www.mystudybro.com

Mathematics C1

Past Paper

This resource was created and owned by Pearson Edexcel

Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	3	/	0	1	Signature	

Paper Reference(s)

6663/01

Edexcel GCE

Core Mathematics C1 **Advanced Subsidiary**

Friday 13 January 2012 – Morning

Time: 1 hour 30 minutes

Examiner's use only					

1

2

3

4

5

6

7

8

10

n L	eader's u	ise only
	Ouestion	Leave

Mathematical Formulae (Pink)

Items included with question papers

Calculators may NOT be used in this examination.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 10 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

Pearson Education Ltd copyright policy.

W850/R6663/57570 5/4/5/4

Turn over

Total

PEARSON

Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

dv	
(a) $\frac{\mathrm{d}y}{\mathrm{d}x}$	(3)
(b) $\int y dx$	(3)

January 2012 C1 6663 Mark Scheme

Question	Scheme	Marks				
1.	$4.3 \cdot 2.7 \cdot \frac{1}{2}$	M1A1A1				
(a)	$4x^{3} + 3x^{-\frac{1}{2}}$ $\frac{x^{5}}{5} + 4x^{\frac{3}{2}} + C$	(3)				
(b)	5 3	M1A1A1				
	$\frac{x}{5} + 4x^{2} + C$	(3)				
	3	6 marks				
	Notes	o maring				
(a)	3 - 1					
(a)	M1 for $x^n \to x^{n-1}$ i.e. x^3 or $x^{-\frac{1}{2}}$ seen					
	1 st A1 for $4x^3$ or $6 \times \frac{1}{2} \times x^{-\frac{1}{2}}$ (o.e.) (ignore any + c for this mark)					
	2^{nd} A1 for simplified terms i.e. both $4x^3$ and $3x^{-\frac{1}{2}}$ or $\frac{3}{\sqrt{x}}$ and no $+c$ $\left[\frac{3}{1}x^{-\frac{1}{2}}\right]$ is A0					
	,					
	Apply ISW here and award marks when first seen					
	M1 for $x^n \to x^{n+1}$ applied to y only so x^5 or $x^{\frac{3}{2}}$ seen.					
(b)	Do not award for integrating their answer to part (a)					
	1 st A1 for $\frac{x^5}{5}$ or $\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$ (or better). Allow $1/5x^5$ here but not for 2 nd A1					
	2^{nd} A1 for fully correct and simplified answer with +C. Allow $(1/5)x^5$					
	If $+ C$ appears earlier but not on a line where 2^{nd} A1 could be scored then	n A0				

This resource was created and owned by Pearson Edexcel

6663

Leave blank

2.	(a)	Simplify
	()	J

$$\sqrt{32} + \sqrt{18}$$

giving your answer in the form $a\sqrt{2}$, where a is an integer.

(2)

$$\frac{\sqrt{32} + \sqrt{18}}{3 + \sqrt{2}}$$

giving your answer in the form $b\sqrt{2}+c$, where b and c are integers.

