Winter 2013 Past Paper

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C1 6663

Centre No.					Pape	r Refer	ence			Surname	Initia	ıl(s)
Candidate No.			6	6	6	3	/	0	1	Signature		
	Adva Mono Time	6/01	athe d Su 4 Jan our 30	ema ibsi iuar 0 m	ati idi ry 2 ninu	i cs ary 2013 ates	7 3 — 1 ems in	Moı			Examiner's us Team Leader's u Question Number 1 2 3 4 5	ise only
Instructions to In the boxes above Check that you ha Answer ALL the	Candidates e, write your c ve the correct		nber, ca						ıme, i	nitials and signature	6 7 8 9 10 e. 11	
You must write your strain for the full marks may be a strain of the full marks marks may be a strain of the full marks ma	• Candidates • Candidates matical Formu e obtained for ividual questi tions in this questi tions in this quest in this quest idates hat your answ	s ulae and S answers ons and t uestion p tion paper	Statistic to ALL the parts aper. Th r. Any b r. Any b	al Tal ques s of q ne tota plank uestic	bles' stions uesti al ma page	is pros. ons and ark fo es are re clea	vided re sho r this indica	wn in paper ted.	round is 75.	brackets: e.g. (2).	-	
This publication may be reprodu Pearson Education Ltd copyrigh ©2013 Pearson Education Ltd. Printer's Log. No. P414884 W850/R6663/57570 4/5/5/	working may ced only in accordance w policy.	not gain :									Total Turn ARSO	

6663

1. Factorise completely $x - 4x^3$		Leave blank
1. Factorise completely $x - 4x$	(3)	
		01
	(Total 3 marks)	Q1
2		
$\begin{array}{c} 2 \\ \hline \\ P & 4 & 1 & 4 & 8 & 8 & A & 0 & 2 & 3 & 2 \end{array}$		

January 2013 6663 Core Mathematics C1 Mark Scheme

Question Number	Scheme	Marks			
1.					
	$x(1-4x^2)$ Accept $x(-4x^2+1)$ or $-x(4x^2-1)$ or $-x(-1+4x^2)$ or even $4x(\frac{1}{4}-x^2)$ or equivalent	B1			
	Factorises quadratic (or initial cubic) into two brackets	M1			
	x(1-2x)(1+2x) or $-x(2x-1)(2x+1)$ or $x(2x-1)(-2$	A1			
		[3]			
		[0]			
		3 marks			
	Notes				
	B1 : Takes out a factor of x or $-x$ or even $4x$. This line may be implied by correct final answer, but	if this stage			
	is shown it must be correct . So B0 for $x(1 + 4x^2)$				
	M1: Factorises the quadratic resulting from their first factorisation using usual rules (see note 1 in	n General			
	Principles). e.g. x (1 – 4x) (x – 1). Also allow attempts to factorise cubic such as $(x – 2x^2)(1 + 2x)$) etc			
	N.B. Should not be completing the square here.				
	A1: Accept either $x(1-2x)(1+2x)$ or $-x(2x-1)(2x+1)$ or $x(2x-1)(-2x-1)$. (No fractions f	for this final			
	answer)				
	Specific situations				
	Note: $x(1-4x^2)$ followed by $x(1-2x)^2$ scores B1M1A0 as factors follow quadratic factorisation	n criteria			
	And $x(1-4x^2)$ followed by $x(1-4x)(1+4x)$ B1M0A0.				
	Answers with no working: Correct answer gets all three marks B1M1A1				
	: $x(2x-1)(2x+1)$ gets B0M1A0 if no working as $x(4x^2-1)$ would e	earn B0			
	Poor bracketing: e.g. $(-1 + 4x^2) - x$ gets B0 unless subsequent work implies bracket round the	– <i>x</i> in which			
	case candidate may recover the mark by the following correct work.				
	N.B. If correct factors are followed by $x = 0, x = \frac{1}{2}, x = -\frac{1}{2}$ then ignore this as subsequent work.				
	But these answers- $x = 0$, $x = \frac{1}{2}$, $x = -\frac{1}{2}$ - with no working, or no factors, gets B0M0A0.				
	Ignore "=0" written at the end of lines and mark LHS as in the scheme above. Candidate who char	nges the			
	question to $4x^3 - x = x(4x^2 - 1) = x(2x - 1)(2x + 1)$ would earn B0 M1 A0 1/3				

6	6	6	3

$r = 2^{2r+3} \cdot 1 \cdot 2 \cdot 2^{r}$		
Express 8^{2x+3} in the form 2^y , stating y in terms of x.	(2)	
		Ç
		ŕ
(Te	otal 2 marks)	

Question Number	Scheme	Marks
2.		
	$(8^{2x+3} = (2^3)^{2x+3}) = 2^{3(2x+3)}$ or 2^{ax+b} with $a = 6$ or $b = 9$	M1
		1/11
	$= 2^{6x+9}$ or $= 2^{3(2x+3)}$ as final answer with no errors or $(y =)6x + 9$ or $3(2x + 3)$	A1
		[2]
		2 marks
	Notes	
	M1: Uses $8 = 2^3$, and multiplies powers $3(2x + 3)$. Does not add powers. (Just $8 = 2^3$ or $8^{\frac{1}{3}}$	= 2 is M0)
	A1: Either 2^{6x+9} or $= 2^{3(2x+3)}$ or $(y=)6x+9$ or $3(2x+3)$	
	Note: Examples: 2 ^{6x+3} scores M1A0	
	: $8^{2x+3} = (2^3)^{2x+3} = 2^{3+2x+3}$ gets M0A0	
	Special case: : $= 2^{6x} 2^9$ without seeing as single power M1A0	
	Alternative method using logs: $8^{2x+3} = 2^y \Longrightarrow (2x+3)\log 8 = y\log 2 \Longrightarrow y = \frac{(2x+3)\log 8}{\log 2}$	M1
	So $(y =)6x + 9$ or $3(2x + 3)$	A1 [2]

Mathematics C1

(3)

(3)

6663 Leave

blank

3. (i) Express

$$(5-\sqrt{8})(1+\sqrt{2})$$

in the form $a + b\sqrt{2}$, where a and b are integers.

