This resource	was created and	l owned by	Pearson	Edexcel

Write your name here Surname	Other nar	nes
Pearson Edexcel	Centre Number	Candidate Number
Coro Math		
COLE IVIAL Advanced Subsidiar		
Advanced Subsidiar Monday 13 January 2014 – Time: 1 hour 30 minutes	Morning	Paper Reference 6663A/01

Calculators may NOT be used in this examination.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

isi rapi		is resource was created and owned by rearson Edexcer	
1.	Simplify fully		
	pj 1911j		
	(a) $(2\sqrt{x})^2$		
			(1)
	$5 + \sqrt{7}$		
	(b) $\frac{3+\sqrt{7}}{2+\sqrt{7}}$		
	21 17		(3)
_			
2			

Question Number	Scheme	Marks
1.	(a) $(2\sqrt{x})^2 = 4x$ (b) $\frac{(5+\sqrt{7})}{(2+\sqrt{7})} \times \frac{(2-\sqrt{7})}{(2-\sqrt{7})}$	B1 (1)
	$=\frac{10-7+2\sqrt{7}-5\sqrt{7}}{-3}$	M1, A1
	$= -1 + \sqrt{7}$	A1
		(3)
		(4 marks)
	Notes	
(a)	B1 4 <i>x</i> .Accept alternatives such as $x4$, $4 \times x$, $x \times 4$	
	M1 For multiplying numerator and denominator by $2-\sqrt{7}$ and attemptin brackets. There is no requirement to get the expanded numerator or denominato seeing the brackets removed is sufficient.	g to expand the or correct-
(b)	A1 All four terms correct (unsimplified) on the numerator OR the correct of -3	t denominator
	A1 Correct answer $-1 + \sqrt{7}$. Accept $\sqrt{7} - 1$, $-1 + 1\sqrt{7}$ and other fully correct simplified forms	

Past Paper	www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematic
		I
	. 4	
2.	$y = 2x^2 - \frac{4}{\sqrt{x}} + 1, \qquad x > 0$	
(a) Find	$\frac{dy}{dy}$, giving each term in its simplest form.	
	d <i>x</i>	(3)
(b) Find	$\frac{d^2 y}{d^2 y}$, giving each term in its simplest form.	
	dx^2	(2)

Question Number	Scheme	Marks
2.	(a) $2x^2 - \frac{4}{\sqrt{x}} + 1 = 2x^2 - 4x^{-\frac{1}{2}} + 1$	
	$dv = 1 -\frac{3}{2}$	
	$\frac{dy}{dx} = 2 \times 2x - 4 \times -\frac{1}{2} x^{2} (+0) (x^{n} \to x^{n-1})$	M1
	$\frac{dy}{dx} = 4x + 2x^{-\frac{3}{2}}$ or $4x + \frac{2}{x^{\frac{3}{2}}}$ oe	A1,A1
		(3)
	(b) $x^n \rightarrow x^{n-1}$ $d^2 y = 5$ 3	M1
	$\frac{d^2 y}{dx^2} = 4 - 3x^{\frac{1}{2}}$ or $4 - \frac{3}{x^{\frac{5}{2}}}$	A1
		(2) (5 marks)
	Notes	I
(a)	M1 $x^n \to x^{n-1}$ for any term. The sight of $2x^2 \to Ax$ OR $Cx^{-\frac{1}{2}x} \to Dx^{-\frac{3}{2}x}$ Osufficient	PR 1 \rightarrow 0 is
	Do not follow through on an incorrect index of $\frac{4}{\sqrt{x}}$ for this mark.	
	A1 One of the first two terms correct and simplified. Either $4x$ or $2x^{-\frac{3}{2}}$	
	Accept equivalents such as $4 \times x$ and $2 \times x^{-\frac{3}{2}} = \frac{2}{x^{1.5}}$	
	Ignore +c for this mark. Do not accept unsimplified terms like $2 \times 2x$	
	A1 A completely correct solution with no +c. That is $4x + 2x^{-\frac{3}{2}}$	
	Accept simplified equivalent expressions such as $4 \times x + 2 \times x^{-\frac{1}{2}}$ or	$4x + \frac{2}{x^{\frac{3}{2}}}$
	There is no requirement to give the lhs ie $\frac{dy}{dx} = .$	л
	However if the lhs is incorrect withhold the last A1	
(b)	M1 For either $4x \rightarrow 4$ or $x^n \rightarrow x^{n-1}$ for a fractional term. Follow through answers in (a).	on incorrect
	A1 A completely correct solution $4-3x^{\frac{5}{2}}$	
	Award for expressions such as $4-3 \times x^{-\frac{5}{2}}$ or $4-\frac{3}{x^{\frac{5}{2}}}$ or $-3 \times x^{-2.5}$	+ 4
	There is no requirement to give the lhs ie $\frac{d^2y}{dx^2} = \dots$.	
	However if the lhs is incorrect withhold the last A1	

3 Solve the simi	ultaneous equations	Lob
	x - 2y - 1 = 0	
	$x^2 + 4y^2 - 10x + 9 = 0$	(7)
6		

justified by a sketch.