(4)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Question	Scheme	Marks						
2. (a)	$\sqrt{32} = 4\sqrt{2} \text{ or } \sqrt{18} = 3\sqrt{2}$	B1						
	$\left(\sqrt{32} + \sqrt{18} =\right) 7\sqrt{2}$	B1 (2)						
	, <u>——</u>							
(b)	$\times \frac{3-\sqrt{2}}{3-\sqrt{2}} \underline{\text{or}} \times \frac{-3+\sqrt{2}}{-3+\sqrt{2}} \text{seen}$	M1						
	$3-\sqrt{2}$ $3+\sqrt{2}$ 3	1411						
	$\left[\frac{\sqrt{32} + \sqrt{18}}{3 + \sqrt{2}} \times \frac{3 - \sqrt{2}}{3 - \sqrt{2}} = \right] \frac{a\sqrt{2}(3 - \sqrt{2})}{[9 - 2]} \rightarrow \frac{3a\sqrt{2} - 2a}{[9 - 2]} \text{ (or better)}$	dM1						
	$\left[\frac{3+\sqrt{2}}{3+\sqrt{2}} \right] \xrightarrow{[9-2]} = \frac{[9-2]}{[9-2]} $ (of better)	divii						
	$= 3\sqrt{2}, -2$	A1, A1 (4)						
ALT	$(b\sqrt{2}+c)(3+\sqrt{2}) = 7\sqrt{2}$ leading to: $3b+c=7$, $3c+2b=0$	M1						
	e.g. $3(7-3b) + 2b = 0$ (o.e.)	dM1						
		6 marks						
	Notes							
(a)	<u> </u>							
	2^{nd} B1 for $7\sqrt{2}$ or accept $a = 7$. Answer only scores B1B1							
	NB Common error is $\sqrt{32} + \sqrt{18} = \sqrt{50} = 5\sqrt{2}$ this scores B0B0 but can use their "5" in (b) to							
	get M1M1							
(b)	1 st M1 for an attempt to multiply by $\frac{3-\sqrt{2}}{3-\sqrt{2}}$ (o.e.) Allow poor use of brackets							
	2^{nd} dM1 for using $a\sqrt{2}$ to correctly obtain a numerator of the form $p+q\sqrt{2}$ who	ere p and q are						
	non-zero integers. Allow arithmetic slips e.g. $21\sqrt{2} - 28$ or $3\sqrt{2} \times \sqrt{2}$							
	Follow through their $a = 7$ or a new value found in (b). Ignore denomine	iator.						
	Allow use of letter a. Dependent on 1 st M1							
	So $3\sqrt{32} - \sqrt{64} + 3\sqrt{8} - \sqrt{36}$ is M0 until they reduce $p + q\sqrt{2}$							
	$1^{\text{st}} \text{ A}1$ for $3\sqrt{2}$ or accept $b=3$ from correct working $2^{\text{nd}} \text{ A}1$ for -2 or accept $c=-2$ from correct working							
	<i>5</i>							
ALT	Simultaneous Equations							
	1 st M1 for $(b\sqrt{2}+c)(3+\sqrt{2}) = 7\sqrt{2}$ and forming 2 simultaneous equations.							
	2 nd dM1 for solving their simultaneous equations: reducing to a linear equation	in one variable						
	1							

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6663

	Leav blanl
3. Find the set of values of x for which	
(a) $4x-5 > 15-x$	
$(a) \xrightarrow{4x} 3 > 13 \xrightarrow{x} $ (2	2)
(b) $x(x-4) > 12$ (4)	4)
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Questi	ion	Scheme	Marks				
3.	(a)	5x > 20	M1				
		$\underline{x > 4}$	A1 (2)				
	(b)	2 4 10 0					
	(D)	$x^2 - 4x - 12 = 0$	3.41				
		$x^{2} - 4x - 12 = 0$ $(x+2)(x-6)[=0]$ $x = 6, -2$	M1				
		x = 6, -2 x < -2, x > 6	A1 M1, A1ft				
		$\lambda \stackrel{-}{\sim} -2$, $\lambda > 0$	(4)				
			,				
			6 marks				
		Notes					
	(a)	M1 for reducing to the form $px > q$ with one of p or q correct					
		Using $px = q$ is M0 unless > appears later on A1 $x > 4$ only					
		A1 x > 4 omy					
	(b)	1^{st} M1 for multiplying out and attempting to solve a 3TQ with at least $\pm 4x$ or	<u>+</u> 12				
		See General Principles for definitions of "attempt to solve"					
		1^{st} A1 for 6 and -2 seen. Allow $x > 6$, $x > -2$ etc to score this mark.					
		Values may be on a sketch.					
		2 nd M1 for choosing the "outside region" for their critical values. Do not award simply for					
		diagram or table – they must have chosen their "outside" regions					
		2 nd A1ft follow through their 2 distinct critical values. Allow "," "or" or a "blan	ık" between				
		answers. Use of "and" is M1A0 i.e. loses the final A1					
		-2 > x > 6 scores M1A0 i.e. loses the final A1 but apply ISW if $x > 6$, $x < -6$	2 has been seen				
		Accept $(-\infty, -2) \cup (6, \infty)$ (o.e)					
		Use of \leq instead of $<$ (or \geq instead of $>$) loses the final A mark in (b)	unless A mark				
		was lost in (a) for $x \ge 4$ in which case allow it here.					