(ii) Express

$$\sqrt{80} + \frac{30}{\sqrt{5}}$$

in the form $c\sqrt{5}$, where *c* is an integer.

P 4 1 4 8 8 A 0 4 3 2

6663

Question	Scheme	Marks
<u>Number</u> 3. (i)	$(z - \overline{z})(z - \overline{z})$	
J • (1)	$(5-\sqrt{8})(1+\sqrt{2})$	
	$=5+5\sqrt{2}-\sqrt{8}-4$	M1
	$=5+5\sqrt{2}-2\sqrt{2}-4$ $\sqrt{8}=2\sqrt{2}$, seen or implied at any point	
	$= 1 + 3\sqrt{2}$ $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$. A1 [3]
(ii)	Method 1 Method 2 Method 3	
(11)	Either $\sqrt{80} + \frac{30}{\sqrt{5}} \left(\frac{\sqrt{5}}{\sqrt{5}} \right)$ Or $\left(\frac{\sqrt{400} + 30}{\sqrt{5}} \right) \frac{\sqrt{5}}{\sqrt{5}}$ $\sqrt{80} + \frac{\sqrt{900}}{\sqrt{5}} = \sqrt{80} + \sqrt{180}$	M1
	$= 4\sqrt{5} + \dots = 4\sqrt{5} + \dots$. B1
	$= 4\sqrt{5} + 6\sqrt{5} = \left(\frac{50\sqrt{5}}{5}\right) = 4\sqrt{5} + 6\sqrt{5}$	
	$= 10\sqrt{5}$	A1 [3]
Alternative for (i)	$(5-2\sqrt{2})(1+\sqrt{2})$ This earns the B1 mark and is entered on epen as B	
201 (1)	$= 5 + 5\sqrt{2} - 2\sqrt{2} - 2\sqrt{2}\sqrt{2}$ Multiplies out correctly with $2\sqrt{2}$. This may be seen or implied and may be simplified e.g. $= 5 + 3\sqrt{2} - 2\sqrt{4}$ o.e	d
	For earlier use of $2\sqrt{2}$	7. B1
	$= 1 + 3\sqrt{2}$ For earlier use of $2\sqrt{2}$ $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$.	A1 [3]
		6 marks
(i)	Notes M1: Multiplies out brackets correctly giving four correct terms or simplifying to correct expansion may be implied by correct answer) – can appear as table	nsion. (This
	B1: $\sqrt{8} = 2\sqrt{2}$, seen or implied at any point	
	A1: Fully and correctly simplified to $1 + 3\sqrt{2}$ or $a = 1$ and $b = 3$.	
(ii)	M1: Rationalises denominator i.e. Multiplies $\left(\frac{k}{\sqrt{5}}\right)$ by $\left(\frac{\sqrt{5}}{\sqrt{5}}\right)$ or $\left(\frac{-\sqrt{5}}{-\sqrt{5}}\right)$, seen or implied of	or uses
	Method 3 or similar e.g. $\left(\frac{30}{\sqrt{5}}\right) = \frac{6 \times 5}{\sqrt{5}} = 6\sqrt{5}$	
	B1 : (Independent mark) States $\sqrt{80} = 4\sqrt{5}$ Or either $\sqrt{400} = 20 \text{ or } \sqrt{80}\sqrt{5} = 20$ at any poind the Method 2.	nt if they use
	A1: $10\sqrt{5}$ or $c = 10$.	
	N.B There are other methods e.g. $\sqrt{80} = \frac{20}{\sqrt{5}}$ (B1) then add $\frac{20}{\sqrt{5}} + \frac{30}{\sqrt{5}} = \frac{50}{\sqrt{5}}$ then M1 A1as	before
	Those who multiply initial expression by $\sqrt{5}$ to obtain $\sqrt{400} + 30 = 20 + 30 = 50$ earn M0	B1 A0

Past Paper Leave blank A sequence u_1, u_2, u_3, \dots satisfies 4. $u_{n+1} = 2u_n - 1, \ n \ge 1$ Given that $u_2 = 9$, (a) find the value of u_3 and the value of u_4 , (2) (b) evaluate $\sum_{r=1}^{4} u_r$. (3) 6 P 4 1 4 8 8 A 0 6 3 2

Question Number	Scheme	Marks			
4.	$u_2 = 9, \ u_{n+1} = 2u_n - 1, \ n \dots 1$				
(a)	$u_3 = 2u_2 - 1 = 2(9) - 1$ (=17) $u_3 = 2(9) - 1$.	M1			
	$u_4 = 2u_3 - 1 = 2(17) - 1 = 33$ Can be implied by $u_3 = 17$				
	Both $u_3 = 17$ and $u_4 = 33$	A1			
		[2]			
(b)	$\sum_{r=1}^{4} u_r = u_1 + u_2 + u_3 + u_4$				
	$(u_1) = 5$ $(u_1) = 5$	B1 (M1 on epen)			
	$\sum_{r=1}^{4} u_r = "5" + 9 + "17" + "33" = 64$ Adds their first four terms obtained legitimately (see notes below)	M1			
	$\sum_{r=1}^{n} a_r = 0 $ regrammerly (see notes below) 64	A1			
		[3]			
		5 marks			
	Notes				
(a) (b)	M1: Substitutes 9 into RHS of iteration formula A1: Needs both 17 and 33 (but allow if either or both seen in part (b)) B1: (Armony of M1 on open) for $y_1 = 5$ (between obtained more encouring (a)) May be called	- 5			
(0)	B1: (Appears as M1 on epen) for $u_1 = 5$ (however obtained – may appear in (a)) May be called M1: Uses their u found from $u_1 = 2u_1$ 1 stated explicitly, or uses $u_1 = 4$ or $5\frac{1}{2}$ and adds it to				
	M1: Uses their u_1 found from $u_2 = 2u_1 - 1$ stated explicitly, or uses $u_1 = 4$ or $5\frac{1}{2}$, and adds it to u_3 and their u_4 only. (See special cases below).	u_2 , men			
	u_3 and then u_4 only. (See special cases below). There should be no fifth term included.				
	A1 : 64				
	Note: Special cases: A candidate who adds u_2 , u_3 , u_4 and u_5 scores B0M0A0. (M0M0A0 c	on epen)			
	Such candidates will usually give a final answer of $9 + 17 + 33 + 65 = 124$.				
	Candidates who invent an arbitrary (wrong) value for u_1 will also score B0 M0 A0. (M0M0A0 c	on epen)			
	Uses $u_1 = 4$ to obtain sum (usually 63) get B0 M1 A0 (M0 M1 A0 on epen)				
	Uses $u_1 = 5\frac{1}{2}$ to obtain sum (usually $64\frac{1}{2}$) also get B0 M1 A0 (M0 M1 A0 on epen)				

