www.mystudybro.com Mathematics C1 Examiner's use only Team Leader's use only Past Paper This resource was created and owned by Pearson Edexcel | Centre
No. | | | | | Pape | er Refer | ence | | | Surname | Initial(s) | |------------------|--|--|---|---|------|----------|------|---|---|-----------|------------| | Candidate
No. | | | 6 | 6 | 6 | 3 | / | 0 | 1 | Signature | | Paper Reference(s) # 6663/01 # **Edexcel GCE** # Core Mathematics C1 **Advanced Subsidiary** Monday 22 May 2006 – Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Green) Items included with question papers Calculators may NOT be used in this examination. ### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature. Check that you have the correct question paper. You must write your answer for each question in the space following the question. ### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 11 questions in this question paper. The total mark for this paper is 75. There are 24 pages in this question paper. Any blank pages are indicated. ### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2006 Edexcel Limited. Total Turn over | Leave | | |-------|--| | blank | | | Find $\int (6x^2 + 2 + x^{-\frac{1}{2}}) dx$, giving each term in its simplest form. | (4) | |---|-----| ## www.mystudybro.com This resource was created and owned by Pearson Edexcel June 2006 6663 Core Mathematics C1 Mark Scheme | | Wark Scheme | | |--------------------|---|----------| | Question
number | Scheme | Marks | | 1. | $\frac{6x^3}{3} + 2x + \frac{x^{\frac{1}{2}}}{\frac{1}{2}} (+c)$ | M1 | | | | A1 | | | $=2x^3+2x+2x^{\frac{1}{2}}$ | A1 | | | +c | B1 | | | | 4 | | | M1 for some attempt to integrate $x^n \to x^{n+1}$ | | | | 1 st A1 for either $\frac{6}{3}x^3$ or $\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ or better | | | | 2^{nd} A1 for all terms in x correct. Allow $2\sqrt{x}$ and $2x^1$. | | | | B1 for $+c$, when first seen with a changed expression. | <u>'</u> | | <u>'</u> | Past Pape 2. | er 2006
er | www.mystudybro.com This resource was created and owned by Pearson Edexcel | Mathematics | اک
3663 | |----------------------|---|--------------------|------------| | | f values of x for which | Lea
bla | ave | | | $x^2 - 7x - 18 > 0.$ | (4) | Q2 (Total 4 marks) 6663 Past Paper (Mark Scheme) | Question
number | Scheme | Marks | |--------------------|---|-------| | 2. | Critical Values | | | | $(x \pm a)(x \pm b)$ with $ab=18$ or $x = \frac{7 \pm \sqrt{49 - 72}}{2}$ or $(x - \frac{7}{2})^2 \pm (\frac{7}{2})^2 - 18$ | M1 | | | $(x-9)(x+2)$ or $x = \frac{7\pm 11}{2}$ or $x = \frac{7}{2} \pm \frac{11}{2}$ | A1 | | | Solving Inequality $x > 9$ or $x < -2$ Choosing "outside" | M1 | | | | A1 4 | | | 1 st M1 For attempting to find critical values. Factors alone are OK for M1, <i>x</i> = appearing somewhere for the fowritten for completing the square 1 st A1. Factors alone are OK. Formula or completing the square need <i>x</i> | | | | 2 nd M1 For choosing outside region. Can f.t. their critical values. | | | | They must have two different critical values. | | | | - $2 > x > 9$ is M1A0 but ignore if it follows a correct version $-2 < x < 9$ is M0A0 whatever the diagram looks like. | | | | 2^{nd} A1 Use of \geq in final answer gets A0 | | | | | | This resource was created and owned by Pearson Edexcel 6663 Leave blank - 3. On separate diagrams, sketch the graphs of - (a) $y = (x+3)^2$, **(3)** (b) $y = (x + 3)^2 + k$, where k is a positive constant. **(2)** Show on each sketch the coordinates of each point at which the graph meets the axes. # www.mystudybro.com | Question