This resource was created and owned by Pearson Edexcel

6663

Leave blank

4. A sequence $x_1, x_2, x_3,...$ is defined by

 $x_1 = 1$

 $x_{n+1} = ax_n + 5, \qquad n \geqslant 1$

where a is a constant.

(a) Write down an expression for x_2 in terms of a.

(1)

(b) Show that $x_3 = a^2 + 5a + 5$

(2)

Given that $x_3 = 41$

(c) find the possible values of a.

(3)

Question	Scheme		ks		
4. (a)	$(x_2 =) a + 5$	B1	(1)		
(b)	$(x_3) = a''(a+5)''+5$ = $a^2 + 5a + 5$ (*)	M1			
	$=a^2+5a+5$ (*)	A1cso	(2)		
(c)	$41 = a^2 + 5a + 5 \implies a^2 + 5a - 36 = 0$ or $36 = a^2 + 5a$	M1			
	(a+9)(a-4)=0	M1			
	a = 4 or -9	A1	(3)		
	Notes	6 marks	<u>S</u>		
(a)	Notes				
(a)	B1 accept $a1 + 5$ or $1 \times a + 5$ (etc)				
(b)	M1 must see $a(\text{their } x_2) + 5$				
	A1cso must have seen $a(a[1] + 5) + 5$ (etc or better) Must have both brackets () and no incorrect working seen				
(c)	1^{st} M1 for forming a suitable equation using x_3 and 41 and an attempt to collect like terms and				
	reduce to 3TQ (o.e). Allow one error in sign. Accept for example $a^2 + 5a + 46 = 0$				
	If completing the square should get to $\left(a \pm \frac{5}{2}\right)^2 = 36 + \frac{25}{4}$				
	2 nd M1 Attempting to solve their relevant 3TQ (see General Principles)				
	A1 for both 4 and -9 seen. If $a = 4$ and -9 is followed by $-9 < a < 4$ apply ISW. No working or trial and improvement leading to <u>both</u> answers scores 3/3 but no marks				
	for only one answer.				
	Allow use of other letters instead of a				

Mathematics C1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

The curve C has equation $y = x(5 - 1)$	-x) and the line L has equation $2y = 5x + 4$
(a) Use algebra to show that C and	d L do not intersect.
	(4)
(b) In the space on page 11, sketch	C and L on the same diagram, showing the coordinates
of the points at which C and L	
	(4)

Question	Scheme	Marks			
5. (a)		M1			
	$x(5-x) = \frac{1}{2}(5x+4) \text{(o.e.)}$ $2x^2 - 5x + 4(=0) \text{(o.e.) e.g. } x^2 - 2.5x + 2(=0)$ $b^2 - 4ac = (-5)^2 - 4 \times 2 \times 4$	A1			
	2x - 3x + 4 = 0 (o.e.) e.g. $x - 2.3x + 2 = 0$				
		M1			
	= 25 - 32 < 0, so no roots <u>or</u> no intersections <u>or</u> no solutions	A1 (4)			
(b)	Curve: \cap shape and passing through $(0, 0)$	B1			
	\cap shape and passing through $(5,0)$	B1			
	Line: +ve gradient and no intersections				
	with C. If no C drawn score B0	B1			
	Line pessing through (0, 2) and				
	Line passing through $(0, 2)$ and $(-0.8, 0)$ marked on axes	B1 (4)			
		8 marks			
	Notes				
(a)	1 st M1 for forming a suitable equation in one variable 1 st A1 for a correct 2TO equation. All supprissing " $\frac{1}{2}$ " A court $\frac{2}{2}$ $\frac{1}{2}$ 1	-4			
	1 st A1 for a correct 3TQ equation. Allow missing "= 0" Accept $2x^2 + 4 = 5x$ etc 2^{nd} M1 for an attempt to evaluate discriminant for their 3TQ. Allow for $b^2 > 4ac$ or $b^2 < 4ac$				
	Allow if it is part of a solution using the formula e.g. $(x=)\frac{5\pm\sqrt{25-32}}{4}$				
	Correct formula quoted and some correct substitution or a correct expression False factorising is M0				
	2 nd A1 for correct evaluation of discriminant for a correct 3TQ e.g. 25 – 32 (or better) and a				
	comment indicating no roots or equivalent. For <u>contradictory</u> statements score A0				
ALT	2^{nd} M1 for attempt at completing the square $a \left[\left(x \pm \frac{b}{2a} \right)^2 - q \right] + c$				
	$2^{\text{nd}} \text{ A1} \text{for} \left(x - \frac{5}{4}\right)^2 = -\frac{7}{16} \text{and a suitable comment}$				
(b)	Coordinates must be seen on the diagram. Do not award if only in the bod	y of the script.			
	"Passing through" means <u>not</u> stopping at and <u>not</u> touching. Allow $(0, x)$ and $(y, 0)$ if marked on the correct places on the correct	ot owig			
	1^{st} B1 for correct shape and passing through origin. Can be assumed if it passe				
	intersection of axes	Č			
SC	2^{nd} B1 for correct shape and 5 marked on x-axis for \cap shape stopping at <u>both</u> (5, 0) <u>and</u> (0, 0) award B0B1				
	3 rd B1 for a line of positive gradient that (if extended) has no intersection with t	heir C (possibly			
	extended). Must have both graphs on same axes for this mark. If no C gi	iven score B0			
	4^{th} B1 for straight line passing through -0.8 on x-axis and 2 on y-axis Accept exact fraction equivalents to -0.8 or $2(e.g. \frac{4}{2})$				
	1				