ast Pape	r This resource was created and owned by Pearson Edexcel	6663
		Leave
5.	The line l_1 has equation $y = -2x + 3$	blank
	The line l_2 is perpendicular to l_1 and passes through the point (5, 6).	
	(a) Find an equation for l_2 in the form $ax + by + c = 0$, where a, b and c are integers. (3)	
	The line l_2 crosses the x-axis at the point A and the y-axis at the point B.	
	(b) Find the x-coordinate of A and the y-coordinate of B. (2)	
	Given that O is the origin,	
	(c) find the area of the triangle <i>OAB</i> . (2)	

Question Number	Scheme	Marks		
5. (a)	Gradient of l_2 is $\frac{1}{2}$ or 0.5 or $\frac{-1}{-2}$	B1		
	Either $y-6 = "\frac{1}{2}"(x-5)$ or $y = "\frac{1}{2}"x+c$ and $6 = "\frac{1}{2}"(5)+c \implies c = ("\frac{7}{2}")$	M1		
	x-2y+7=0 or $-x+2y-7=0$ or $k(x-2y+7) = 0$ with <i>k</i> an integer	A1 [3]		
(1-)	Puts $x = 0$, or $y = 0$ in their equation and solves to find appropriate co-ordinate	M1		
(b)	<i>x</i> -coordinate of <i>A</i> is -7 and <i>y</i> -coordinate of <i>B</i> is $\frac{7}{2}$.	A1 cao [2]		
(c)	Area $OAB = \frac{1}{2} (7) \left(\frac{7}{2}\right) = \frac{49}{4} (units)^2$ Applies $\pm \frac{1}{2} (base)(height)$ Applies $\pm \frac{1}{2} (base)(height)$	M1 A1 cso [2]		
	Notos	7 marks		
(a)	Notes B1: Must have $\frac{1}{2}$ or 0.5 or $\frac{-1}{2}$ o.e. stated and stops, or used in their line equation			
(b) (c)	M1: Full method to obtain an equation of the line through (5,6) with their "m". So $y - 6 = m(x - their gradient or uses y = mx + c with (5, 6) and their gradient to find c. Allow any numerical gradient or uses y = mx + c with (5, 6) and their gradient to find c. Allow any numerical gradient or uses y = mx + c with (6,5) as a slip if y - y_1 = m(x - x_1) is quoted first)A1: Accept any multiple of the correct equation, provided that the coefficients are integers and eque.g. -x + 2y - 7 = 0 or k(x - 2y + 7) = 0 or even 2y - x - 7 = 0M1: Either one of the x or y coordinates using their equationA1: Needs both correct values. Accept any correct equivalent Need not be written as co-ordinates just -7 and 3.5 with no indication which is which may be awarded the A1.M1: Any correct method for area of triangle AOB, with their values for co-ordinates of A and B (negatives) Method usually half base times height but determinants could be used.A1: Any exact equivalent to 49/4, e.g. 12.25. (negative final answer is A0 but replacing by pos Do not need units.c.s.o. implies if A0 is scored in (b) then A0 is scored in (c) as well. However if candidate has correct equation in (a) of wrong form may score A0 in (a) and A1 in (b) and (c)$	ndient here uation = 0 s. Even may include itive is A1)		
	Note: Special cases: $\frac{1}{2}(-7)\left(+\frac{7}{2}\right) = -\frac{49}{4}$ (units) ² is M1 A0 but changing sign to area = $+\frac{49}{4}$ (recovery) N.B. Candidates making sign errors in (b) and obtaining +7 and $-\frac{7}{4}$ may also get $\frac{49}{4}$ as their ansi			
	N.B. Candidates making sign errors in (b) and obtaining +7 and $-\frac{7}{2}$. may also get $\frac{49}{4}$ as their answer following previous errors. They should be awarded A0 as this answer is not ft and is for correct solution only			
	Special Case : In (a) and (b): Produces parallel line instead of perpendicular line: So uses $m = -2.7$ treated as a misread as it simplifies the question. The marks will usually be B0 M1 A0, M1 A0, M maximum of $3/7$	This is not		

blank

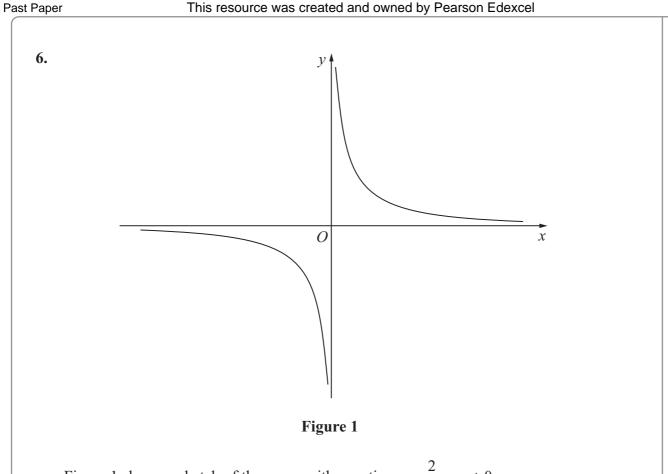


Figure 1 shows a sketch of the curve with equation $y = \frac{2}{x}$, $x \neq 0$

The curve *C* has equation $y = \frac{2}{x} - 5$, $x \neq 0$, and the line *l* has equation y = 4x + 2

(a) Sketch and clearly label the graphs of C and l on a single diagram.