Question Number	Sch	Marks			
3.	x = 2y + 1	2y = x - 1			
	$(2y+1)^2 + 4y^2 - 10(2y+1) + 9 = 0$	$x^2 + (x-1)^2 - 10x + 9 = 0$	M1		
	$8y^2 - 16y = 0$	$2x^2 - 12x + 10 = 0$	M1,A1		
	8y(y-2) = 0 Alt $y(8y-16) = 0$	2(x-1)(x-5) = 0 Alt $(2x-2)(x-5) = 0$	M1		
	y = 0, y = 2	x = 1, x = 5			
	$y = 0$ in $x = 2y + 1 \Longrightarrow x = 1$	$x = 1$ in $y = \frac{x-1}{2} = 0$	M1		
	$y = 2$ in $x = 2y + 1 \Longrightarrow x = 5$	$x = 5$ in $y = \frac{x-1}{2} = 2$			
	x=1, y=0 and x=5, y=2	x=1, y=0 and x=5, y=2	A1,A1		
			(7 marks)		
		Notes			
	M1 Rearrange $x-2y-1=0$ into $x=$, or $y=$, or $2y=$ and attempt to fully substitution into 2^{nd} equation. It does not need to be correct but a clear attempt must be made. Condone missing brackets $(2y+1)^2 + 4y^2 - 10 \times 2y + 1 + 9 = 0$				
	M1 Collect like terms to produce a quadratic equation in x (or y) =0				
	 A1 Correct quadratic equation in x (or y)=0. Either A(y²-2y) = 0 or B(x²-6x+5) = 0 M1 Attempt to solve, with usual rules. Check the first and last terms only for factorisation. See appendix for completing the square and use of formula. Condone a solution from cancelling in a case like A(y²-2y) = 0. They must proceed to find at least one solution x = or y = 				
	M1 Substitute at least one value of their <i>x</i> to find <i>y</i> or vice versa. This may be implied b their solution- you will need to check!				
	 A1 Both <i>x</i>'s or both <i>y</i>'s correct or a correct matching pair. Accept as a coordinate. Do not accept correct answers that are obtained from incorrect equations. A1 Both 'pairs' correct. Accept as coordinates (1,0) (5,2) Special Cases where candidates write down answers with little or no working as can be awarded above. One correct solution – B2. Two correct solutions – B2, B2 				
	To score all 7 marks candidates must prove that there are only two solutions. This could be				

(2)

(2)

6663

Figure 1 shows a sketch of a curve with equation y = f(x).

The curve crosses the y-axis at (0, 3) and has a minimum at P(4, 2).

On separate diagrams, sketch the curve with equation

(a)
$$y = f(x + 4)$$
,

(b)
$$y = 2f(x)$$
.

On each diagram, show clearly the coordinates of the minimum point and any point of intersection with the y-axis.

Question Number	Scheme	Marks
4.	(a) Horizontal translation of ± 4 Minimum point on they- axis at (0,2)	M1 A1 (2)
	(b) $y = 2f(2x)$ (0,6) $y = 2f(2x)P'(4,4)p'(4,4)y$ intercept (0,6) and P'(4,4)	M1 A1 (2)
		(4 marks)
	Notes	
(a)	M1 A horizontal translation of ± 4 . The y coordinate of P remains unchanged at 2. Look for $P' = (0,2)$ or $(8,2)$. Condone U shaped curves A1 The shape remains unchanged and has a minimum at $(0,2)$. Condone U shaped curves	
(b)	M1 The curve remains in quadrant 1 and quadrant 2 with the minimum in quadrant 1. The shape must be correct. Condone U shaped curves. P' must have been adapted. The mark cannot be scored for drawing the original curve with $P'=(4,2)$.	
	 A1 Correct shape, condoning U shapes with the <i>y</i> intercept at (0, 6) and <i>P'</i>=(4,4) The coordinates of the points may appear in the text or besides the diagram. This is acceptable but if they contradict the diagram, the diagram takes precedence. 	