Leave blank

6.

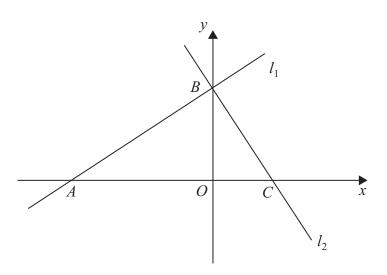


Figure 1

The line l_1 has equation 2x - 3y + 12 = 0

(a) Find the gradient of l_1 .

(1)

The line l_1 crosses the x-axis at the point A and the y-axis at the point B, as shown in Figure 1.

The line l_2 is perpendicular to l_1 and passes through B.

(b) Find an equation of l_2 .

(3)

The line l_2 crosses the x-axis at the point C.

(c) Find the area of triangle ABC.

(4)

Question	Scheme	Marl	KS		
6. (a)	$(m=)\frac{2}{3}$ (or exact equivalent)	B1	(1)		
(b)	B: (0, 4) [award when first seen – may be in (c)]	B1			
	Gradient: $\frac{-1}{m} = -\frac{3}{2}$	M1			
	$y-4 = -\frac{3x}{2}$ or equiv. e.g. $\left(y = -\frac{3x}{2} + 4, 3x + 2y - 8 = 0\right)$	A1	(3)		
(c)	A: $(-6,0)$ [award when first seen – may be in (b)]	B1			
	A: $(-6,0)$ [award when first seen – may be in (b)] C: $\frac{3x}{2} = 4 \implies x = \frac{8}{3}$ [award when first seen – may be in (b)]	B1ft			
	Area: Using $\frac{1}{2}(x_C - x_A)y_B$	M1			
	$= \frac{1}{2} \left(\frac{8}{3} + 6 \right) 4 = \frac{52}{3} \left(= 17 \frac{1}{3} \right)$	A1 cso	(4)		
ALT	$BC = \frac{4}{6}\sqrt{52}$ (from similar triangles) (or possibly using C)	2 nd B1ft			
	Area: Using $\frac{1}{2}(AB \times BC)$ N.B. $AB = \sqrt{6^2 + 4^2} = \sqrt{52}$	M1			
	$= \frac{1}{2} \times \sqrt{52} \times \left(\frac{2}{3}\sqrt{52}\right) = \frac{52}{3} \left(=17\frac{1}{3}\right)$	A1			
		8 marks	8		
	Notes				
(a)	B1 for $\frac{2}{3}$ seen. Do not award for $\frac{2}{3}x$ and must be in part (a)				
(b)	B1 for coordinates of <i>B</i> . Accept 4 marked on <i>y</i> -axis (clearly labelled) M1 for use of perpendicular gradient rule. Follow through their value for <i>m</i> A1 for a correct equation (any form, need not be simplified). Answer only 3/3	M1 for use of perpendicular gradient rule. Follow through their value for m			
(c)	1 st B1 for the coordinates of <i>A</i> (clearly labelled). Accept – 6 marked on <i>x</i> -ax 2^{nd} B1ft for the coordinates of <i>C</i> (clearly labelled) or $AC = \frac{26}{3}$.	is			
	Accept $x = \frac{8}{3}$ marked on x-axis. Follow through from l_2 if >0				
	M1 for an expression for the area of the triangle (all lengths > 0). Ft their 4, - 6 and $\frac{8}{3}$				
	A1 cso for $\frac{52}{3}$ or exact equivalent seen but must be a single fraction or $17\frac{1}{3}$	or $17\frac{2}{6}$ etc			
	$17\frac{1}{3}$ on its own can only score full marks if A, B and C are all correct.				
ALT	2^{nd} B1ft If they use this approach award this mark for C (if seen) or BC				
Use of Det	2 nd M1 must get as far as: $\frac{1}{2} x_A \times y_B - x_C \times y_B $				