On your diagram, show clearly the coordinates of the points where C and l cross the coordinate axes.

(5)

(b) Write down the equations of the asymptotes of the curve C.

(2)

(c) Find the coordinates of the points of intersection of $y = \frac{2}{x} - 5$ and y = 4x + 2 (5)

Question Number	Scheme		Marks
6. (a)	י ר ע עלי	$y = \frac{2}{x}$ is translated up or down.	M1
		$y = \frac{2}{x} - 5$ is in the correct position.	A1
		Intersection with x-axis at $(\frac{2}{5}, \{0\})$ only Independent mark.	B1
		y = 4x + 2: attempt at straight line, with positive gradient with positive <i>y</i> intercept.	B1
	Check graph in question for possible answers	Intersection with x-axis at $\left(-\frac{1}{2}, \{0\}\right)$ and y-axis at $\left(\{0\}, 2\right)$.	B1
	and space below graph for answers to part (b)		
(b)	Asymptotes : $x = 0$ (or y-axis) and $y = -5$.	An asymptote stated correctly. Independent of (a)	B1
(a)	(Lose second B mark for extra asymptotes)	These two lines only. Not ft their graph.	B1 [2]
(c)	Method 1: $\frac{2}{x} - 5 = 4x + 2$	Method 2: $\frac{y-2}{4} = \frac{2}{y+5}$	M1
	$4x^2 + 7x - 2 = 0 \Rightarrow x =$	$y^2 + 3y - 18 = 0 \rightarrow y =$	dM1
	$x = -2, \frac{1}{4}$	y = -6, 3	A1
	Ť		
	When $x = -2$, $y = -6$, When $x = \frac{1}{4}$, $y = 3$	When $y = -6$, $x = -2$ When $y = 3$, $x = \frac{1}{4}$.	M1A1 [5
			12 marks
	Γ	lotes	

(a) **M1:** Curve implies *y* axis as asymptote and does not change shape significantly. Changed curve needs horizontal asymptote (roughly) Asymptote(s) need not be **shown** but shape of curve should be implying asymptote(s) parallel to *x* axis. Curve should not remain where it was in the given figure. Both sections move in the same direction. There should be no reflection

A1: Crosses positive *x* axis. Hyperbola has moved down. Both sections move by **almost** same amount. See sheet on page 19 for guidance.

B1: Check diagram and text of answer. Accept 2/5 or 0.4 shown on *x* -axis or x = 2/5, or (2/5, 0) stated clearly in text or on graph. This is **independent** of the graph. Accept (0, 2/5) if clearly on *x* axis. Ignore any intersection points with *y* axis. Do not credit work in table of values for this mark.

B1: Must be attempt at astraight line, with positive gradient & with positive *y* intercept (need not cross *x* axis)

B1: Accept x = -1/2, or -0.5 shown on x -axis or (-1/2, 0) or (-0.5, 0) in text or on graph and similarly accept 2 on y axis or y = 2 or (0, 2) in text or on graph. Need not cross curve and allow on separate axes.

(b) **B1:** For either correct asymptote equation. Second **B1**: For both correct (lose this if extras e.g. $x = \pm 1$ are given also). These asymptotes may follow correctly from equation after wrong graph in (a)

Just y = -5 is B1 B0 This may be awarded if given on the graph. However for other B mark it must be clear that x = 0 (or the y-axis) is an asymptote. NB $x \neq 0$, $y \neq -5$ is B1B0

(c) M1: Either of these equations is enough for the method mark (May appear labelled as part (b))

dM1: Attempt to solve a 3 term quadratic by factorising, formula, completion of square or implied by correct answers. (see note 1) This mark depends on previous mark.

A1: Need both correct *x* answers (Accept equivalents e.g. 0.25) or both correct *y* values (Method 2)

M1: At least one attempt to find *second variable* (usually *y*) using their *first variable* (usually *x*) related to line meeting curve. Should not be substituting *x* or *y* values from part (a) or (b). This mark is **independent** of previous marks. Candidate may substitute in equation of line or equation of curve.

A1: Need both correct *second variable* answers Need not be written as co-ordinates (allow as in the scheme) Note: Special case: Answer only with no working in part (c) can have 5 marks if completely correct, with **both** points found. If co-

ordinates of just one of the points is correct – with no working – this earns M0 M0 A0 M1 A0 (i.e. 1/5)

This resource was created and owned by Pearson Edexcel Leave blank 7. Lewis played a game of space invaders. He scored points for each spaceship that he captured. Lewis scored 140 points for capturing his first spaceship. He scored 160 points for capturing his second spaceship, 180 points for capturing his third spaceship, and so on. The number of points scored for capturing each successive spaceship formed an arithmetic sequence. (a) Find the number of points that Lewis scored for capturing his 20th spaceship. (2) (b) Find the total number of points Lewis scored for capturing his first 20 spaceships. (3) Sian played an adventure game. She scored points for each dragon that she captured. The number of points that Sian scored for capturing each successive dragon formed an arithmetic sequence. Sian captured *n* dragons and the total number of points that she scored for capturing all n dragons was 8500. Given that Sian scored 300 points for capturing her first dragon and then 700 points for capturing her *n*th dragon, (c) find the value of *n*. (3)