number | Scheme | | Marks | |--------------------|--------------------|---|--------------| | 3. | (a) y A | U shape touching x-axis | B1 | | | | (-3,0) | B1 | | | | (0, 9) | B1 | | | -3 x | | (3) | | | (b) y 1 9+k | Translated parallel to y-axis up $(0, 9+k)$ | M1
B1f.t. | | | x | | (2) | | | | | | | | | | 5 | |-----|--|--|---| | (a) | 2 nd B1 2 nd B1 & 3 rd B1 | They can score this even if other intersections with the <i>x</i> -axis are given. The -3 and 9 can appear on the sketch as shown | | | (b) | M1 | Follow their curve in (a) up only. If it is not obvious do not give it. e.g. if it cuts <i>y</i> -axis in (a) but doesn't in (b) then it is M0. | | | | B1f.t. | Follow through their 9 | | This resource was created and owned by Pearson Edexcel Leave blank **4.** A sequence a_1, a_2, a_3, \ldots is defined by $$a_1 = 3$$, $$a_{n+1} = 3a_n - 5, \quad n \geqslant 1.$$ (a) Find the value of a_2 and the value of a_3 . **(2)** (b) Calculate the value of $\sum_{r=1}^{5} a_r$. **(3)** | Question
number | | Scheme | Mark | s | |--------------------|------------------------------------|---|--------------|-----| | 4. (a) | $a_2 = 4$ $a_3 = 3 \times a_2 - 4$ | 5 = 7 | B1
B1f.t. | (2) | | (b) | | $(=16)$ and $a_5 = 3a_4 - 5(=43)$ | M1 | (2) | | | 3 + 4 + 7 + 1 | 16 + 43 | M1 | | | | = 73 | | A1c.a.o. | (3) | | | | | | 5 | | (a) | 2 nd B1f.t. | Follow through their a_2 but it must be a value. $3 \times 4 - 5$ is B0 Give wherever it is first seen. | | | | (b) | 1 st M1 | For two further attempts to use of $a_{n+1} = 3a_n - 5$, wherever seen. Condone arithmetic slips | | | | | 2 nd M1 | For attempting to add 5 relevant terms (i.e. terms derived from an attempt to use the recurrence formula) or an expression. Follow through their values for $a_2 - a_5$ | | | | | | Use of formulae for arithmetic series is M0A0 but could get 1^{st} M1 if a_4 and a_5 are correctly attempted. | 6 | 6 | 6 | 3 | | |---|---|---|---------------|--| | - | - | - | $\overline{}$ | | | Differentiate with respect to <i>x</i> | | |--|-----| | (a) $x^4 + 6\sqrt{x}$, | | | | (3) | | $(x+4)^2$ | | | (b) $\frac{(x+4)^2}{x}$. | | | | (4) | 6663 Past Paper (Mark Scheme) | Question
number | | Scheme | Marks | |--------------------|---|--|---------------------| | 5. (a) | $(y = x^4 + 6x^{\frac{1}{2}} \Rightarrow y' =) 4x^3 + 3$ | $3x^{-\frac{1}{2}}$ or $4x^3 + \frac{3}{\sqrt{x}}$ | M1A1A1 (3) | | (b) | $(x+4)^2 = x^2 + 8x + 16$ | | M1 | | | $(x+4)^2 = x^2 + 8x + 16$ $\frac{(x+4)^2}{x} = x + 8 + 16x^{-1}$ | (allow 4+4 for 8) | A1 | | | $\left(y = \frac{\left(x+4\right)^2}{x} \Longrightarrow y' = \right) \ 1 - 16x$ | x ⁻² o.e. | M1A1 (4) 7 | | (a) | M1 For some atter | mpt to differentiate $x^n \to x^{n-1}$ | ı | | | 1 st A1 For one correct | ct term as printed. | | | | 2 nd A1 For both terms | s correct as printed. | | | | $4x^3 + 3x^{-\frac{1}{2}} +$ | c scores M1A1A0 | | | (b) | 1 st M1 For attempt to | expand $(x+4)^2$, must have x^2 , x , x^0 terms and at least | ast 2 correct | | | e.g. $x^2 + 8x +$ | 8 or $x^2 + 2x + 16$ | | | | 1 st A1 Correct expres | ssion for $\frac{(x+4)^2}{x}$. As printed but allow $\frac{16}{x}$ and $8x$ | 0. | | | 2 nd M1 For some corr | ect differentiation, any term. Can follow through the | eir simplification. | | | N.B. $\frac{x^2 + 8x}{x}$ | $\frac{+16}{2}$ giving rise to $(2x + 8)/1$ is M0A0 | | | ALT | Product or Quotient rule (If in | n doubt send to review) | | | | | e of product or quotient rule. Apply usual rules on f | ormulae. | | | 1 st A1 For $\frac{2(x+4)}{x}$ | or $\frac{2x(x+4)}{x^2}$ | | | | $2^{\text{nd}} \text{ A1} \qquad \text{for } -\frac{\left(x+4\right)^2}{x^2}$ | | | 6663 | This resource was | created and | owned by | Pearson | Edexcel | |-------------------|-------------|----------|---------|---------| | 6 | (a) Expand and simplify $(4 + \sqrt{3})(4 - \sqrt{3})$ | | |---|--|--| Leave blank | 6. | (a) | Expand and | l simplify (4 + | $\sqrt{3}$)(4 – 1 | √3). | |----|-----|------------|-----------------|--------------------|------| |----|-----|------------|-----------------|--------------------|------| **(2)** | (b) | Express | $\frac{26}{4+\sqrt{3}}$ | in the form | $a+b\sqrt{3}$, | where a | and b ar | e integers. | |-----|---------|-------------------------|-------------|-----------------|---------|------------|-------------| |-----|---------|-------------------------|-------------|-----------------|---------|------------|-------------| **(2)** | Question
number | Scheme | Mark | ES | |--------------------|--|---------------|-----------------| | | $16 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^{2} \text{or } 16 - 3$ $= 13$ | M1
A1c.a.o | (2) | | (b) | $\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$ | M1 | | | | $\frac{26}{4+\sqrt{3}} \times \frac{4-\sqrt{3}}{4-\sqrt{3}}$ $= \frac{26(4-\sqrt{3})}{13} = 8-2\sqrt{3} \text{or} 8+(-2)\sqrt{3} \text{or} a=8 \text{ and } b=-2$ | A1 | (2)
4 | | (a) | M1 For 4 terms, at least 3 correct e.g. $8 + 4\sqrt{3} - 4\sqrt{3} - (\sqrt{3})^2$ or $16 \pm 8\sqrt{3} - (\sqrt{3})^2$ or $16 + 3$ 4^2 instead of 16 is OK $(4 + \sqrt{3})(4 + \sqrt{3})$ scores M0A0 | | | | (b) | M1 For a correct attempt to rationalise the denominator Can be implied $NB = \frac{-4 + \sqrt{3}}{-4 + \sqrt{3}} \text{ is OK}$ | | | **www.mystudybro.com**This resource was created and owned by Pearson Edexcel 6663 Leave | 7. | An athlete prepares for a race by completing a practice run on each of 11 consecuting days. On each day after the first day, he runs further than he ran on the previous day. The lengths of his 11 practice runs form an arithmetic sequence with first term $a \text{ km}$ are common difference $d \text{ km}$. | ve
he | bla | |----|---|----------|-----| | | He runs 9 km on the 11th day, and he runs a total of 77 km over the 11 day period. | | | | | Find the value of a and the value of d . | | | | | | 7) | | | | | _ | | | | | _ | | | | | _ | | | | | | | | | | | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | | | | | | | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | | | | | | | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | Question
number | | Scheme | | Marks | |--------------------|--|--|-----------------------------|---------------| | 7. | a+(n | (a-1)d = k | k = 9 or 11 | M1 | | | $(u_{11} =) a + 10$ | $\partial d = 9$ | | A1c.a.o. | | | $\frac{n}{2}[2a$ | $+(n-1)d$] = 77 or $\frac{(a+l)}{2} \times n = 77$ | l = 9 or 11 | M1 | | | $(S_{11} =) \frac{11}{2}(2$ | $(a+10d) = 77$ or $\frac{(a+9)}{2} \times 11 = 77$ | | A1 | | | $e.g. \ a+10d = a+5d =$ | or $a + 9 = 14$ | | M1 | | | | a = 5 and $d = 0.4$ or exact equivalent | | A1 A1 7 | | | 1 st M1 | Use of u_n to form a linear equation in a and d . a | + <i>nd</i> =9 is M0A0 | , | | | 1 st A1 | For $a + 10d = 9$. | | | | | 2 nd M1 | Use of S_n to form an equation for a and d (LHS) | or in a (RHS) | | | | 2 nd A1 | A correct equation based on S_n . | | | | | | For 1^{st} 2 Ms they must write n or use $n = 11$. | | | | | 3 rd M1 | Solving (LHS simultaneously) or (RHS a linear e | equation in a) | | | | | Must lead to $a = \dots$ or $d = \dots$ and depends