Leave blank Given that for all positive integers n, 5. $\sum_{r=1}^{n} a_r = 12 + 4n^2$ (a) find the value of $\sum_{r=1}^{5} a_r$ (2) (b) Find the value of a_6 (3) 10 P 4 3 1 3 4 A 0 1 0 2 8

Question Number	Scheme	Marks
5.	(a) $\sum_{r=1}^{5} a_r = 12 + 4 \times 5^2 =$	M1
	= 112	A1
		(2)
	(b) $\sum_{r=1}^{6} a_r = 12 + 4 \times 6^2$	M1
	$a_6 = \sum_{r=1}^{r=6} a_r - (\text{part } a)$	dM1
	$a_6 = 156 - 112 = 44$	A1 (3)
		(5 marks)
	Notes	
(a)	M1 Substitutes $n=5$ into the expression $12 + 4n^2$ and attempt to find a number of the expression $12 + 4n^2$ and $12 + 4n^2$ an^2 an and $12 + 4n^2$ and	merical answer
	for $\sum_{r=1}^{5} a_r$.	
	Accept as evidence expressions such as $12+4\times 5 =, 12+4(5) = .$., even
	12+20 = 412 Accept for this mark solutions which add	
	$12+4\times1^2$, $12+4\times2^2$, $12+4\times3^2$, $12+4\times4^2$, $12+4\times5^2$ and as a result	112 appears in a
	sum.A1 cao 112. Accept this answer with no incorrect working for both mark consequently summed it will be scored A0	xs. If it is
(b)	M1 Substitutes <i>n</i> =6 into the expression $12 + 4n^2$	
	Accept as evidence $12+4\times 6^2 =, 12+4(6^2) =12+24^2 =$ or inde	ed 156.
	You can accept the appearance of $12+4\times 6^{\circ} =$ In a sum of terms.	
	dM1 Attempts to find their answer to $\sum_{r=1}^{\infty} a_r$ – their answer to part a	
	This is dependent upon the previous M mark. $_{6}$ 5	
	Also accept a restart where they attempt $\sum_{r=1}^{r} a_r - \sum_{r=1}^{r} a_r$	
	A1 cao 44	
	Alternative to 5(b) M1 Writes down an expression for	
	$a_n = (12 + 4n^2) - (12 + 4(n-1)^2) = 4(n^2 - (n-1)^2) = 4(2n-1)$	
	dM1 Subs $n = 6$ into the expression for $a_n = 4(2n-1) =$	
	A1 cao 44	

Question Number	Scheme	Marks	
6.	(a) (i) $\frac{3}{2}$ or equivalents such as 1.5	B1	
	(ii) (0, 3.5) Accept $y=3\frac{1}{2}$	B1 (2)	
	(b) Perpendicular gradient $l_2 = -\frac{2}{3}$	(2) B1ft	
	Equation of line is: $y-5 = -\frac{2}{3}(x-1)$	M1A1	
	3y + 2x - 17 = 0	A1 (4)	
	(c) Point C: $y=0 \Rightarrow 2x=17 \Rightarrow x=8.5$ oe	M1, A1	
	$AB = \sqrt{(1-0)^2 + (5-3.5)^2} = \left(\frac{\sqrt{13}}{2}\right)$	M1 (either)	
	$BC = \sqrt{(8.5-1)^2 + (5-0)^2} = \left(\frac{\sqrt{325}}{2}\right)$		
	Area rectangle = $AB \times BC = \frac{\sqrt{13}}{2} \times \frac{\sqrt{325}}{2} = \frac{\sqrt{13}}{2} \times \frac{\sqrt{13}\sqrt{25}}{2} = \frac{5 \times 13}{4} = 16.25 \text{ oe}$	dM1A1	
		(5) (11 marks)	
	Notes		
(a)	B1 cao gradient =1.5. Accept equivalences such as $\frac{3}{2}$		
	B1 cao intercept =(0,3.5). Accept 3.5, y=3.5 and equivalences such as $\frac{7}{2}$		
(b)	B1ft For using the perpendicular gradient rule, $m_1 = -\frac{1}{m_2}$ on their '1.5'.		
	Accept $-\frac{1}{1.5}$ or this as part of their equation for l_2 Eg. $-\frac{1}{1.5} = \frac{y-1}{x-1}$	<u></u>	
	M1 For an attempt at finding the equation of l_2 using (1,5) and their adap	ted gradient.	
	Condone for this mark a gradient of $\frac{3}{2}$ going to $\frac{2}{3}$. Eg. Allow for $\frac{y}{x}$	$\frac{3}{-1} = \frac{2}{3}$	
	If the form $y = mx + c$ is used it must be a full method to find <i>c</i> with adapted gradient. A1 For an a correct unsimplified equation of the line through (1,5) with t gradient.	(1,5) and an he correct	
	Allow $\frac{y-5}{x-1} = -\frac{2}{3}$ and $5 = -\frac{2}{3} \times 1 + c \Rightarrow c = \frac{17}{3}$ All $\cos \pm (3y+2x-17) = 0$		
	An example of B1ftM0A0A0 would be $-\frac{1}{2} - \frac{y-5}{5}$ following a gradient of '3' in part (a)		
	An example of B1ftM1A0A0 would be $-\frac{1}{3} = \frac{y-5}{x-1}$ following a gradient of	f '3' in part (a)	
	An example of B0ftM1A0A0 would be $\frac{1}{3} = \frac{y-5}{x-1}$ following a gradient of	f '3' in part (a)	