Question Number	Scheme	Marks
7. (a)	Lewis; arithmetic series, $a = 140$, $d = 20$. $T_{20} = 140 + (20 - 1)(20); = 520$ Or lists 20 terms to get to 520	M1; A1
(b)	OR $120 + (20)(20)$ Method 1 Method 1 Method 2 Either: Uses $\frac{1}{2}n(2a + (n-1)d)$ Or: Uses $\frac{1}{2}n(a + l)$	[2 M1
(-)	$\frac{20}{2}(2 \times 140 + (20 - 1)(20)) \qquad $	
<u> </u>	6600	A1
(c)	Sian; arithmetic series, $a = 300, l = 700, S_n = 8500$ Or: May use both	
	Either: Attempt to use $8500 = \frac{n}{2}(a+l)$ $8500 = \frac{1}{2}n(2a+(n-1)d)$ and $l = a + (n-1)d$ and eliminate d	M1
	$8500 = \frac{n}{2} (300 + 700) $ $8500 = \frac{n}{2} (600 + 400)$	A1
	$\Rightarrow n = 17$	A1
		8 marks
	Notes	
(a)	M1: Attempt to use formula for 20^{th} term of Arithmetic series with first term 140 and $d = 20$ formula rules apply – see General principles at the start of the mark scheme re "Method Mart Or: uses $120 + 20n$ with $n = 20$ Or: Listing method : Lists 140, 160, 180, 200, 220, 240, 260, 280, 520. M1A1 if correct wrong. (So 2 marks or zero) A1: For 520	<s"< td=""></s"<>
(b)	M1: An attempt to apply $\frac{1}{2}n(2a + (n-1)d)$ or $\frac{1}{2}n(a+l)$ with their values for <i>a</i> , <i>n</i> , <i>d</i> and <i>l</i> A1: Uses $a = 140$, $d = 20$, $n = 20$ in their formula (two alternatives given above) but ft on their from (a) if they use Method 2. A1: 6600 cao Or: Listing method : Lists 140, 160, 180, 200, 220, 240, 260, 280, 520 and adds 6600 gets M1A1A1- any other answer gets M1 A0A0 provided there are 20 numbers, the first the last is 520.	
(c) First method	M1: Attempt to use $S_n = \frac{n}{2}(a+l)$ with their values for <i>a</i> , and <i>l</i> and <i>S</i> =8500	
Alternative	A1: Uses formula with correct values A1: Finds exact value 17 M1: If both formulae $8500 = \frac{1}{2}n(2a + (n-1)d)$ and $l = a + (n-1)d$ are used, then d must l	ne eliminator
method	before this mark is awarded by valid work. Should not be using $d = 400$. This would be M0 . A1: Correct equation in <i>n</i> only then A1 for 17 exactly	e chimiate
	Trial and error methods: Finds $d = 25$ and $n = 17$ and list from 300 to 700 with total checke BUT: Just $n = 17$ no working – send to review.	d – 3/3

Past Paper		6663
8.	This resource was created and owned by Pearson Edexcel $\frac{dy}{dx} = -x^3 + \frac{4x - 5}{2x^3}, x \neq 0$	Leave
Given that y	y = 7 at $x = 1$, find y in terms of x, giving each term in its simple	st form. (6)
20		

Question Number	Scheme	Marks	
8.	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}=\right) \qquad -x^3 + "2"x^{-2} - "\left(\frac{5}{2}\right)"x^{-3}$	M1	
	$(y =) \qquad -\frac{1}{4}x^4 + \frac{"2"x^{-1}}{(-1)} - "\left(\frac{5}{2}\right)"\frac{x^{-2}}{(-2)}(+c) \qquad \text{Raises power correctly on any one term.} \\ \text{Any two follow through terms correct.}$	M1 A1ft	
	$(y =)$ $-\frac{1}{4}x^4 + \frac{2x^{-1}}{(-1)} - \frac{5}{2}\frac{x^{-2}}{(-2)}(+c)$ This is not follow through – must be correct	A1	
	Given that $y = 7$, at $x = 1$, then $7 = -\frac{1}{4} - 2 + \frac{5}{4} + c \implies c =$	M1	
	So, $(y =)$ $-\frac{1}{4}x^4 - 2x^{-1} + \frac{5}{4}x^{-2} + c$, $c = 8$ or $(y =) -\frac{1}{4}x^4 - 2x^{-1} + \frac{5}{4}x^{-2} + 8$	A1	
		[6]	
		6 marks	
	Notes		
	M1: Expresses as three term polynomial with powers 3, -2 and –3. Allow slips in coefficients. This may be implied by later integration having all three powers 4, -1 and -2.		
	M1: An attempt to integrate at least one term so $x^n \rightarrow x^{n+1}$ (not a term in the numerator or denominator)		
	 A1ft: Any two integrations are correct – coefficients may be unsimplified (follow through errors in coefficients only here) so should have two of the powers 4, -1 and -2 after integration – depends on 2th method mark only. There should be a maximum of three terms here. A1: Correct three terms – coefficients may be unsimplified- do not need constant for this mark 		
	Depends on both Method marks		
	M1: Need constant for this mark. Uses $y = 7$ and $x = 1$ in their changed expression in order to f	find <i>c</i> , and	
	attempt to find <i>c</i> . This mark is available even after there is suggestion of differentiation. A1: Need all four correct terms to be simplified and need $c = 8$ here.		