on on | e previous M | | | | 3 rd A1 | for $a = 5$ | | | | | 4 th A1 | for $d = 0.4$ (o.e.) | | | | | <u>ALT</u> | Uses $\frac{(a+l)}{2} \times n = 77$ to get $a = 5$, gets second and | d third M1A1 i.e. | 4/7 | | | | Then uses $\frac{n}{2}[2a + (n-1)d] = 77$ to get d, gets 1 st | M1A1 and 4 th A1 | | | | MR | Consistent MR of 11 for 9 leading to $a = 3$, $d = 0$ | .8 scores M1A0M | 1A0M1A1ftA1ft | | • The equation $x^2 + 2px + (3p + 4) = 0$, where p is a positive constant, has each | qual roots. | |--|-------------| | (a) Find the value of p. | | | | (4) | | (b) For this value of p, solve the equation $x^2 + 2px + (3p + 4) = 0$. | | | (c) For any variety, sorve are equation $x + 2px + (ep + 1)$ | (2) | Question
number | Scheme | Marks | |--------------------|--|-----------------------| | 8. (a) | $b^2 - 4ac = 4p^2 - 4(3p + 4) = 4p^2 - 12p - 16 (=0)$ | M1, A1 | | | $b^{2} - 4ac = 4p^{2} - 4(3p+4) = 4p^{2} - 12p - 16 (=0)$ or $(x+p)^{2} - p^{2} + (3p+4) = 0 \implies p^{2} - 3p - 4(=0)$ $(p-4)(p+1) = 0$ | | | | (p-4)(p+1) = 0 | M1 | | | p = (-1 or) 4 | A1c.s.o. (4) | | | -b | | | (b) | $x = \frac{-b}{2a}$ or $(x+p)(x+p) = 0 \implies x =$ | M1 | | | x (= -p) = -4 | A1f.t. (2) | | | | 6 | | (a) | 1 st M1 For use of $b^2 - 4ac$ or a full attempt to complete the square leading | g to a $3TQ$ in p . | | | May use $b^2 = 4ac$. One of b or c must be correct. | | | | 1 st A1 For a correct 3TQ in p . Condone missing "=0" but all 3 terms must | be on one side. | | | 2^{nd} M1 For attempt to solve their 3TQ leading to $p =$ | | | | 2^{nd} A1 For $p = 4$ (ignore $p = -1$). | | | | $b^2 = 4ac$ leading to $p^2 = 4(3p + 4)$ and then "spotting" $p = 4$ score | es 4/4. | | (b) | M1 For a full method leading to a repeated root $x =$ | | | | A1f.t. For $x = -4$ (- their p) | | | | Trial and Improvement | | | | M2 For substituting values of p into the equation and attempting to fact (Really need to get to $p = 4$ or -1) | orize. | | | A2c.s.o. Achieve $p = 4$. Don't give without valid method being seen. | | | | | | | a) express f(x) in the form x(ax² + bx + c), where a, b and c are constants. (3) b) Hence factorise f(x) completely. (2) (2) (2) (3) (4) (5) (6) Sketch the graph of y = f(x), showing the coordinates of each point at which the graph meets the axes. | (| Given that $f(x) = (x^2 - 6x)(x - 2) + 3x$, | |--|---|---| | b) Hence factorise f(x) completely. (2) c) Sketch the graph of y = f(x), showing the coordinates of each point at which the graph meets the axes. (3) | | 2. 3. mai 100/ (0 000/00 2) 1 000, | | b) Hence factorise f(x) completely. (2) c) Sketch the graph of y = f(x), showing the coordinates of each point at which the graph meets the axes. (3) | (| (a) express $f(x)$ in the form $x(ax^2 + bx + c)$, where a, b and c are constants. | | c) Sketch the graph of $y = f(x)$, showing the coordinates of each point at which the graph meets the axes. (3) | | (3) | | c) Sketch the graph of $y = f(x)$, showing the coordinates of each point at which the graph meets the axes. (3) | | The Harrison for atomics of the computations | | c) Sketch the graph of $y = f(x)$, showing the coordinates of each point at which the graph meets the axes. (3) | (| | | meets the axes. (3) | | (2) | | | (| (c) Sketch the graph of $y = f(x)$, showing the coordinates of each point at which the graph meets the axes. | | | | (3) | | | | | | | | | | | _ | _ | | | | | | | Question
