <i>P</i> on <i>C</i> has <i>x</i> -coordinate equal to 2. (a) Show that the equation of the tangent to <i>C</i> at the point <i>P</i> is $y = 1 - 2x$ . (b) Find an equation of the normal to <i>C</i> at the point <i>P</i> . (c) Find the area of triangle <i>APB</i> . (f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |     | <b>11.</b> The curve <i>C</i> has equation      |
| The point <i>P</i> on <i>C</i> has <i>x</i> -coordinate equal to 2.  (a) Show that the equation of the tangent to <i>C</i> at the point <i>P</i> is $y = 1 - 2x$ . (b) Find an equation of the normal to <i>C</i> at the point <i>P</i> . (c) Find the area of triangle <i>APB</i> . (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |     | У                                               |
| (a) Show that the equation of the tangent to <i>C</i> at the point <i>P</i> is <i>y</i> = 1 - 2 <i>x</i> .       (6)         (b) Find an equation of the normal to <i>C</i> at the point <i>P</i> .       (3)         The tangent at <i>P</i> meets the <i>x</i> -axis at <i>A</i> and the normal at <i>P</i> meets the <i>x</i> -axis at <i>B</i> .       (c) Find the area of triangle <i>APB</i> .         (c) Find the area of triangle <i>APB</i> .       (4)         (a)       (b)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         (c) Find the area of triangle <i>APB</i> .       (c)         < |                |     | The point <i>P</i> on <i>C</i> has <i>x</i> -co |
| (6)         (b) Find an equation of the normal to <i>C</i> at the point <i>P</i> .         (c)         (c) Find the area of triangle <i>APB</i> .         (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |     | (a) Show that the equation                      |
| (b) Find an equation of the normal to C at the point P.       (3)         The tangent at P meets the x-axis at A and the normal at P meets the x-axis at B.       (c) Find the area of triangle APB.         (d)       (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                | (6) |                                                 |
| The tangent at P meets the x-axis at A and the normal at P meets the x-axis at B.       (4)         (c) Find the area of triangle APB.       (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                | (3) | (b) Find an equation of the                     |
| (c) Find the area of triangle APB.       (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                | 2   | The tangent at P meets th                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | •   | (a) Find the area of trian                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | (4) | (c) Find the area of trian                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     |                                                 |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |     |                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |     | 24                                              |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Marks                 |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| <b>11</b> (a)      | $\left(\frac{dy}{dt}\right) = -4 + 8x^{-2}$ (4 or $8x^{-2}$ for M1 sign can be wrong)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M1A1                  |  |
|                    | $ \begin{array}{c} (dx) \\ x = 2 \Longrightarrow  m = -4 + 2 = -2 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1                    |  |
|                    | $y = 9 - 8 - \frac{8}{2} = -3$ The first 4 marks <u>could</u> be earned in part (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B1                    |  |
|                    | Equation of tangent is: $y+3 = -2(x-2) \rightarrow y = 1-2x$ (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M1 A1cso<br>(6)       |  |
| (b)                | Gradient of normal = $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1ft                  |  |
|                    | Equation is: $\frac{y+3}{x-2} = \frac{1}{2}$ or better equivalent, e.g. $y = \frac{1}{2}x - 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1A1                  |  |
| (c)                | $(A:) \frac{1}{2}, \qquad (B:) 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (3)<br>B1, B1         |  |
|                    | Area of triangle is: $\frac{1}{2}(x_B \pm x_A) \times y_P$ with values for all of $x_B, x_A$ and $y_P$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1                    |  |
|                    | $\frac{1}{2}\left(8 - \frac{1}{2}\right) \times 3 = -\frac{45}{4}$ or 11.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1 (4)<br>[13]        |  |
| (a)                | 1 <sup>st</sup> M1 for 4 or $8x^{-2}$ (ignore the signs).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |  |
|                    | 2 <sup>nd</sup> M1 for substituting $r = 2$ into their $\frac{dy}{dx}$ (must be different from their y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |  |
|                    | dx<br>B1 for $y = -3$ but not if clearly found from the given equation of the tangent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |  |
|                    | $3^{rd}$ M1 for attempt to find the equation of tangent at P, follow through their m and $y_P$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |  |
|                    | Apply general principles for straight line equations (see end of scheme).<br><u>NO DIFFERENTIATION ATTEMPTED</u> : Just assuming $m = -2$ at this stage is<br>2 <sup>nd</sup> A1cso for correct work leading to printed answer (allow equivalents with 2x, y, and<br>such as $2x + y - 1 = 0$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s M0<br>I 1 terms…    |  |
| (b)                | B1ft for correct use of the perpendicular gradient rule. Follow through their <i>m</i> , but is there must be clear evidence that the <i>m</i> is thought to be the gradient of the tangent of tangent of the tangent of tangen | f $m \neq -2$<br>ent. |  |
|                    | M1 for an attempt to find normal at P using their changed gradient and their $y_P$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |  |
|                    | Appry general principles for straight line equations (see end of scheme).<br>A1 for any correct form as specified above (correct answer only).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |  |
| (C)                | $1^{\text{st}} \text{B1 for } \frac{1}{2} \text{ and } 2^{\text{nd}} \text{B1 for 8.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |  |
|                    | M1 for a full method for the area of triangle <i>ABP</i> . Follow through their $x_A, x_B$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | their $y_P$ , but     |  |
|                    | the mark is to be awarded 'generously', condoning sign errors<br>The final answer must be positive for A1, with negatives in the working condor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ned.                  |  |
|                    | Determinant: Area = $\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} 2 & -3 & 1 \\ 0.5 & 0 & 1 \\ 8 & 0 & 1 \end{vmatrix} = \dots$ (Attempt to multiply out required for N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |  |
|                    | <u>Alternative</u> : $AP = \sqrt{(2-0.5)^2 + (-3)^2}$ , $BP = \sqrt{(2-8)^2 + (-3)^2}$ , Area $= \frac{1}{2}AP \times BP =$ M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |  |
|                    | Intersections with y-axis instead of x-axis: Only the M mark is available B0 B0 M1 A0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |  |