Mathematics C1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	7
Leave	
1 1 1	
blank	

$f'(x) = 3x^2 - 3x + 5$	
find the value of $f(1)$.	
ind the value of 1(1).	(5)

Past Paper (Mark Scheme)

Question	Scheme	Marks			
7.	$f(x) = \frac{3x^3}{3} - \frac{3x^2}{2} + 5x[+c] \qquad \underline{\text{or}} \left\{ x^3 - \frac{3}{2}x^2 + 5x(+c) \right\}$	M1A1			
	10-8 6 + 10 + c				
	c = -2	A1			
	$c = -2$ $f(1) = 1 - \frac{3}{2} + 5 "-2" = \frac{5}{2} \text{(o.e.)}$	A1ft (5)			
		5 marks			
	Notes				
	$1^{\text{st}} M1$ for attempt to integrate $x^n \to x^{n+1}$				
	1^{st} A1 all correct, possibly unsimplified. Ignore +c here.				
	2^{nd} M1 for using $x = 2$ and $f(2) = 10$ to form a linear equation in c. Allow sign errors.				
	They should be substituting into a <u>changed</u> expression				
	$2^{\text{nd}} \text{ A1} \text{for } c = -2$				
	3^{rd} A1ft for $\frac{9}{2} + c$ Follow through their <u>numerical</u> $c \ (\neq 0)$				
	This mark is dependent on 1 st M1 and 1 st A1 only.				

Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

8. The curve C_1 has equation

$$y = x^2(x+2)$$

(a) Find $\frac{dy}{dx}$

(2)

(b) Sketch C_1 , showing the coordinates of the points where C_1 meets the x-axis.

(3)

(c) Find the gradient of C_1 at each point where C_1 meets the x-axis.

(2)

The curve C_2 has equation

$$y = (x-k)^2(x-k+2)$$

where k is a constant and k > 2

(d) Sketch C_2 , showing the coordinates of the points where C_2 meets the x and y axes.