Mathematics C1

t Paper	This resource was created and owned by Pearson Edexcel	matromatio
9. The equation		Le bl
	$(k+3)x^2 + 6x + k = 5$, where k is a constant,	
has two distine	ct real solutions for <i>x</i> .	
(a) Show that	t k satisfies	
	$k^2 - 2k - 24 < 0$	
		(4)
(b) Hence fin	ad the set of possible values of k .	(3)
		(3)
22		
	P 4 1 4 8 8 A 0 2 2 3 2	

Question	Scheme	Marks	
Number			
9. (a)	Method 1: Attempts $b^2 - 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq k$	M1	
) (u)	$b^{2} - 4ac = 6^{2} - 4(k+3)(k-5)$	A1	
	$(b^2 - 4ac =) -4k^2 + 8k + 96$ or $-(b^2 - 4ac =) -4k^2 - 8k - 96$ (with no prior algebraic errors)	B1 (M1 on eper	
	As $b^2 - 4ac > 0$, then $-4k^2 + 8k + 96 > 0$ and so, $k^2 - 2k - 24 < 0$	A1 *	
	Method 2: Considers $b^2 > 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq k$	M1	
	$6^2 > 4(k+3)(k-5)$	A1	
	$4k^2 - 8k - 96 < 0$ or $-4k^2 + 8k + 96 > 0$ or $9 > (k+3)(k-5)$ (with no prior algebraic	B1 (M1 on eper	
	errors) and so, $k^2 - 2k - 24 < 0$ following correct work	A1 *	
	and so, $\kappa = 2\kappa - 24 < 0$ following contect work	[4	
(b)	Attempts to solve $k^2 - 2k - 24 = 0$ to give $k = (\Rightarrow \text{Critical values}, k = 6, -4.)$	M1	
	$k^2 - 2k - 24 < 0$ gives $-4 < k < 6$	M1 A1	
		[7 marks	
	Notes		
(a)	Method 1: M1: Attempts $b^2 - 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq k$ or uses quadratic	formula	
	and has this expression under square root. (ignore > 0 , < 0 or $= 0$ for first 3 marks)		
	A1: Correct expression for $b^2 - 4ac$ - need not be simplified (may be under root sign)		
	B1: Uses algebra to manipulate result without error into one of these three term quadratics. Agai under root sign in quadratic formula. (This mark is given as second M on epen). If inequality is us "proof" may see	•	
	$4k^2 - 8k - 96 < 0$ and B1 would be given for $4k^2 - 8k - 96$ correctly stated.		
	A1: Applies $b^2 - 4ac > 0$ correctly (or writes $b^2 - 4ac > 0$) to achieve the result given in the question		
	No errors should be seen. Any incorrect line of argument should be penalised here. There are seve reaching the answer; either multiplication of both sides of inequality by -1 , or taking every term to of inequality. If doubtful send to review. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^2 > 4ac$ $b^2 < 4ac$ or $b^2 = 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq ac$	o other sid	
	reaching the answer; either multiplication of both sides of inequality by -1, or taking every term to	o other sid	
	reaching the answer; either multiplication of both sides of inequality by -1 , or taking every term to of inequality. If doubtful send to review. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^2 > 4ac$, $b^2 < 4ac$ or $b^2 = 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq$ A1: Correct expressions on either side (ignore >, < or =). B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both side	o other sid	
(b)	reaching the answer; either multiplication of both sides of inequality by -1, or taking every term to of inequality. If doubtful send to review. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^2 > 4ac$, $b^2 < 4ac$ or $b^2 = 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq$ A1: Correct expressions on either side (ignore >, < or =). B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both sid again without error A1: Produces result with no errors seen from initial consideration of $b^2 > 4ac$. M1: Uses factorisation, formula, completion of square method to find two values for k, or finds two answers with no obvious method	o other sid k les by 4 wo correc	
(b)	reaching the answer; either multiplication of both sides of inequality by -1, or taking every term to of inequality. If doubtful send to review. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^2 > 4ac_{, b}^2 < 4ac$ or $b^2 = 4ac$ for $a = (k + 3)$, $b = 6$ and their c. $c \neq$ A1: Correct expressions on either side (ignore >, < or =). B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both sid again without error A1: Produces result with no errors seen from initial consideration of $b^2 > 4ac_{, c}$. M1: Uses factorisation, formula, completion of square method to find two values for k, or finds two	o other sid k les by 4 wo correc	
(b)	reaching the answer; either multiplication of both sides of inequality by -1, or taking every term to of inequality. If doubtful send to review. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^2 > 4ac_{,} b^2 < 4ac$ or $b^2 = 4ac$ for $a = (k + 3)$, $b = 6$ and their $c. c \neq A1$: Correct expressions on either side (ignore >, < or =). B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both sid again without error A1: Produces result with no errors seen from initial consideration of $b^2 > 4ac_{,}$. M1: Uses factorisation, formula, completion of square method to find two values for k , or finds two answers with no obvious method M1: Their Lower Limit < k < Their Upper Limit_Allow the M mark mark for \leq . (Allow $k <$ upp lower) A1: $-4 < k < 6$ Lose this mark for \leq Allow (-4, 6) [not square brackets] or $k > -4$ and $k < 6$ (reference to the state of the square brackets] or $k > -4$ and $k < 6$ (reference to the state of the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$ (reference to the square brackets] or $k > -4$ and $k < 6$	b other sid k les by 4 wo correc per and $k >$	
(b)	reaching the answer; either multiplication of both sides of inequality by -1 , or taking every term to of inequality. If doubtful send to review. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^2 > 4ac$, $b^2 < 4ac$ or $b^2 = 4ac$ for $a = (k + 3)$, $b = 6$ and their <i>c</i> . $c \neq 41$: Correct expressions on either side (ignore >, < or =). B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both sid again without error A1: Produces result with no errors seen from initial consideration of $b^2 > 4ac$. M1: Uses factorisation, formula, completion of square method to find two values for <i>k</i> , or finds two answers with no obvious method M1: Their Lower Limit $< k <$ Their Upper Limit. Allow the M mark mark for \le . (Allow $k <$ upplower) A1: $-4 < k < 6$ Lose this mark for \le Allow (-4, 6) [not square brackets] or $k > -4$ and $k < 6$ (r not or) Can also use intersection symbol \cap NOT $k > -4$, $k < 6$ (M1A0)	b other sid k les by 4 wo correc per and $k >$	
(b)	reaching the answer; either multiplication of both sides of inequality by -1, or taking every term to of inequality. If doubtful send to review. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^2 > 4ac$, $b^2 < 4ac$ or $b^2 = 4ac$ for $a = (k + 3)$, $b = 6$ and their c . $c \neq A1$: Correct expressions on either side (ignore >, < or =). B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both sid again without error A1: Produces result with no errors seen from initial consideration of $b^2 > 4ac$. M1: Uses factorisation, formula, completion of square method to find two values for k , or finds two answers with no obvious method M1: Their Lower Limit $< k <$ Their Upper Limit Allow the M mark mark for \le . (Allow $k <$ upplower) A1: $-4 < k < 6$ Lose this mark for \le Allow (-4, 6) [not square brackets] or $k > -4$ and $k < 6$ (red) not or) Can also use intersection symbol \bigcirc NOT $k > -4$, $k < 6$ (M1A0) Special case : In part (a) uses $c = k$ instead of $k - 5$ - scores 0. Allow $k + 5$ for method markss Special Case: In part (b) Obtaining $-6 < k < 4$ This is a common wrong answer. Give M1 M1 A	b other sid k les by 4 wo correc per and $k >$ must be ar	
(b)	reaching the answer; either multiplication of both sides of inequality by -1, or taking every term to of inequality. If doubtful send to review. Need conclusion i.e. printed answer. Method 2: M1: Allow $b^2 > 4ac$, $b^2 < 4ac$ or $b^2 = 4ac$ for $a = (k + 3)$, $b = 6$ and their c . $c \neq A1$: Correct expressions on either side (ignore >, < or =). B1: Uses algebra to manipulate result into one of the two three term quadratics or divides both sid again without error A1: Produces result with no errors seen from initial consideration of $b^2 > 4ac$. M1: Uses factorisation, formula, completion of square method to find two values for k , or finds two answers with no obvious method M1: Their Lower Limit $< k <$ Their Upper Limit. Allow the M mark mark for \le . (Allow $k <$ upp lower) A1: $-4 < k < 6$ Lose this mark for \le Allow (-4, 6) [not square brackets] or $k > -4$ and $k < 6$ (r not or) Can also use intersection symbol \cap NOT $k > -4$, $k < 6$ (M1A0) Special case : In part (a) uses $c = k$ instead of $k - 5$ - scores 0. Allow $k + 5$ for method marks	b other sid k les by 4 wo correc per and $k >$ must be ar	