number | Scheme | Marks | |--------------------|--|-----------------| | 9. (a) | $f(x) = x[(x-6)(x-2)+3]$ or $x^3 - 6x^2 - 2x^2 + 12x + 3x = x($ | M1 | | | $f(x) = x[(x-6)(x-2)+3] or x^3 - 6x^2 - 2x^2 + 12x + 3x = x($ $f(x) = x(x^2 - 8x + 15) b = -8 or c = 15$ | A1 | | | both and $a = 1$ | A1 (3) | | (b) | $(x^{2}-8x+15) = (x-5)(x-3)$ $f(x) = x(x-5)(x-3)$ | M1
A1 (2) | | (c) | Shape their 3 or their 5 both their 3 and their 5 and (0,0) by implication | | | (a) | M1 for a correct method to get the factor of x . x (as printed is the minimum. | 8 | | (4) | 1^{st} A1 for $b = -8$ or $c = 15$. | | | | -8 comes from -6-2 and must be coefficient of x , and 15 from $6x2+3$ and m | ust have no xs. | | | 2^{nd} A1 for $a = 1$, $b = -8$ and $c = 15$. Must have $x(x^2 - 8x + 15)$. | | | (b) | M1 for attempt to factorise their 3TQ from part (a). | | | | A1 for all 3 terms correct. They must include the x . | | | | For part (c) they must have at most 2 non-zero roots of their $f(x) = 0$ to ft the | | | (c) | 1 st B1 for correct shape (i.e. from bottom left to top right and two turning) | points.) | | | 2 nd B1f.t. for crossing at their 3 or their 5 indicated on graph or in text. 3 rd B1f.t. if graph passes through (0, 0) [needn't be marked] and both their 3 | and their 5. | 3663 This resource was created and owned by Pearson Edexcel Leave blank **10.** The curve C with equation y = f(x), $x \ne 0$, passes through the point $(3, 7\frac{1}{2})$. Given that $f'(x) = 2x + \frac{3}{x^2}$, (a) find f(x). **(5)** (b) Verify that f(-2) = 5. **(1)** (c) Find an equation for the tangent to C at the point (-2, 5), giving your answer in the form ax + by + c = 0, where a, b and c are integers. **(4)** | Question
number | | Scheme | | Marks | | |--------------------|--|--|---|-------------------------------------|-----| | | $f(x) = \frac{2x^2}{2} + \frac{3}{2}$ | | $-\frac{3}{x}$ is OK | M1A1 | | | | $(3,7\frac{1}{2})$ gives | $\frac{15}{2} = 9 - \frac{3}{3} + c$ | 3^2 or 3^{-1} are OK instead of 9 or $\frac{1}{3}$ | M1A1f.t. | | | | | $c = -\frac{1}{2}$ | | A1 | (5) | | (b) | $f(-2) = 4 + \frac{3}{2}$ | $-\frac{1}{2}$ (*) | | B1c.s.o. | (1) | | (c) | $m = -4 + \frac{3}{4}$, | = -3.25 | | M1,A1 | | | | • | angent is: $y - 5 = -3.25(x + 2)$ | o.e. | M1
A1 (4) | | | | | | | | 10 | | (a) | 1 st M1
1 st A1
2 nd M1
2 nd A1f.t. | substitution. No $+c$ is M0. So | petter. Ignore $(+c)$ here.
form an equation for c . There must be ome changes in x terms of function need to be ollow through their integration. They | eeded. | | | (b) | B1cso | If $(-2, 5)$ is used to find c in (a |) B0 here unless they verify $f(3)=7.5$ | | | | (c) | 1 st M1 | for attempting $m = f'(\pm 2)$ | | | | | | 1 st A1 | for $-\frac{13}{4}$ or -3.25 | | | | | | 2 nd M1 | for attempting equation of tan | gent at $(-2, 5)$, f.t. their m , based on $\frac{6}{6}$ | $\frac{\mathrm{d}y}{\mathrm{d}x}$. | | | | 2 nd A1 | o.e. must have a , b and c integ | ers and = 0. | | | | | | Treat (a) and (b) together as a | batch of 6 marks. | | | | (a) Find an equation for l₁ in the form y = mx + c, where m and c are constants. (4) The line l₂ passes through the point R(10, 0) and is perpendicular to l₁. The lines l₁ and l₂ intersect at the point S. (b) Calculate the coordinates of S. (c) Show that the length of RS is 3√5. (d) Hence, or otherwise, find the exact area of triangle PQR. | equation for l_1 in the form $y = mx + c$, where m and c are constants. (4) assess through the point $R(10, 0)$ and is perpendicular to l_1 . The lines l_1 and l_2 he point S . (5) the the coordinates of S . (5) that the length of RS is $3\sqrt{5}$. (2) For otherwise, find the exact area of triangle PQR . | The line l_1 passes through the points $P(-1, 