(3)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question	Scheme	Marks			
8. (a)	$[y = x^3 + 2x^2]$ so $\frac{dy}{dx} = 3x^2 + 4x$	M1A1 (2)			
(b)	Shape \nearrow Touching x-axis at origin Through and not touching or stopping at -2 on x –axis. Ignore extra intersections.	B1 B1 B1 (3)			
(c)	At $x = -2$: $\frac{dy}{dx} = 3(-2)^2 + 4(-2) = 4$	M1			
	At $x = 0$: $\frac{dy}{dx} = 0$ (Both values correct)	A1 (2)			
(d)	Horizontal translation (touches x-axis still) $k-2$ and k marked on positive x-axis $k^2(2-k)$ (o.e) marked on negative y-axis	M1 B1 B1			
		10 marks			
	Notes				
(a) Prod Rule	M1 for attempt to multiply out and then some attempt to differentiate $x^n \to x^{n-1}$ Do not award for $2x(x+2)$ or $2x(1+2)$ etc Award M1 for a correct attempt: 2 products with a + and at least one product correct A1 for both terms correct. (If $+c$ or extra term is included score A0)				
(b)	1 st B1 for correct shape (anywhere). Must have 2 clear turning points. 2 nd B1 for graph touching at origin (not crossing or ending) 3 rd B1 for graph passing through (not stopping or touching at) -2 on x axis and -2 marked on axis				
SC	B0B0B1 for $y = x^3$ or cubic with straight line between $(-2,0)$ and $(0,0)$				
(c)	M1 for attempt at $y'(0)$ or $y'(-2)$. Follow through their 0 or -2 and their $y'(x)$ or for a correct statement of zero gradient for an identified point on their curve that touches x -axis A1 for both correct answers				
(d)	For the M1 in part (d) ignore any coordinates marked – just mark the shape. M1 for a horizontal translation of their (b). Should still touch x – axis if it did in (b) Or for a graph of correct shape with min. and intersection in correct order on +ve x -axis 1^{st} B1 for k and $k-2$ on the positive x -axis. Curve must pass through $k-2$ and touch at k 2^{nd} B1 for a correct intercept on negative y -axis in terms of k . Allow $(0, 2k^2 - k^3)$ (o.e.) seen in script if curve passes through –ve y -axis				

Leave

9.	A company o	offers two salary schemes for a 10-year period, Year 1 to Year 10 inclus	sive.
	Scheme 1:	Salary in Year 1 is $\pounds P$. Salary increases by $\pounds(2T)$ each year, forming an arithmetic sequence.	
	Scheme 2:	Salary in Year 1 is £($P + 1800$). Salary increases by £ T each year, forming an arithmetic sequence.	
	(a) Show that	at the total earned under Salary Scheme 1 for the 10-year period is	
		$\pounds(10P + 90T)$	(2)
	For the 10-ye	ear period, the total earned is the same for both salary schemes.	
	(b) Find the	value of T .	(4)
	For this value	e of T, the salary in Year 10 under Salary Scheme 2 is £29 850	
	(c) Find the	value of P .	(3)

Question	Scheme	Mark	.s		
9. (a)	$S_{10} = \frac{10}{2} [2P + 9 \times 2T] \underline{\text{or}} \frac{10}{2} (P + [P + 18T])$				
	e.g. $5[2P+18T]$ = $(\pounds) (10P+90T)$ or $(\pounds) 10P+90T$ (*)	A1cso	(2)		
(b)	Scheme 2: $S_{10} = \frac{10}{2} [2(P+1800)+9T] = \{10P+18000+45T\}$	M1A1			
	10P + 90T = 10P + 18000 + 45T	M1			
	90T = 18000 + 45T $T = 400 (only)$	A1	(4)		
(c)	Scheme 2, Year 10 salary: $[a+(n-1)d=](P+1800)+9T$	B1ft			
	P + 1800 + "3600" = 29850	M1			
	$P = (£) \ \underline{24450}$	A1	(3)		
		9 marks			
	Notes				
(a)	M1 for identifying $a = P$ or $d = 2T$ and attempt at S_{10} . Using $n = 10$ and on	e of a or d			
List	A1cso for simplifying to given answer. No incorrect working seen. Do not penalise missing end bracket in working eg 5(2P + 18T M1A1 for a full list seen (with + signs or written in columns) and no incorrect working seen. Any missing terms is M0A0				
(b)	1 st M1 for attempting S_{10} for scheme 2 (allow missing () brackets e.g. 2P Using $n = 10$ and at least one of a or d correct.	' + 1800 + 9	T)		
	1^{st} A1 for a correct expression for S_{10} using scheme 2 (needn't be multiplied)	ed out)			
List	Allow M1A1 if they reach $10P + 18000 + 45T$ with no incorrect working seen				
	10P + 18000 + 45T with no working is M1A1				
	2^{nd} M1 for forming an equation using the two sums that would enable <i>P</i> to be eliminated. Follow through their expressions provided <i>P</i> would disappear.				
	2^{nd} A1 for $T = 400$ Answer only (4/4)				
(c)	B1 for using u_{10} for scheme 2. Can be 9T or follow through their value or	f <i>T</i>			
	M1 for forming an equation based on u_{10} for scheme 2 and using 29850 an	d their <u>valu</u> e	<u>e</u> of		
	A1 for 24450 seen Answer only (3/3)				
MR	If they misread scheme 2 as scheme 1 in part (c) apply MR rule and award B0M1A0 max for an equation based on u_{10} for scheme 1 and using 29850 and their value of T				

Past Paper

This resource was created and owned by Pearson Edexcel

6663

Leave blank

10.