www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics C1

Question Number		Scheme	Marks		
		Notes for Question 6 continued			
(c)	M1	An attempt to use their equation found in part b to find the x coordinate of C They must either use the equation of l_2 and set $y = 0 \Rightarrow x =$ or use its gradient $17.5 = 3 \Rightarrow x =$			
	A 1	$x \xrightarrow{-2} x \xrightarrow{-1} x$			
	A1 $C=(8.5, 0)$. Allow equivalents such as $x=8.5$ at C				
	M1	M1 An attempt to use $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ for <i>AB</i> or <i>BC</i> . There is no need to			
		'calculate' these.			
	dM1	Evidence of an attempt would be $AB^2 = 1^2 + 1.5^2 \implies AB =$ Multiplying together their values of AB and BC to find area ABCD It is dependent upon both M's having been scored.			
	A1	cao16.25 or equivalents such as $\frac{65}{4}$.			

- 6663
- This resource was created and owned by Pearson Edexcel Leave blank 7. Shelim starts his new job on a salary of £14000. He will receive a rise of £1500 a year for each full year that he works, so that he will have a salary of £15 500 in year 2, a salary of £17 000 in year 3 and so on. When Shelim's salary reaches £26 000, he will receive no more rises. His salary will remain at £26 000. (a) Show that Shelim will have a salary of $\pounds 26\,000$ in year 9. (2) (b) Find the total amount that Shelim will earn in his job in the first 9 years. (2) Anna starts her new job at the same time as Shelim on a salary of $\pounds A$. She receives a rise of £1000 a year for each full year that she works, so that she has a salary of $\pounds(A + 1000)$ in year 2, f(A + 2000) in year 3 and so on. The maximum salary for her job, which is reached in year 10, is also £26000. (c) Find the difference in the total amount earned by Shelim and Anna in the first 10 years. (6) 16

1 3 4 A 0 1 6

Question Number	Scheme	Marks
7.	(a) $14000+8\times1500=14000+12000$ =£26000	M1 A1* (2)
	(b) $S_n = \frac{n}{2}(a+l) = \frac{9}{2} \times (14000 + 26000)$	M1
	OR $S_9 = \frac{n}{2}(2a + (n-1)d) = \frac{9}{2} \times (28000 + 8 \times 1500)$	
	=£180000	A1 (2)
	(c) Use $a + (n-1)d$ to find A	
	$A + (10 - 1) \times 1000 = 26000$ A = 17000	M1 A1
	Use $S_n = \frac{n}{2}(a+l)$ or $S_n = \frac{n}{2}(2a+(n-1)d)$ to find S for Anna	
	$S_{10} = \frac{10}{2}(17000 + 26000) (= \pounds 215000) \text{ or } S_{10} = \frac{10}{2}(2 \times 17000 + 9 \times 1000) (= \pounds 215000)$	M1A1
	Shelim earns 180000+26000 in 10 years =(£206000)	B1ft
	Difference= $\pounds 9000$	A1 (6)
		(10 marks)
	Notes	
(a)	 M1 Uses S = a + (n-1)d with a=14000, d=1500 and n=8, 9 or 10 in an at salary in year 9 Accept a sequence written out only if all terms up to year 9 are includerrors. A1* csa 26000. It is acceptable to write a sequence for both the 2 marks FYI the terms are 14000,15500,17000,18500,20000,21500,23000,24 	tempt to find led-Allow no 4500,26000
	M1 Uses $S = a + (n-1)d$ with $a=14000$, $d=1500$ and $S = 26000$ in attemp must reach $n=$ A1 $n=9$	t to find <i>n</i> . It
(b)	M1 Uses $S_n = \frac{n}{2}(a+l)$ with $a=14000$, $l=26000$ and $n=8$, 9 or 10. Do not incorrect <i>l</i> 's. Alternatively uses $S_n = \frac{n}{2}(2a+(n-1)d)$ with $a=14000$, $d=1500$ and $d=15000$ and $d=1500$ an	allow ft's on n=8, 9 or 10. as long as all

www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Question Number		Scheme	Marks	
		Notes for Question 7 continued		
(c)	M1	Use $l = a + (n-1)d$ to find A.		
	A1	It must be a full method with $d=1000$, $l=26000a=A$ and $n=9$, 10 or 11 value for A A=17000	d with $d=1000$, $l=26000a=A$ and $n=9$, 10 or 11 leading to a en down for 2 marks as long as no incorrect work seen in its	
		Accept $A=17000$ written down for 2 marks as long as no incorrect we calculation.		
	M1 Use $S_n = \frac{n}{2}(a+l)$ to find S for Anna. Follow through on their A, but $l=26000$ and $n=9, 10$ or 11		=26000 and	
		Alternatively uses $S_n = \frac{n}{2}(2a + (n-1)d)$ with their numerical value of A, $d=1000$		
		<i>n</i> =9, 10 or 11 Accept a series of terms with their value of A, rising in £1000's up to £26000.	th their value of A, rising in £1000's up to a maximum of 26000) OR $S_{10} = \frac{10}{2}(2 \times 17000 + 9 \times 1000)$ in 10 years wer. There is no requirement to state the value £215 000 10 years. This may be scored at the start of part c. =£9000	
	A1	Anna earns $S_{10} = \frac{10}{2}(17000 + 26000)$ OR $S_{10} = \frac{10}{2}(2 \times 17000 + 9 \times 1000)$ in $S_{10} = \frac{10}{2}(2 \times 17000 + 9 \times 1000)$		
	DIC	This is an intermediate answer. There is no requirement to state the v		
	A1	Shelim earns (b)+26000 in 10 years. This may be scored at the start o CAO and CSO Difference = ± 9000		

Paper	This resource was created and owned by Pearson Edevce	
0		
8. The equa	tion $2x^2 + 2kx + (k+2) = 0$, where k is a constant, has two dis	stinct real roots.
(a) Show	x that k satisfies	
(a) 5110V		
	$k^2 - 2k - 4 > 0$	
		(3)
(b) Find	the set of possible values of <i>k</i> .	
		(4)

P 4 3 1 3 4 A 0 2 0 2 8

Winter 2014 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C1

63	C	
6	666	63

Question Number	Scheme	Marks	
8.	(a) $b^2 - 4ac = (2k)^2 - 4 \times 2 \times (k+2)$	M1A1	
	$b^2 - 4ac > 0 \Longrightarrow 4k^2 - 4 \times 2 \times (k+2) > 0 \Longrightarrow k^2 - 2k - 4 > 0$	A1*	
		(3)	
	(b) $k^2 - 2k - 4 = 0 \Longrightarrow (k - 1)^2 = 5$	M1	
	$k = 1 \pm \sqrt{5}$ oe	A1	
	$k > 1 + \sqrt{5}, k < 1 - \sqrt{5}$	dM1A1	
		(4) (7 marks)	
	Alt (a) $b^2 > 4ac \Rightarrow (2k)^2 > 4 \times 2 \times (k+2)$	M1A1	
	$\Rightarrow k^2 - 2k - 4 > 0$	A1*	
		(3)	
	Notes		
(a)	M1 For attempting to use $b^2 - 4ac$ with the values of <i>a</i> , <i>b</i> and <i>c</i> from the g	iven equation.	
	Condone invisible brackets. $2k^2 - 4 \times 2 \times k + 2$ could be evidence	_	
	A1 Fully correct (unsimplified) expression for $b^2 - 4ac = (2k)^2 - 4 \times 2 \times (k)^2$	c + 2)	
	The bracketing must be correct. You can accept with or without any ir	nequality signs.	
	Accept $a = 2, b = 2k, c = k + 2 \Longrightarrow b^2 - 4ac = (2k)^2 - 4 \times 2 \times (k+2)$		
	A1* Full proof, no errors, this is a given answer. It must be stated or implie	ed that	
	$b^2 - 4ac > 0$	inaqualities	
	Do not accept the answer written down without seeing an intermediate	e line such as	
	$4k^2 - 4 \times 2 \times (k+2) > 0 \Longrightarrow k^2 - 2k - 4 > 0$		
	Or $4k^2 - 8k - 8 > 0 \Longrightarrow k^2 - 2k - 4 > 0$		
	The inequality must have been seen at least once before the final line t	for this mark to	
	have been awarded. Equation 2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		
	Egaccept $D = 4k = 0k = 0 \implies 4k = 0k = 0 > 0 \implies k = 2k = 2 > 0$		
(b)	M1 Attempt to solve the given 3 term quadratic (=0) by formula or compl	eting the	
	square. Do NOT accept an attempt to factorise in this question .		
	If the formula is given it must be correct.		
	It can be implied by casing either $-(-2)\pm\sqrt{(-2)^2-4\times1\times-4}$ or		
	$\frac{1}{2\times 1}$		
	$\frac{2\pm\sqrt{-2^2-4\times1\times-4}}{2\times1}$		
	If completing the square is used it can be implied by $(k-1)^2 + 1 - 4 =$	$0 \rightarrow k =$	
	The completing the square is used it can be implied by $(x - 1) \pm 1 = 1 = 2 + \sqrt{20}$	$0 \rightarrow \kappa = \dots$	
	A1 Obtains critical values of $1 \pm \sqrt{5}$. Accept $\frac{2-\sqrt{25}}{2}$		
	dM1 Outsides of their values chosen. It is dependent upon the previous M mark having been awarded. States $k >$ their largest value, $k <$ their smallest value		
	Do not award simply for a diagram or a table- they must have chosen regions'	their 'outside	
	A1 Correct answer only. Accept $k > 1 + \sqrt{5}$ or $k < 1 - \sqrt{5}$, $k > 1 + \sqrt{5}$ $k < 2$	$1 - \sqrt{5}$,	
	$\left(-\infty,1-\sqrt{5}\right)\cup\left(1+\sqrt{5},\infty\right)$		
	but not $k > 1 + \sqrt{5}$ and $k < 1 - \sqrt{5}, 1 + \sqrt{5} < k < 1 - \sqrt{5}$		

www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics C1

C N	Question Number	Scheme	Marks	
		Notes for Question 8 continued		
		Also accept exact alternatives as a simplified form is not explicitly asked for in the question		
		Accept versions such as $k > \frac{2 + \sqrt{20}}{2}$ or $k < \frac{2 - \sqrt{20}}{2}$		

per	This resource was created and owned by Pearson Edexcel
_	A curve with equation $y = f(x)$ passes through the point (3–6) Given that
•	f'(x) = (x - 2)(3x + 4)
	(a) use integration to find $f(x)$. Give your answer as a polynomial in its simplest form. (5)
((b) Show that $f(x) \equiv (x-2)^2(x+p)$, where p is a positive constant. State the value of p. (3)
	(c) Sketch the graph of $y = f(x)$, showing the coordinates of any points where the curve touches or crosses the coordinate axes. (4)
22	

Mathematics C1 6663

Question Number	Scheme	Marks	
9.	(a) $f'(x) = (x-2)(3x+4)$		
	$=3x^2-2x-8$	B1	
	$y = \int 3x^2 - 2x - 8dx = 3 \times \frac{x^3}{3} - 2 \times \frac{x^2}{2} - 8x + c$	M1A1	
	$x=3, y=6 \Longrightarrow 6=27-9-24+c$		
	<i>c</i> =	M1	
	$f(x) = x^3 - x^2 - 8x + 12 \csc \theta$	A1 (5)	
	(b) $f(x) = (x-2)^2(x+p), p=3$	(5) B1	
	$f(x) = (x^2 - 4x + 4)(x + 3)$		
	$f(x) = x^3 - 4x^2 + 3x^2 + 4x - 12x + 12$		
	$f(x) = x^3 - x^2 - 8x + 12 \cos \theta$	M1A1	
		(3)	
	(c)		
	(0,12) $(-3,0)$ $(2$	B1 B1 B1ft B1 (4) (12 marks)	
	Notes		
(a)	B1 Writes $(x-2)(3x+4)$ as $3x^2-2x-8$		
	M1 $x^n \to x^{n+1}$ in any one term.		
	For this M to be scored there must have been an attempt to expand the brackets and obtain a quadratic expression		
	A1 Correct (unsimplified) expression for f(x), no need for +c. Accept $3\frac{x^3}{3} - 2\frac{x^2}{2} - 8x$		
	M1 Substitutes $x=3$ and $y=6$ into their $f(x)$ containing a constant 'c' and proceed to find its value		
	A1 $\operatorname{Csof}(x) = x^3 - x^2 - 8x + 12$. Allow $y =$		
	Do not accept an answer produced from part (b)		
(h)	P1 States $n - 2$		
(0)	This may be obtained from subbing (3.6) into $f(x) = (x-2)^2(x+p)$		
	M1 Multiplies out a pair of brackets first, usually $(x-2)^2$ and then attempts to multiply by the third. The minimum criteria should be the first multiplication is a 3T quadratic with correct first and last terms and the second is a 4T cubic with correct first and last terms. Accept an expression involving p for M1 $(x-2)^2(x+p) = (x^2 +x + 4)(x+p) = x^3 +x^2 +x + 4p$		
	A1 $\cos f(x) = x^3 - x^2 - 8x + 12$, which must be the same as their answer f	for part (a)	

Winter 2014 Past Paper (Mark Scheme)

Candidates who have experienced Core 2 could take their answer to (a) and factorise. The mark scheme can be applied with M1 for division by $(x-2)$ and further factorisation of the quotient $\frac{x^2}{x-2\sqrt{x^3}+}$ Alternatively the candidate could divide by (x^2-4x+4) to obtain $(x+)$ $x^2-4x+4\sqrt{x^3}+$ The A1 is scored for $f(x) = (x-2)^2(x+3)$ The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^2(x+3)$ (c) B1 Shape $+x^3$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the x- axis. B1ft Graph crosses the x- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x-axis. You may follow through on their values of '-p' as long as $p < 2$		Notes for Ouestion 9 continued
The mark scheme can be applied with M1 for division by $(x-2)$ and further factorisation of the quotient $x-2\overline{)x^3} + \dots + x^2$ Alternatively the candidate could divide by $(x^2 - 4x + 4)$ to obtain $(x +)$ $x^2 - 4x + 4\overline{)x^3} + \dots + x^2$ The A1 is scored for $f(x) = (x-2)^2(x+3)$ The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^2(x+3)$ (c) B1 Shape + x^3 graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and - infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the x - axis. B1ft Graph crosses the x - axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x -axis. You may follow through on their values of '- p' as long as $p < 2$		Candidates who have experienced Core 2 could take their answer to (a) and factorise.
Alternatively the candidate could divide by $(x^2 - 4x + 4)$ to obtain $(x +)$ $x^2 - 4x + 4)\overline{x^3 +}$ The A1 is scored for $f(x) = (x-2)^2(x+3)$ The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^2(x+3)$ (c) B1 Shape $+x^3$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the x- axis. B1ft Graph crosses the x- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x-axis. You may follow through on their values of '- p' as long as $p < 2$		The mark scheme can be applied with M1 for division by $(x-2)$ and further factorisation of the quotient $x-2)\overline{x^3 + \dots + x^2}$
$x^{2}-4x+4)\overline{x^{3}+}$ The A1 is scored for $f(x) = (x-2)^{2}(x+3)$ The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^{2}(x+3)$ (c) B1 Shape $+x^{3}$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the x- axis. B1ft Graph crosses the x- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x-axis. You may follow through on their values of '- p' as long as $p < 2$		Alternatively the candidate could divide by $(x^2 - 4x + 4)$ to obtain $(x +)$
The A1 is scored for $f(x) = (x-2)^2(x+3)$ The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^2(x+3)$ (c) B1 Shape $+x^3$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the <i>x</i> - axis. B1ft Graph crosses the <i>x</i> - axis at (-3, 0). Accept -3 marked at the point where the curve crosses the <i>x</i> -axis. You may follow through on their values of '- p' as long as $p < 2$		$x^2 - 4x + 4 \overline{\smash{\big)} x^3 + \dots}$
(c) B1 Shape $+x^3$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the <i>x</i> - axis. B1ft Graph crosses the <i>x</i> - axis at (-3, 0). Accept -3 marked at the point where the curve crosses the <i>x</i> -axis. You may follow through on their values of '- p' as long as $p < 2$		The A1 is scored for $f(x) = (x-2)^2(x+3)$
 (c) B1 Shape +x³ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the <i>x</i>- axis. B1ft Graph crosses the <i>x</i>- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the <i>x</i>-axis. You may follow through on their values of '- p' as long as p < 2 		The B1 is awarded for a statement of $p = 3$ and not just $(x-2)^2(x+3)$
 (c) B1 Shape +x³ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable. B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the <i>x</i>- axis. B1ft Graph crosses the <i>x</i>- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the <i>x</i>-axis. You may follow through on their values of '- p' as long as p < 2 		
 B1 There is a turning point at (2, 0). Accept 2 marked as a maximum or minimum on the <i>x</i>- axis. B1ft Graph crosses the <i>x</i>- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the <i>x</i>-axis. You may follow through on their values of '- p' as long as p < 2 	(c)	B1 Shape $+x^3$ graph with one maximum and one minimum. Its position is not important for this mark. It must appear to tend to + infinity at the rhs and – infinity at the lhs. The curve must extend beyond its 'maximum' point and minimum points. Eg. These are NOT acceptable
B1ft Graph crosses the x- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x-axis. You may follow through on their values of '- p' as long as $p < 2$		B1 There is a turning point at $(2, 0)$. Accept 2 marked as a maximum or minimum on the <i>x</i> - axis.
$D1 \qquad C \qquad 1 \qquad (0.10) \qquad A \qquad (10) \qquad (10)$		B1ft Graph crosses the x- axis at (-3, 0). Accept -3 marked at the point where the curve crosses the x-axis. You may follow through on their values of $\frac{1}{2}$ n' as long as $n < 2$
B1 Graph crosses the y-axis at (0, 12). Accept 12 marked on the y- axis.		B1 Graph crosses the y-axis at $(0, 12)$. Accept 12 marked on the y- axis.

This resource was created and owned by Pearson Edexcer	
). The curve <i>C</i> has equation $y = x^3 - 2x^2 - x + 3$	
The point P , which lies on C , has coordinates (2, 1).	
(a) Show that an equation of the tangent to <i>C</i> at the point <i>P</i> is $y = 3x - 5$	(5)
The point Q also lies on C .	(5)
Given that the tangent to C at Q is parallel to the tangent to C at P ,	
(b) find the coordinates of the point Q .	(5)

Question Number	Scheme	Marks
10.	(a) $x^n \rightarrow x^{n-1} \frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 2 \times 2x - 1$	M1A1
	Sub x=2 $\frac{dy}{dx} = 3 \times 2^2 - 2 \times 4 - 1 = (3)$	M1
	$3 = \frac{y-1}{x-2}$	dM1
	$y = 3x - 5 \csc \theta$	A1* (5)
	(b) At $Q \frac{dy}{dx} = 3x^2 - 4x - 1 = 3$	
	$3x^{2} - 4x - 4 = 0$ (3x+2)(x-2) = 0	-M1 -dM1
	$x = -\frac{2}{3}$	A1
	Sub $x = -\frac{2}{3}$ into $y = x^3 - 2x^2 - x + 3$	dM1
	$y = \frac{67}{27}$	A1
		(5) (10 marks)
	Notes	
(a)	M1 $x^n \rightarrow x^{n-1}$ for any term including $3 \rightarrow 0$.	
	A1 $\left(\frac{dy}{dx}\right) = 3x^2 - 2 \times 2x - 1$ There is no need to see any simplification	
	M1 Sub $x=2$ into their f'(x)	
	dM1 Uses their numerical gradient with (2, 1) to find an equation of a tan	gent to $y = f(x)$.
	It is dependent upon both M's. Accept their $\frac{dy}{dx}\Big _{x=2} = \frac{y-1}{x-2}$. Both sig	ns must be
	correct If $y = mx + c$ is used then it must be a full attempt to find a numerical	ıl 'c'
	A1* Cso $y = 3x-5$. This is a given answer and all steps must be correct. Look for gradient -3 having been achieved by differentiation	
	Look for gradient –5 having been demeved by differentiation.	
(b)	M1 Sets their $\frac{dy}{dx} = 3$ and proceeds to a 3TQ=0. Condone errors on $\left(\frac{dy}{dx}\right)$	
	dM1 Factorises their 3TQ (usual rules) leading to a solution $x=$. It is de the previous M.	ependent upon
	Award also for use of formula/ completion of square as long as the pr been awarded.	evious M has
	A1 $x = -\frac{2}{3}$	
	d M1 Sub their $x = -\frac{2}{3}$ into $y = x^3 - 2x^2 - x + 3$. It is dependent only upon	on the first M in
	(b) having been scored	
	A1 Correct y coordinate $y = \frac{67}{27}$ or equivalent	