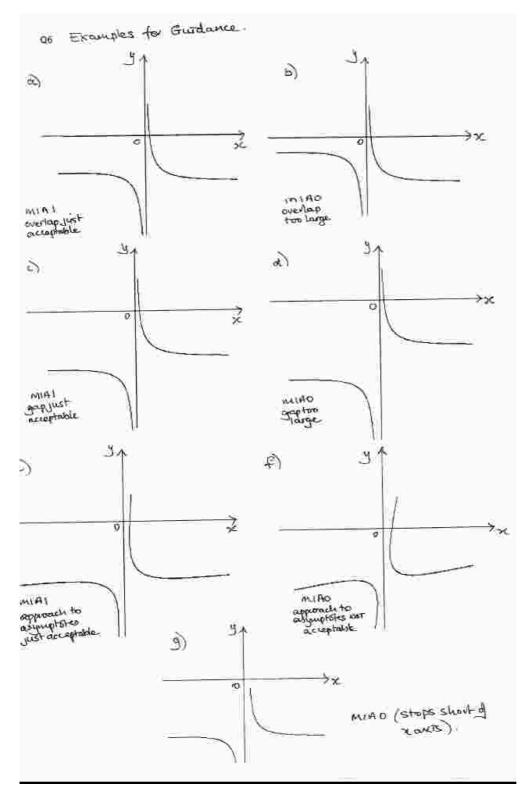
/inter 2013 ast Paper	www.mystudybro.comMathemThis resource was created and owned by Pearson Edexcel	atics C
		Leav
10.	$4x^{2} + 8x + 3 \equiv a(x + b)^{2} + c$	
(a)	Find the values of the constants a, b and c . (3)	
(b)	On the axes on page 27, sketch the curve with equation $y = 4x^2 + 8x + 3$, showing clearly the coordinates of any points where the curve crosses the coordinate axes. (4)	
26		

Question Number	Scheme	Marks		
10. (a)	This may be done by completion of square or by expansion and comparing coefficients			
	a = 4	B1 (M1 on epen)		
	b = 1	B1 (A1 on epen)		
	All three of $a = 4$, $b = 1$ and $c = -1$	B1 (A1 on epen) [3]		
(b)	U shaped quadratic graph.	M1		
	The curve is correctly positioned with the minimum			
	in the third quadrant. It crosses x axis twice on negative x axis and y axis once on positive y axis.	A1		
	Curve cuts y-axis at $(\{0\}, 3)$. only	B1		
	Curve cuts <i>x</i> -axis at $\left(-\frac{3}{2}, \{0\}\right)$ and $\left(-\frac{1}{2}, \{0\}\right)$.	B1		
		[4]		
		7 marks		
	Notes			
(a)	B1: (M1 on epen) States $a = 4$ or obtains $4(x + b)^2 + c$,			
	B1: (A1 on epen) States $b = 1$ or obtains $a(x + 1)^2 + c$,			
	B1: (A1 on epen) States $a = 4$, $b = 1$ and $c = -1$ or $4(x + 1)^2 - 1$ (Needs all 3 correct for final mark)			
	Special cases: If answer is left as $(2x + 2)^2 - 1$ treat as misread B1B0B0			
	or as $2(x+1)^2 - 1$ then the mark is B0B1B0 from scheme			
(b)	M1: Any position provided U shaped (be generous in interpretation of U shape but V shape is M0 A1: The curve is correctly positioned with the minimum in the third quadrant. It crosses x axis to negative x axis and y axis once on positive y axis. B1: Allow 3 on y axis and allow either $y = 3$ or $(0, 3)$ if given in text Curve does not need to pas	vice on		
	this point and this mark may be given even if there is no curve at all or if it is drawn as a line. B1: Allow $-3/2$ and $-1/2$ if given on x axis – need co-ordinates if given in text or $x = -3/2$, $x = -1/2$ decimal equivalents. Curve does not need to pass through these points and this mark may be given there is no curve. Ignore third point of intersection and allow touching instead of cutting. So even curve <i>might</i> get MOA0 B1 B1.	n even if		