2)$ and $Q(11, 8)$. | | |---|--|--|------------| | The line l_2 passes through the point $R(10,0)$ and is perpendicular to l_1 . The lines l_1 and l_2 intersect at the point S . (b) Calculate the coordinates of S . (c) Show that the length of RS is $3\sqrt{5}$. (d) Hence, or otherwise, find the exact area of triangle PQR . (4) | asses through the point $R(10,0)$ and is perpendicular to l_1 . The lines l_1 and l_2 he point S . te the coordinates of S . (5) nat the length of RS is $3\sqrt{5}$. (2) or otherwise, find the exact area of triangle PQR . | | | | intersect at the point S . (b) Calculate the coordinates of S . (c) Show that the length of RS is $3\sqrt{5}$. (d) Hence, or otherwise, find the exact area of triangle PQR . (4) | the point S . te the coordinates of S . (5) nat the length of RS is $3\sqrt{5}$. (2) or otherwise, find the exact area of triangle PQR . (4) | 17 Ind an equation for t_1 in the form $y = mx + c$, where m and c are constants. | (4) | | (c) Show that the length of RS is $3\sqrt{5}$. (d) Hence, or otherwise, find the exact area of triangle PQR . (4) | nat the length of RS is $3\sqrt{5}$. (2) or otherwise, find the exact area of triangle PQR . | | and l_2 | | (c) Show that the length of RS is $3\sqrt{5}$. (2) (d) Hence, or otherwise, find the exact area of triangle PQR . (4) | nat the length of RS is $3\sqrt{5}$. (2) or otherwise, find the exact area of triangle PQR . | (b) Calculate the coordinates of <i>S</i> . | | | (d) Hence, or otherwise, find the exact area of triangle <i>PQR</i> . (4) | or otherwise, find the exact area of triangle <i>PQR</i> . (4) | | (5) | | (d) Hence, or otherwise, find the exact area of triangle <i>PQR</i> . (4) | or otherwise, find the exact area of triangle PQR . (4) | (c) Show that the length of RS is $3\sqrt{5}$. | (2) | | (4) | (4) | | (2) | | | | d) Hence, or otherwise, find the exact area of triangle PQR . | (4) | This resource was created and owned by Pearson Edexcel | Question
number | Scheme | Marks | |--------------------|--|-------------------| | 11.(a) | $m = \frac{8-2}{11+1} (=\frac{1}{2})$ | M1 A1 | | | $y-2 = \frac{1}{2}(x-1)$ or $y-8 = \frac{1}{2}(x-11)$ o.e. | M1 | | | $y = \frac{1}{2}x + \frac{5}{2}$ accept exact equivalents e.g. $\frac{6}{12}$ | A1c.a.o. (4) | | (b) | Gradient of $l_2 = -2$ | M1 | | | Equation of l_2 : $y - 0 = -2(x - 10)$ [$y = -2x + 20$] | M1 | | | $\frac{1}{2}x + \frac{5}{2} = -2x + 20$ | M1 | | | x = 7 and $y = 6$ depend on all 3 Ms | A1, A1 (5) | | (c) | $RS^2 = (10-7)^2 + (0-6)^2 (= 3^2 + 6^2)$ | M1 | | | $RS = \sqrt{45} = 3\sqrt{5} (*)$ | A1c.s.o. (2) | | (d) | ~ | M1,A1 | | | Area = $\frac{1}{2}PQ \times RS = \frac{1}{2}6\sqrt{5} \times 3\sqrt{5}$ | dM1 | | | <u>= 45</u> | A1 c.a.o. (4) | | | | 15 | | (a) | 1^{st}M1 for attempting $\frac{y_1 - y_2}{x_1 - x_2}$, must be $y \text{over} x$. No formula condone one formula is quoted then there must be some correct substitution. 1^{st}A1 for a fully correct expression, needn't be simplified. 2^{nd}M1 for attempting to find equation of l_1 . | sign slip, but if | | (b) | 1^{st} M1 for using the perpendicular gradient rule 2^{nd} M1 for attempting to find equation of l_2 . Follow their gradient provided 3^{rd} M1 for forming a suitable equation to find S . | l different. | | (c) | M1 for expression for RS or RS^2 . Ft their S coordinates | | | (d) | 1 st M1 for expression for PQ or PQ^2 . $PQ^2 = 12^2 + 6^2$ is M1 but $PQ = 12^2 + 6^2$ | -6^2 is M0 | for a full, correct attempt at area of triangle. Dependent on previous M1. $2^{nd} dM1$ Allow one numerical slip.