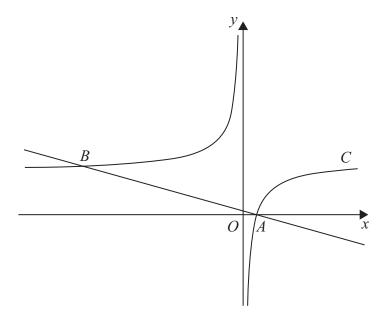


Figure 2

Figure 2 shows a sketch of the curve C with equation

$$y = 2 - \frac{1}{x}, \quad x \neq 0$$

The curve crosses the x-axis at the point A.

(a) Find the coordinates of A.

(1)

(b) Show that the equation of the normal to C at A can be written as

$$2x + 8y - 1 = 0 ag{6}$$

The normal to C at A meets C again at the point B, as shown in Figure 2.

(c) Find the coordinates of *B*.

(4)

		I
Question	Scheme	Marks
10. (a)	$\left(\frac{1}{2},0\right)$	B1 (1)
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^{-2}$	M1A1
	At $x = \frac{1}{2}$, $\frac{dy}{dx} = \left(\frac{1}{2}\right)^{-2} = 4$ (= m)	A1
	Gradient of normal $=-\frac{1}{m}$ $\left(=-\frac{1}{4}\right)$	M1
	Equation of normal: $y - 0 = -\frac{1}{4} \left(x - \frac{1}{2} \right)$	M1
(c)	$2x + 8y - 1 = 0 (*)$ $2 - \frac{1}{x} = -\frac{1}{4}x + \frac{1}{8}$	A1cso (6) M1
	$\begin{bmatrix} x & 4 & 8 \\ [= 2x^2 + 15x - 8 = 0] & \underline{\text{or}} & [8y^2 - 17y = 0] \end{bmatrix}$	
	(2x-1)(x+8) = 0 leading to $x =$	M1
	$x = \left\lfloor \frac{1}{2} \right\rfloor$ or -8	A1
	$y = \frac{17}{8}$ (or exact equivalent)	A1ft (4)
	8	11 marks
	Notes	
(a)	B1 accept $x = \frac{1}{2}$ if evidence that $y = 0$ has been used. Can be written on graph. Use ISW	
(b)	1 st M1 for kx^{-2} even if the '2' is not differentiated to zero. If no evidence of $\frac{dy}{dx}$	
	1^{st}A1 for x^{-2} (o.e.) only seen then (0/6
	2 nd A1 for using $x = 0.5$ to get $m = 4$ (correctly) (or $m = 1/0.25$) To score final A1cso must see at least one intermediate equation for the line	after $m-4$
	2^{nd} M1 for using the perpendicular gradient rule on their <i>m</i> coming from their $\frac{dy}{dx}$	
	ui ui	
	Their m must be a value not a letter. 3 rd M1 for using a changed gradient (based on y') and their A to find equation of line	
	3^{rd} A1cso for reaching printed answer with no incorrect working seen. Accept $2x + 8y = 1$ or equivalent equations with $\pm 2x$ and $\pm 8y$	
(c)	Trial and improvement requires sight of first equation.	
	1 st M1 for attempt to form a suitable equation in one variable. Do not penalise poor use of brackets etc.	
	2^{nd} M1 for simplifying their equation to a 3TQ and attempting to solve. May \Rightarrow by $x = -8$	be
	$1^{\text{st}} A1$ for $x = -8$ (ignore a second value). If found y first allow ft for x if x	
	2^{nd} A1ft for $y = \frac{17}{8}$ Follow through their x value in line or curve provided ans	swer is > 0
	This second A1 is dependent on both M marks	