Mathematics C1

6663 Leave

blank


This resource was created and owned by Pearson Edexcel **11.** The curve *C* has equation $v = 2x - 8\sqrt{x+5}, \quad x \ge 0$ (a) Find $\frac{dy}{dx}$, giving each term in its simplest form. (3) The point *P* on *C* has *x*-coordinate equal to $\frac{1}{4}$ (b) Find the equation of the tangent to C at the point P, giving your answer in the form y = ax + b, where a and b are constants. (4) The tangent to C at the point Q is parallel to the line with equation 2x - 3y + 18 = 0(c) Find the coordinates of Q. (5) 30 P 4 1 4 8 8 A 0 3 0 3 2

Question Number	Scheme	Marks		
11.	$C: y = 2x - 8\sqrt{x} + 5, x \dots 0$			
(a)	So, $y = 2x - 8x^{\frac{1}{2}} + 5$			
	$\frac{dy}{dx} = 2 - 4x^{-\frac{1}{2}} + \{0\} \qquad (x > 0)$	M1 A1 A		
		[3		
(b)	(When $x = \frac{1}{4}$, $y = 2(\frac{1}{4}) - 8\sqrt{(\frac{1}{4})} + 5$ so) $y = \frac{3}{2}$	B1		
	$(\text{gradient} = \frac{dy}{dx} =) 2 - \frac{4}{\sqrt{(\frac{1}{4})}} \{= -6\}$	M1		
	Either : $y - \frac{3}{2} = -6''(x - \frac{1}{4})$ or: $y = -6''x + c$ and			
	$\frac{3}{2} = -6 \left(\frac{1}{4}\right) + c \implies c = 3$	dM1		
	So $\underline{y = -6x + 3}$	A1		
		[4		
(c)	Tangent at Q is parallel to $2x - 3y + 18 = 0$ ($y = \frac{2}{3}x + 6 \Rightarrow$) Gradient $= \frac{2}{3}$. so tangent gradient is $\frac{2}{3}$	D1		
		B1		
	So, $\frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$ numerical gradient.	M1		
	$\Rightarrow \frac{4}{3} = \frac{4}{\sqrt{x}} \Rightarrow x = 9$ Ignore extra answer $x = -9$	A1		
	When $x = 9$, $y = 2(9) - 8\sqrt{9} + 5 = -1$ Substitutes their found x into equation of curve.	dM1		
	y = -1.	A1		
		[: 12 mark		
	Notes			
(a)	M1: Evidence of differentiation, so $x^n \to x^{n-1}$ at least once so $x^1 \to 1$ or x^0 or $x^{\frac{1}{2}} \to x^{-\frac{1}{2}}$ not just $5 \to A1$: Any two of the three terms correct – do not need to see zero – the 5 disappearing is sufficient; need not be simplified.			
	A1: $2 - 4x^{-\frac{1}{2}}$ Both terms correct, and simplified. Do not need to include domain $x > 0$			
(b)	B1: Obtaining $y = 3/2$ or fractional or decimal equivalent (no working need be seen)			
	M1: An attempt to substitute $x = \frac{1}{4}$ into $\frac{dy}{dx}$ to establish gradient . This may be implied by -6 or $m =$			
	not y = - 6. Can earn this M mark if they go on to use $m = \frac{1}{6}$ or use their numerical value of $\frac{dy}{dx}$.			
	dM1: This depends on previous method mark. Complete method for obtaining the equation of using their tangent gradient and their value for y_1 (obtained from $x = \frac{1}{4}$, allow slip) i.e.	the tangent		
	$y - y_1 = m_T \left(x - \frac{1}{4} \right)$ with their tangent gradient and their y_1			
	or uses $y = mx + c$ with $\left(\frac{1}{4}, \text{ their } y_1\right)$ and their tangent gradient.			
(c)	A1: $y = -6x + 3$ or $y=3-6x$ or $a = -6$ and $b = 3$ B1: For the value $2/3$ not $2/3 x$ not $-3/2$ M1: Sets their gradient function dy/dx = their numerical gradient A1: Obtains $x = 9$			
	dM1: Substitutes their <i>x</i> (from gradient equation) into original equation of curve <i>C</i> i.e. original ex A1: (9, -1) or $x = 9$, $y = -1$, or just $y = -1$	pression y		
	Special Cases: In (b) Finds normal could get B1 M1 M0 A0 i.e. max of 2/4			

6663

(c)	Special case: Erroneous method Tangent at <i>Q</i> is perpendicular to $2x - 3y + 18 = 0$		
	Uses – 3/2	B0	
	So, $"2 - \frac{4}{\sqrt{x}}" = "-\frac{3}{2}"$ Sets their gradient function = their numerical gradient.	M1	
	$\Rightarrow \frac{7}{2} = \frac{4}{\sqrt{x}} \Rightarrow x = \frac{64}{49} \qquad \dots$	A0	
	When $x = \frac{64}{49}$, $y = 2\left(\frac{64}{49}\right) - 8 \times \frac{8}{7} + 5 = \dots$ Substitutes their found x into y.	dM1 A0	
			[2/5]

See next page for notes on graphs in qu 6:

