## www.mystudybro.com

Mathematics C1

Examiner's use only

Team Leader's use only

Past Paper

This resource was created and owned by Pearson Edexcel

| Centre<br>No.    |  |  |   |   | Pape | er Refer | ence |   |   | Surname   | Initial(s) |
|------------------|--|--|---|---|------|----------|------|---|---|-----------|------------|
| Candidate<br>No. |  |  | 6 | 6 | 6    | 3        | /    | 0 | 1 | Signature |            |

Paper Reference(s)

# 6663/01

# **Edexcel GCE**

# Core Mathematics C1 **Advanced Subsidiary**

Monday 22 May 2006 – Morning

Time: 1 hour 30 minutes



Materials required for examination Mathematical Formulae (Green)

Items included with question papers

Calculators may NOT be used in this examination.

### **Instructions to Candidates**

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Check that you have the correct question paper.

You must write your answer for each question in the space following the question.

### **Information for Candidates**

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 11 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

### **Advice to Candidates**

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2006 Edexcel Limited.





Total

Turn over



| Leave |  |
|-------|--|
| blank |  |

| Find $\int (6x^2 + 2 + x^{-\frac{1}{2}}) dx$ , giving each term in its simplest form. | (4) |
|---------------------------------------------------------------------------------------|-----|
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |

## www.mystudybro.com

This resource was created and owned by Pearson Edexcel



June 2006 6663 Core Mathematics C1 Mark Scheme

|                    | Wark Scheme                                                                                       |          |
|--------------------|---------------------------------------------------------------------------------------------------|----------|
| Question<br>number | Scheme                                                                                            | Marks    |
| 1.                 | $\frac{6x^3}{3} + 2x + \frac{x^{\frac{1}{2}}}{\frac{1}{2}}  (+c)$                                 | M1       |
|                    |                                                                                                   | A1       |
|                    | $=2x^3+2x+2x^{\frac{1}{2}}$                                                                       | A1       |
|                    | +c                                                                                                | B1       |
|                    |                                                                                                   | 4        |
|                    | M1 for some attempt to integrate $x^n \to x^{n+1}$                                                |          |
|                    | 1 <sup>st</sup> A1 for either $\frac{6}{3}x^3$ or $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or better |          |
|                    | $2^{\text{nd}}$ A1 for all terms in x correct. Allow $2\sqrt{x}$ and $2x^1$ .                     |          |
|                    | B1 for $+c$ , when first seen with a changed expression.                                          |          |
|                    |                                                                                                   |          |
|                    |                                                                                                   |          |
|                    |                                                                                                   |          |
|                    |                                                                                                   |          |
|                    |                                                                                                   |          |
|                    |                                                                                                   |          |
|                    |                                                                                                   |          |
|                    |                                                                                                   |          |
|                    |                                                                                                   |          |
|                    |                                                                                                   |          |
|                    |                                                                                                   |          |
| <u>'</u>           |                                                                                                   | <u>'</u> |

Past Pape

2.

| <b>er 2006</b><br>er | www.mystudybro.com This resource was created and owned by Pearson Edexcel | <b>Mathematics</b> | اک<br>3663 |
|----------------------|---------------------------------------------------------------------------|--------------------|------------|
|                      | f values of x for which                                                   | Lea<br>bla         | ave        |
|                      | $x^2 - 7x - 18 > 0.$                                                      | (4)                |            |
|                      |                                                                           |                    |            |
|                      |                                                                           |                    |            |
|                      |                                                                           |                    |            |
|                      |                                                                           |                    |            |
|                      |                                                                           |                    |            |
|                      |                                                                           |                    |            |
|                      |                                                                           |                    |            |
|                      |                                                                           |                    |            |
|                      |                                                                           |                    |            |
|                      |                                                                           |                    |            |

Q2

(Total 4 marks)

6663

Past Paper (Mark Scheme)

| Question<br>number | Scheme                                                                                                                                                                                                                                                        | Marks |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2.                 | Critical Values                                                                                                                                                                                                                                               |       |
|                    | $(x \pm a)(x \pm b)$ with $ab=18$ or $x = \frac{7 \pm \sqrt{49 - 72}}{2}$ or $(x - \frac{7}{2})^2 \pm (\frac{7}{2})^2 - 18$                                                                                                                                   | M1    |
|                    | $(x-9)(x+2)$ or $x = \frac{7\pm 11}{2}$ or $x = \frac{7}{2} \pm \frac{11}{2}$                                                                                                                                                                                 | A1    |
|                    | Solving Inequality $x > 9$ or $x < -2$ Choosing "outside"                                                                                                                                                                                                     | M1    |
|                    |                                                                                                                                                                                                                                                               | A1 4  |
|                    | 1 <sup>st</sup> M1 For attempting to find critical values.  Factors alone are OK for M1, <i>x</i> = appearing somewhere for the fowritten for completing the square  1 <sup>st</sup> A1. Factors alone are OK. Formula or completing the square need <i>x</i> |       |
|                    | 2 <sup>nd</sup> M1 For choosing outside region. Can f.t. their critical values.                                                                                                                                                                               |       |
|                    | They must have two different critical values.                                                                                                                                                                                                                 |       |
|                    | - $2 > x > 9$ is M1A0 but ignore if it follows a correct version $-2 < x < 9$ is M0A0 whatever the diagram looks like.                                                                                                                                        |       |
|                    | $2^{nd}$ A1 Use of $\geq$ in final answer gets A0                                                                                                                                                                                                             |       |
|                    |                                                                                                                                                                                                                                                               |       |

This resource was created and owned by Pearson Edexcel

6663

Leave blank

- 3. On separate diagrams, sketch the graphs of
  - (a)  $y = (x+3)^2$ ,

**(3)** 

(b)  $y = (x + 3)^2 + k$ , where k is a positive constant.

**(2)** 

Show on each sketch the coordinates of each point at which the graph meets the axes.

# www.mystudybro.com

| Question<br>number | Scheme             |                                             | Marks        |
|--------------------|--------------------|---------------------------------------------|--------------|
| 3.                 | (a) y <b>A</b>     | U shape touching x-axis                     | B1           |
|                    |                    | (-3,0)                                      | B1           |
|                    |                    | (0, 9)                                      | B1           |
|                    | -3 x               |                                             | (3)          |
|                    | (b) y <b>1</b> 9+k | Translated parallel to y-axis up $(0, 9+k)$ | M1<br>B1f.t. |
|                    | x                  |                                             | (2)          |
|                    |                    |                                             |              |

|     |                                                            |                                                                                                                                                  | 5 |
|-----|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (a) | 2 <sup>nd</sup> B1 2 <sup>nd</sup> B1 & 3 <sup>rd</sup> B1 | They can score this even if other intersections with the <i>x</i> -axis are given.  The -3 and 9 can appear on the sketch as shown               |   |
| (b) | M1                                                         | Follow their curve in (a) up only.  If it is not obvious do not give it. e.g. if it cuts <i>y</i> -axis in (a) but doesn't in (b) then it is M0. |   |
|     | B1f.t.                                                     | Follow through their 9                                                                                                                           |   |

This resource was created and owned by Pearson Edexcel

Leave blank

**4.** A sequence  $a_1, a_2, a_3, \ldots$  is defined by

$$a_1 = 3$$
,

$$a_{n+1} = 3a_n - 5, \quad n \geqslant 1.$$

(a) Find the value of  $a_2$  and the value of  $a_3$ .

**(2)** 

(b) Calculate the value of  $\sum_{r=1}^{5} a_r$ .

**(3)** 

| Question<br>number |                                    | Scheme                                                                                                                                                                  | Mark         | s   |
|--------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----|
| 4. (a)             | $a_2 = 4$ $a_3 = 3 \times a_2 - 4$ | 5 = 7                                                                                                                                                                   | B1<br>B1f.t. | (2) |
| (b)                |                                    | $(=16)$ and $a_5 = 3a_4 - 5(=43)$                                                                                                                                       | M1           | (2) |
|                    | 3 + 4 + 7 + 1                      | 16 + 43                                                                                                                                                                 | M1           |     |
|                    | = 73                               |                                                                                                                                                                         | A1c.a.o.     | (3) |
|                    |                                    |                                                                                                                                                                         |              | 5   |
| (a)                | 2 <sup>nd</sup> B1f.t.             | Follow through their $a_2$ but it must be a value. $3 \times 4 - 5$ is B0 Give wherever it is first seen.                                                               |              |     |
| (b)                | 1 <sup>st</sup> M1                 | For two further attempts to use of $a_{n+1} = 3a_n - 5$ , wherever seen. Condone arithmetic slips                                                                       |              |     |
|                    | 2 <sup>nd</sup> M1                 | For attempting to add 5 relevant terms (i.e. terms derived from an attempt to use the recurrence formula) or an expression. Follow through their values for $a_2 - a_5$ |              |     |
|                    |                                    | Use of formulae for arithmetic series is M0A0 but could get $1^{st}$ M1 if $a_4$ and $a_5$ are correctly attempted.                                                     |              |     |
|                    |                                    |                                                                                                                                                                         |              |     |
|                    |                                    |                                                                                                                                                                         |              |     |
|                    |                                    |                                                                                                                                                                         |              |     |
|                    |                                    |                                                                                                                                                                         |              |     |
|                    |                                    |                                                                                                                                                                         |              |     |

| 6 | 6 | 6 | 3             |  |
|---|---|---|---------------|--|
| - | - | - | $\overline{}$ |  |

| Differentiate with respect to <i>x</i> |     |
|----------------------------------------|-----|
| (a) $x^4 + 6\sqrt{x}$ ,                |     |
|                                        | (3) |
| $(x+4)^2$                              |     |
| (b) $\frac{(x+4)^2}{x}$ .              |     |
|                                        | (4) |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |
|                                        |     |

6663

Past Paper (Mark Scheme)

| Question<br>number |                                                                                 | Scheme                                                                       | Marks               |
|--------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------|
| 5. (a)             | $(y = x^4 + 6x^{\frac{1}{2}} \Rightarrow y' =) 4x^3 + 3$                        | $3x^{-\frac{1}{2}}$ or $4x^3 + \frac{3}{\sqrt{x}}$                           | M1A1A1 (3)          |
| (b)                | $(x+4)^2 = x^2 + 8x + 16$                                                       |                                                                              | M1                  |
|                    | $(x+4)^2 = x^2 + 8x + 16$ $\frac{(x+4)^2}{x} = x + 8 + 16x^{-1}$                | (allow 4+4 for 8)                                                            | A1                  |
|                    | $\left(y = \frac{\left(x+4\right)^2}{x} \Longrightarrow y' = \right) \ 1 - 16x$ | x <sup>-2</sup> o.e.                                                         | M1A1 (4) 7          |
| (a)                | M1 For some atter                                                               | mpt to differentiate $x^n \to x^{n-1}$                                       | ı                   |
|                    | 1 <sup>st</sup> A1 For one correct                                              | ct term as printed.                                                          |                     |
|                    | 2 <sup>nd</sup> A1 For both terms                                               | s correct as printed.                                                        |                     |
|                    | $4x^3 + 3x^{-\frac{1}{2}} +$                                                    | c scores M1A1A0                                                              |                     |
| (b)                | 1 <sup>st</sup> M1 For attempt to                                               | expand $(x+4)^2$ , must have $x^2$ , $x$ , $x^0$ terms and at least          | ast 2 correct       |
|                    | e.g. $x^2 + 8x +$                                                               | 8 or $x^2 + 2x + 16$                                                         |                     |
|                    | 1 <sup>st</sup> A1 Correct expres                                               | ssion for $\frac{(x+4)^2}{x}$ . As printed but allow $\frac{16}{x}$ and $8x$ | 0.                  |
|                    | 2 <sup>nd</sup> M1 For some corr                                                | ect differentiation, any term. Can follow through the                        | eir simplification. |
|                    | N.B. $\frac{x^2 + 8x}{x}$                                                       | $\frac{+16}{2}$ giving rise to $(2x + 8)/1$ is M0A0                          |                     |
| ALT                | Product or Quotient rule (If in                                                 | n doubt send to review)                                                      |                     |
|                    |                                                                                 | e of product or quotient rule. Apply usual rules on f                        | ormulae.            |
|                    | 1 <sup>st</sup> A1 For $\frac{2(x+4)}{x}$                                       | or $\frac{2x(x+4)}{x^2}$                                                     |                     |
|                    | $2^{\text{nd}} \text{ A1} \qquad \text{for } -\frac{\left(x+4\right)^2}{x^2}$   |                                                                              |                     |

6663

| This resource was | created and | owned by | Pearson | Edexcel |
|-------------------|-------------|----------|---------|---------|

| 6 | (a) Expand and simplify $(4 + \sqrt{3})(4 - \sqrt{3})$ |  |
|---|--------------------------------------------------------|--|

Leave blank

| 6. | (a) | Expand and | l simplify (4 + | $\sqrt{3}$ )(4 – 1 | √3). |
|----|-----|------------|-----------------|--------------------|------|
|----|-----|------------|-----------------|--------------------|------|

**(2)** 

| (b) | Express | $\frac{26}{4+\sqrt{3}}$ | in the form | $a+b\sqrt{3}$ , | where a | and $b$ ar | e integers. |
|-----|---------|-------------------------|-------------|-----------------|---------|------------|-------------|
|-----|---------|-------------------------|-------------|-----------------|---------|------------|-------------|

**(2)** 

| Question<br>number | Scheme                                                                                                                                                                                                   | Mark          | ES              |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|
|                    | $16 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^{2}  \text{or } 16 - 3$ $= 13$                                                                                                                                  | M1<br>A1c.a.o | (2)             |
| (b)                | $\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$                                                                                                                                             | M1            |                 |
|                    | $\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$ $= \frac{26(4-\sqrt{3})}{13} = 8-2\sqrt{3}  \text{or}  8+(-2)\sqrt{3}  \text{or}  a=8 \text{ and } b=-2$                                    | A1            | (2)<br><b>4</b> |
| (a)                | M1 For 4 terms, at least 3 correct e.g. $8 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^2$ or $16 \pm 8\sqrt{3} - (\sqrt{3})^2$ or $16 + 3$ $4^2$ instead of 16 is OK $(4 + \sqrt{3})(4 + \sqrt{3})$ scores M0A0 |               |                 |
| (b)                | M1 For a correct attempt to rationalise the denominator Can be implied $NB = \frac{-4 + \sqrt{3}}{-4 + \sqrt{3}} \text{ is OK}$                                                                          |               |                 |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

6663

Leave

| 7. | An athlete prepares for a race by completing a practice run on each of 11 consecuting days. On each day after the first day, he runs further than he ran on the previous day. The lengths of his 11 practice runs form an arithmetic sequence with first term $a \text{ km}$ are common difference $d \text{ km}$ . | ve<br>he | bla |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|
|    | He runs 9 km on the 11th day, and he runs a total of 77 km over the 11 day period.                                                                                                                                                                                                                                  |          |     |
|    | Find the value of $a$ and the value of $d$ .                                                                                                                                                                                                                                                                        |          |     |
|    |                                                                                                                                                                                                                                                                                                                     | 7)       |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     |          |     |
|    |                                                                                                                                                                                                                                                                                                                     |          |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     |          |     |
|    |                                                                                                                                                                                                                                                                                                                     |          |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     |          |     |
|    |                                                                                                                                                                                                                                                                                                                     |          |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |
|    |                                                                                                                                                                                                                                                                                                                     | _        |     |

| Question<br>number |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Scheme                                                                   |                             | Marks         |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------|---------------|
| 7.                 | a+(n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (a-1)d = k                                                               | k = 9  or  11               | M1            |
|                    | $(u_{11} =) a + 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\partial d = 9$                                                         |                             | A1c.a.o.      |
|                    | $\frac{n}{2}[2a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $+(n-1)d$ ] = 77 or $\frac{(a+l)}{2} \times n = 77$                      | l = 9  or  11               | M1            |
|                    | $(S_{11} =) \frac{11}{2}(2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(a+10d) = 77$ or $\frac{(a+9)}{2} \times 11 = 77$                       |                             | A1            |
|                    | $e.g. \ a+10d = a+5d =$ | or $a + 9 = 14$                                                          |                             | M1            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a = 5 and $d = 0.4$ or exact equivalent                                  |                             | A1 A1 7       |
|                    | 1 <sup>st</sup> M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Use of $u_n$ to form a linear equation in $a$ and $d$ . $a$              | + <i>nd</i> =9 is M0A0      | ,             |
|                    | 1 <sup>st</sup> A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | For $a + 10d = 9$ .                                                      |                             |               |
|                    | 2 <sup>nd</sup> M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Use of $S_n$ to form an equation for $a$ and $d$ (LHS)                   | or in a (RHS)               |               |
|                    | 2 <sup>nd</sup> A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A correct equation based on $S_n$ .                                      |                             |               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For $1^{st}$ 2 Ms they must write $n$ or use $n = 11$ .                  |                             |               |
|                    | 3 <sup>rd</sup> M1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Solving (LHS simultaneously) or (RHS a linear e                          | equation in a)              |               |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Must lead to $a = \dots$ or $d = \dots$ and depends on on                | e previous M                |               |
|                    | 3 <sup>rd</sup> A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for $a = 5$                                                              |                             |               |
|                    | 4 <sup>th</sup> A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | for $d = 0.4$ (o.e.)                                                     |                             |               |
|                    | <u>ALT</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Uses $\frac{(a+l)}{2} \times n = 77$ to get $a = 5$ , gets second and    | d third M1A1 i.e.           | 4/7           |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Then uses $\frac{n}{2}[2a + (n-1)d] = 77$ to get d, gets 1 <sup>st</sup> | M1A1 and 4 <sup>th</sup> A1 |               |
|                    | MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Consistent MR of 11 for 9 leading to $a = 3$ , $d = 0$                   | .8 scores M1A0M             | 1A0M1A1ftA1ft |

| • The equation $x^2 + 2px + (3p + 4) = 0$ , where p is a positive constant, has each | qual roots. |
|--------------------------------------------------------------------------------------|-------------|
| (a) Find the value of p.                                                             |             |
|                                                                                      | (4)         |
| (b) For this value of p, solve the equation $x^2 + 2px + (3p + 4) = 0$ .             |             |
| (c) For any variety, sorve are equation $x + 2px + (ep + 1)$                         | (2)         |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |
|                                                                                      |             |

| Question<br>number | Scheme                                                                                                                                     | Marks                 |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 8. (a)             | $b^2 - 4ac = 4p^2 - 4(3p + 4) = 4p^2 - 12p - 16 (=0)$                                                                                      | M1, A1                |
|                    | $b^{2} - 4ac = 4p^{2} - 4(3p+4) = 4p^{2} - 12p - 16 (=0)$ or $(x+p)^{2} - p^{2} + (3p+4) = 0 \implies p^{2} - 3p - 4(=0)$ $(p-4)(p+1) = 0$ |                       |
|                    | (p-4)(p+1) = 0                                                                                                                             | M1                    |
|                    | p = (-1  or) 4                                                                                                                             | A1c.s.o. (4)          |
|                    | -b                                                                                                                                         |                       |
| (b)                | $x = \frac{-b}{2a}$ or $(x+p)(x+p) = 0 \implies x =$                                                                                       | M1                    |
|                    | x (= -p) = -4                                                                                                                              | A1f.t. (2)            |
|                    |                                                                                                                                            | 6                     |
| (a)                | 1 <sup>st</sup> M1 For use of $b^2 - 4ac$ or a full attempt to complete the square leading                                                 | g to a $3TQ$ in $p$ . |
|                    | May use $b^2 = 4ac$ . One of b or c must be correct.                                                                                       |                       |
|                    | 1 <sup>st</sup> A1 For a correct 3TQ in $p$ . Condone missing "=0" but all 3 terms must                                                    | be on one side.       |
|                    | $2^{\text{nd}}$ M1 For attempt to solve their 3TQ leading to $p =$                                                                         |                       |
|                    | $2^{\text{nd}} \text{ A1}$ For $p = 4$ (ignore $p = -1$ ).                                                                                 |                       |
|                    | $b^2 = 4ac$ leading to $p^2 = 4(3p + 4)$ and then "spotting" $p = 4$ score                                                                 | es 4/4.               |
| (b)                | M1 For a full method leading to a repeated root $x =$                                                                                      |                       |
|                    | A1f.t. For $x = -4$ (- their $p$ )                                                                                                         |                       |
|                    | Trial and Improvement                                                                                                                      |                       |
|                    | M2 For substituting values of $p$ into the equation and attempting to fact (Really need to get to $p = 4$ or -1)                           | orize.                |
|                    | A2c.s.o. Achieve $p = 4$ . Don't give without valid method being seen.                                                                     |                       |
|                    |                                                                                                                                            |                       |

| <ul> <li>a) express f(x) in the form x(ax² + bx + c), where a, b and c are constants.</li> <li>(3)</li> <li>b) Hence factorise f(x) completely.</li> <li>(2)</li> <li>(2)</li> <li>(2)</li> <li>(3)</li> <li>(4)</li> <li>(5)</li> <li>(6) Sketch the graph of y = f(x), showing the coordinates of each point at which the graph meets the axes.</li> </ul> | ( | Given that $f(x) = (x^2 - 6x)(x - 2) + 3x$ ,                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------|
| b) Hence factorise f(x) completely.  (2)  c) Sketch the graph of y = f(x), showing the coordinates of each point at which the graph meets the axes.  (3)                                                                                                                                                                                                     |   | 2. 3. mai 100/ (0 000/00 <b>2</b> ) 1 000,                                                                    |
| b) Hence factorise f(x) completely.  (2) c) Sketch the graph of y = f(x), showing the coordinates of each point at which the graph meets the axes.  (3)                                                                                                                                                                                                      | ( | (a) express $f(x)$ in the form $x(ax^2 + bx + c)$ , where a, b and c are constants.                           |
| c) Sketch the graph of $y = f(x)$ , showing the coordinates of each point at which the graph meets the axes. (3)                                                                                                                                                                                                                                             |   | (3)                                                                                                           |
| c) Sketch the graph of $y = f(x)$ , showing the coordinates of each point at which the graph meets the axes. (3)                                                                                                                                                                                                                                             |   | The Harrison for atomics of the computations                                                                  |
| c) Sketch the graph of $y = f(x)$ , showing the coordinates of each point at which the graph meets the axes.  (3)                                                                                                                                                                                                                                            | ( |                                                                                                               |
| meets the axes.  (3)                                                                                                                                                                                                                                                                                                                                         |   | (2)                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                              | ( | (c) Sketch the graph of $y = f(x)$ , showing the coordinates of each point at which the graph meets the axes. |
|                                                                                                                                                                                                                                                                                                                                                              |   | (3)                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              | _ |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              | _ |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                              |   |                                                                                                               |

| Question<br>number | Scheme                                                                                                                                                                               | Marks           |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 9. (a)             | $f(x) = x[(x-6)(x-2)+3]$ or $x^3 - 6x^2 - 2x^2 + 12x + 3x = x($                                                                                                                      | M1              |
|                    | $f(x) = x[(x-6)(x-2)+3] 	 or 	 x^3 - 6x^2 - 2x^2 + 12x + 3x = x($ $f(x) = x(x^2 - 8x + 15) 	 b = -8 	 or c = 15$                                                                     | A1              |
|                    | both and $a = 1$                                                                                                                                                                     | A1 (3)          |
| (b)                | $(x^{2}-8x+15) = (x-5)(x-3)$ $f(x) = x(x-5)(x-3)$                                                                                                                                    | M1<br>A1 (2)    |
| (c)                | Shape their 3 or their 5  both their 3 and their 5 and (0,0) by implication                                                                                                          |                 |
| (a)                | M1 for a correct method to get the factor of $x$ . $x$ ( as printed is the minimum.                                                                                                  | 8               |
| (4)                | $1^{\text{st}}$ A1 for $b = -8$ or $c = 15$ .                                                                                                                                        |                 |
|                    | -8 comes from -6-2 and must be coefficient of $x$ , and 15 from $6x2+3$ and m                                                                                                        | ust have no xs. |
|                    | $2^{\text{nd}}$ A1 for $a = 1$ , $b = -8$ and $c = 15$ . Must have $x(x^2 - 8x + 15)$ .                                                                                              |                 |
| (b)                | M1 for attempt to factorise their 3TQ from part (a).                                                                                                                                 |                 |
|                    | A1 for all 3 terms correct. They must include the $x$ .                                                                                                                              |                 |
|                    | For part (c) they must have at most 2 non-zero roots of their $f(x) = 0$ to ft the                                                                                                   |                 |
| (c)                | 1 <sup>st</sup> B1 for correct shape (i.e. from bottom left to top right and two turning)                                                                                            | points.)        |
|                    | 2 <sup>nd</sup> B1f.t. for crossing at their 3 or their 5 indicated on graph or in text.  3 <sup>rd</sup> B1f.t. if graph passes through (0, 0) [needn't be marked] and both their 3 | and their 5.    |

3663

This resource was created and owned by Pearson Edexcel

Leave blank

**10.** The curve C with equation y = f(x),  $x \ne 0$ , passes through the point  $(3, 7\frac{1}{2})$ .

Given that  $f'(x) = 2x + \frac{3}{x^2}$ ,

(a) find f(x).

**(5)** 

(b) Verify that f(-2) = 5.

**(1)** 

(c) Find an equation for the tangent to C at the point (-2, 5), giving your answer in the form ax + by + c = 0, where a, b and c are integers.

**(4)** 

| Question<br>number |                                                                                          | Scheme                                 |                                                                                                                                                               | Marks                               |     |
|--------------------|------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----|
|                    | $f(x) = \frac{2x^2}{2} + \frac{3}{2}$                                                    |                                        | $-\frac{3}{x}$ is OK                                                                                                                                          | M1A1                                |     |
|                    | $(3,7\frac{1}{2})$ gives                                                                 | $\frac{15}{2} = 9 - \frac{3}{3} + c$   | $3^2$ or $3^{-1}$ are OK instead of 9 or $\frac{1}{3}$                                                                                                        | M1A1f.t.                            |     |
|                    |                                                                                          | $c = -\frac{1}{2}$                     |                                                                                                                                                               | A1                                  | (5) |
| (b)                | $f(-2) = 4 + \frac{3}{2}$                                                                | $-\frac{1}{2}$ (*)                     |                                                                                                                                                               | B1c.s.o.                            | (1) |
| (c)                | $m = -4 + \frac{3}{4}$ ,                                                                 | = -3.25                                |                                                                                                                                                               | M1,A1                               |     |
|                    | •                                                                                        | angent is: $y - 5 = -3.25(x + 2)$      | o.e.                                                                                                                                                          | M1<br>A1 (4)                        |     |
|                    |                                                                                          |                                        |                                                                                                                                                               |                                     | 10  |
| (a)                | 1 <sup>st</sup> M1<br>1 <sup>st</sup> A1<br>2 <sup>nd</sup> M1<br>2 <sup>nd</sup> A1f.t. | substitution. No $+c$ is M0. So        | petter. Ignore $(+c)$ here.<br>form an equation for $c$ . There must be ome changes in $x$ terms of function need to be ollow through their integration. They | eeded.                              |     |
| (b)                | B1cso                                                                                    | If $(-2, 5)$ is used to find $c$ in (a | ) B0 here unless they verify $f(3)=7.5$                                                                                                                       |                                     |     |
| (c)                | 1 <sup>st</sup> M1                                                                       | for attempting $m = f'(\pm 2)$         |                                                                                                                                                               |                                     |     |
|                    | 1 <sup>st</sup> A1                                                                       | for $-\frac{13}{4}$ or $-3.25$         |                                                                                                                                                               |                                     |     |
|                    | 2 <sup>nd</sup> M1                                                                       | for attempting equation of tan         | gent at $(-2, 5)$ , f.t. their $m$ , based on $\frac{6}{6}$                                                                                                   | $\frac{\mathrm{d}y}{\mathrm{d}x}$ . |     |
|                    | 2 <sup>nd</sup> A1                                                                       | o.e. must have $a$ , $b$ and $c$ integ | ers and = 0.                                                                                                                                                  |                                     |     |
|                    |                                                                                          | Treat (a) and (b) together as a        | batch of 6 marks.                                                                                                                                             |                                     |     |

| <ul> <li>(a) Find an equation for l₁ in the form y = mx + c, where m and c are constants.</li> <li>(4) The line l₂ passes through the point R(10, 0) and is perpendicular to l₁. The lines l₁ and l₂ intersect at the point S.</li> <li>(b) Calculate the coordinates of S.</li> <li>(c) Show that the length of RS is 3√5.</li> <li>(d) Hence, or otherwise, find the exact area of triangle PQR.</li> </ul> | equation for $l_1$ in the form $y = mx + c$ , where $m$ and $c$ are constants.  (4) assess through the point $R(10, 0)$ and is perpendicular to $l_1$ . The lines $l_1$ and $l_2$ he point $S$ .  (5) the the coordinates of $S$ .  (5) that the length of $RS$ is $3\sqrt{5}$ .  (2) For otherwise, find the exact area of triangle $PQR$ . | The line $l_1$ passes through the points $P(-1, 2)$ and $Q(11, 8)$ .                     |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------|
| The line $l_2$ passes through the point $R(10,0)$ and is perpendicular to $l_1$ . The lines $l_1$ and $l_2$ intersect at the point $S$ .  (b) Calculate the coordinates of $S$ .  (c) Show that the length of $RS$ is $3\sqrt{5}$ .  (d) Hence, or otherwise, find the exact area of triangle $PQR$ .  (4)                                                                                                    | asses through the point $R(10,0)$ and is perpendicular to $l_1$ . The lines $l_1$ and $l_2$ he point $S$ .  te the coordinates of $S$ .  (5)  nat the length of $RS$ is $3\sqrt{5}$ .  (2)  or otherwise, find the exact area of triangle $PQR$ .                                                                                            |                                                                                          |            |
| intersect at the point $S$ .  (b) Calculate the coordinates of $S$ .  (c) Show that the length of $RS$ is $3\sqrt{5}$ .  (d) Hence, or otherwise, find the exact area of triangle $PQR$ .  (4)                                                                                                                                                                                                                | the point $S$ .  te the coordinates of $S$ .  (5)  nat the length of $RS$ is $3\sqrt{5}$ .  (2)  or otherwise, find the exact area of triangle $PQR$ .  (4)                                                                                                                                                                                  | 17 Ind an equation for $t_1$ in the form $y = mx + c$ , where $m$ and $c$ are constants. | <b>(4)</b> |
| (c) Show that the length of $RS$ is $3\sqrt{5}$ .  (d) Hence, or otherwise, find the exact area of triangle $PQR$ .  (4)                                                                                                                                                                                                                                                                                      | nat the length of $RS$ is $3\sqrt{5}$ . (2) or otherwise, find the exact area of triangle $PQR$ .                                                                                                                                                                                                                                            |                                                                                          | and $l_2$  |
| (c) Show that the length of $RS$ is $3\sqrt{5}$ .    (2)  (d) Hence, or otherwise, find the exact area of triangle $PQR$ .    (4)                                                                                                                                                                                                                                                                             | nat the length of $RS$ is $3\sqrt{5}$ . (2) or otherwise, find the exact area of triangle $PQR$ .                                                                                                                                                                                                                                            | (b) Calculate the coordinates of <i>S</i> .                                              |            |
| (d) Hence, or otherwise, find the exact area of triangle <i>PQR</i> .  (4)                                                                                                                                                                                                                                                                                                                                    | or otherwise, find the exact area of triangle <i>PQR</i> .  (4)                                                                                                                                                                                                                                                                              |                                                                                          | (5)        |
| (d) Hence, or otherwise, find the exact area of triangle <i>PQR</i> .  (4)                                                                                                                                                                                                                                                                                                                                    | or otherwise, find the exact area of triangle $PQR$ . (4)                                                                                                                                                                                                                                                                                    | (c) Show that the length of RS is $3\sqrt{5}$ .                                          | (2)        |
| (4)                                                                                                                                                                                                                                                                                                                                                                                                           | (4)                                                                                                                                                                                                                                                                                                                                          |                                                                                          | (2)        |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              | d) Hence, or otherwise, find the exact area of triangle $PQR$ .                          | (4)        |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                              |                                                                                          |            |

This resource was created and owned by Pearson Edexcel

| Question<br>number | Scheme                                                                                                                                                                                                                                                                                                                                                 | Marks             |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 11.(a)             | $m = \frac{8-2}{11+1}  (=\frac{1}{2})$                                                                                                                                                                                                                                                                                                                 | M1 A1             |
|                    | $y-2 = \frac{1}{2}(x-1)$ or $y-8 = \frac{1}{2}(x-11)$ o.e.                                                                                                                                                                                                                                                                                             | M1                |
|                    | $y = \frac{1}{2}x + \frac{5}{2}$ accept exact equivalents e.g. $\frac{6}{12}$                                                                                                                                                                                                                                                                          | A1c.a.o. (4)      |
| (b)                | Gradient of $l_2 = -2$                                                                                                                                                                                                                                                                                                                                 | M1                |
|                    | Equation of $l_2$ : $y - 0 = -2(x - 10)$ [ $y = -2x + 20$ ]                                                                                                                                                                                                                                                                                            | M1                |
|                    | $\frac{1}{2}x + \frac{5}{2} = -2x + 20$                                                                                                                                                                                                                                                                                                                | M1                |
|                    | x = 7 and $y = 6$ depend on all 3 Ms                                                                                                                                                                                                                                                                                                                   | A1, A1 (5)        |
| (c)                | $RS^2 = (10-7)^2 + (0-6)^2 (= 3^2 + 6^2)$                                                                                                                                                                                                                                                                                                              | M1                |
|                    | $RS = \sqrt{45} = 3\sqrt{5}  (*)$                                                                                                                                                                                                                                                                                                                      | A1c.s.o. (2)      |
| (d)                | ~                                                                                                                                                                                                                                                                                                                                                      | M1,A1             |
|                    | Area = $\frac{1}{2}PQ \times RS = \frac{1}{2}6\sqrt{5} \times 3\sqrt{5}$                                                                                                                                                                                                                                                                               | dM1               |
|                    | <u>= 45</u>                                                                                                                                                                                                                                                                                                                                            | A1 c.a.o. (4)     |
|                    |                                                                                                                                                                                                                                                                                                                                                        | 15                |
| (a)                | $1^{\text{st}}  \text{M1}$ for attempting $\frac{y_1 - y_2}{x_1 - x_2}$ , must be $y  \text{over}  x$ . No formula condone one formula is quoted then there must be some correct substitution. $1^{\text{st}}  \text{A1}$ for a fully correct expression, needn't be simplified. $2^{\text{nd}}  \text{M1}$ for attempting to find equation of $l_1$ . | sign slip, but if |
| (b)                | $1^{\text{st}}$ M1 for using the perpendicular gradient rule $2^{\text{nd}}$ M1 for attempting to find equation of $l_2$ . Follow their gradient provided $3^{\text{rd}}$ M1 for forming a suitable equation to find $S$ .                                                                                                                             | l different.      |
| (c)                | M1 for expression for $RS$ or $RS^2$ . Ft their $S$ coordinates                                                                                                                                                                                                                                                                                        |                   |
| (d)                | 1 <sup>st</sup> M1 for expression for $PQ$ or $PQ^2$ . $PQ^2 = 12^2 + 6^2$ is M1 but $PQ = 12^2 + 6^2$                                                                                                                                                                                                                                                 | $-6^2$ is M0      |

for a full, correct attempt at area of triangle. Dependent on previous M1.

 $2^{nd} dM1$ 

Allow one numerical slip.