www.mystudybro.com

Mathematics C1

Past Paper

This resource was created and owned by Pearson Edexcel

6663

Centre No.					Раре	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	3	/	0	1	Signature	

Paper Reference(s)

6663/01

Edexcel GCE

Core Mathematics C1 Advanced Subsidiary

Monday 21 May 2007 – Morning

Time: 1 hour 30 minutes

Examiner's use only								
Team Leader's use only								

Team L	eader's u	ise only

1

2

3

4

5

Leave

Materials required for examination

ion Items included with question papers

Mathematical Formulae (Green)

Calculators may NOT be used in this examination.

	Instructions	to	Candidates
--	--------------	----	------------

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

You must write your answer for each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 11 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled.

You should show sufficient working to make your methods clear to the Examiner.

Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

©2007 Edexcel Limited.

Printer's Log. No. H26107A W850/R6663/57570 3/3/3/3/

advancing learning, changing lives

Total

Turn over

Mathematics C1

www.mystudybro.comThis resource was created and owned by Pearson Edexcel ■ Past Paper

6663

Leave

Simplify $(3 + \sqrt{5})(3 - \sqrt{5})$.	
	(2)
	(Total 2 marks)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6663

June 2007 6663 Core Mathematics C1 Mark Scheme

Question number		Scheme	Marks			
1.	9 – 5	or $3^2 + 3\sqrt{5} - 3\sqrt{5} - \sqrt{5} \times \sqrt{5}$ or $3^2 - \sqrt{5} \times \sqrt{5}$ or $3^2 - (\sqrt{5})^2$	M1			
	= <u>4</u>		Alcso	(2) 2		
	M1	for an attempt to multiply out. There must be at least 3 correct terms. Allo only, no arithmetic errors.	w one sign sli	p		
	e.g.	$3^2 + 3\sqrt{5} - 3\sqrt{5} + (\sqrt{5})^2$ is M1A0				
		$3^2 + 3\sqrt{5} + 3\sqrt{5} - (\sqrt{5})^2$ is M1A0 as indeed is $9 \pm 6\sqrt{5} - 5$				
	BUT	$9 + \sqrt{15} - \sqrt{15} - 5 = 4$ is M0A0 since there is more than a sign error.				
		$6 + 3\sqrt{5} - 3\sqrt{5} - 5$ is M0A0 since there is an arithmetic error.				
		If all you see is 9 ± 5 that is M1 but please check it has not come from incoming the second seco	orrect working	5.		
		Expansion of $(3+\sqrt{5})(3+\sqrt{5})$ is M0A0				
	A1cso	for 4 only. Please check that no incorrect working is seen.				
		Correct answer only scores both marks.				

www.mystudybro.com

Mathematics C

Sulliller 2001	www.iiiystuuybio.coiii	Maniemancs Ci
Past Paper	This resource was created and owned by Pearson Edexcel	6663

		L
		b
2. (a) Find the value of $8^{\frac{4}{3}}$.		
	(2)	
(b) Simplify $\frac{15x^{\frac{4}{3}}}{3x}$.	(2)	
(b) Simplify $\frac{15x^3}{}$		
(b) Simplify $\frac{1}{3x}$.	(2)	
	(2)	
		\mathbf{Q}'

(Total 4 marks)

Mathematics C1

www.mystudybro.com

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

Question number	Scheme		Marks	
2.	(a) Attempt $\sqrt[3]{8}$ or $\sqrt[3]{(8^4)}$		M1	
	= <u>16</u>		A1	(2)
	(b) $5x^{\frac{1}{3}}$ 5,	$x^{\frac{1}{3}}$	B1, B1	(2)
				4

(a) M1 for: 2 (on its own) or
$$(2^3)^{\frac{4}{3}}$$
 or $\sqrt[3]{8}$ or $(\sqrt[3]{8})^4$ or 2^4 or $\sqrt[3]{8^4}$ or $\sqrt[3]{4096}$

8³ or 512 or $(4096)^{\frac{1}{3}}$ is M0

A1 for 16 only

(b) 1^{st} B1 for 5 on its own or × something.

So e.g.
$$\frac{5x^{\frac{4}{3}}}{x}$$
 is B1 But $5^{\frac{1}{3}}$ is B0

An expression showing cancelling is not sufficient

(see first expression of QC0184500123945 the mark is scored for the second expression)

$$2^{\text{nd}} B1 \text{ for } x^{\frac{1}{3}}$$

Can use ISW (incorrect subsequent working)

e.g $5x^{\frac{4}{3}}$ scores B1B0 but it may lead to $\sqrt[3]{5x^4}$ which we ignore as ISW.

Correct answers only score full marks in both parts.

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6663	3
Leave	1

blank

3. Given that $y = 3x^2 + 4\sqrt{x}$, x > 0, find

(a)	dy	
(a)	$\mathrm{d}x$,

(2)

(b)
$$\frac{d^2y}{dx^2}$$
,

(2)

	٠	
(c)	y dx	

(3)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question number	Scheme	Marks	
3.	(a) $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 6x^1 + \frac{4}{2}x^{-\frac{1}{2}}$ or $\left(6x + 2x^{-\frac{1}{2}}\right)$	M1 A1	(2)
	(b) $6 + -x^{-\frac{3}{2}}$ or $6 + -1 \times x^{-\frac{3}{2}}$	M1 A1ft	(2)
	(a) $\left(\frac{dy}{dx}\right) = 6x^{1} + \frac{4}{2}x^{-\frac{1}{2}}$ or $\left(6x + 2x^{-\frac{1}{2}}\right)$ (b) $\frac{6 + -x^{-\frac{3}{2}}}{2}$ or $\frac{6 + -1 \times x^{-\frac{3}{2}}}{2}$ (c) $x^{3} + \frac{8}{3}x^{\frac{3}{2}} + C$ A1: $\frac{3}{3}x^{3}$ or $\frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}$ A1: both, simplified and $+C$	M1 A1 A1	(3)
			7
(a)	M1 for <u>some</u> attempt to differentiate: $x^n \to x^{n-1}$ Condone missing $\frac{dy}{dx}$ or $y = \dots$		
	A1 for both terms correct, as written or better. No + C here. Of course $\frac{2}{\sqrt{x}}$ is	acceptable.	
(b)	M1 for some attempt to differentiate again. Follow through their $\frac{dy}{dx}$, at least of or correct follow through.	one term corre	ct
	A1f.t. as written or better, follow through must have 2 distinct terms and simplified	ed e.g. $\frac{4}{4} = 1$.	
(c)	M1 for some attempt to integrate: $x^n \to x^{n+1}$. Condone misreading $\frac{dy}{dx}$ or $\frac{d^2y}{dx^2}$ (+ <i>C</i> alone is not sufficient)		
	1 st A1 for either $\frac{3}{3}x^3$ or $\frac{4x^{\frac{3}{2}}}{\left(\frac{3}{2}\right)}$ (or better) $\frac{2}{3} \times 4x^{\frac{3}{2}}$ is OK here too but not for 2 nd .	A1.	
	2^{nd} A1 for <u>both</u> x^3 and $\frac{8}{3}x^{\frac{3}{2}}$ or $\frac{8}{3}x\sqrt{x}$ i.e. simplified terms <u>and</u> $+C$ all on one 1		
	$2\frac{2}{3}$ instead of $\frac{8}{3}$ is OK		

www.mystudybro.comThis resource was created and owned by Pearson Edexcel ■ Past Paper

A girl saves money over a period of 200 weeks. She saves 5p in Week 1, 7p in Week 2, 9p in Week 3, and so on until Week 200. Her weekly savings form an arithmetic sequence.		
(a) Find the amount she saves in Week 200.		
	(3)	
(b) Calculate her total savings over the complete 200 week period.		
(,, in the second of the secon	(3)	

Past Paper (Mark Scheme)

Question number		Scheme	Marks
4.	(a) Ide	ntify $a = 5$ and $d = 2$ (May be implied)	B1
	$(u_{20}$	$a_{00} = a + (200 - 1)d$ $(= 5 + (200 - 1) \times 2)$	M1
		= 403(p) or (£) 4.03	A1 (3)
	(b)	$(S_{200} =) \frac{200}{2} [2a + (200 - 1)d]$ or $\frac{200}{2} (a + \text{"their } 403\text{"})$	M1
		$= \frac{200}{2} [2 \times 5 + (200 - 1) \times 2] \text{ or } \frac{200}{2} (5 + \text{"their } 403\text{"})$	A1
		= <u>40 800</u> or £408	A1 (3)
			6
(a)	B1	can be implied if the correct answer is obtained. If 403 is <u>not</u> obtained the	n the values of
		a and d must be clearly identified as $a = 5$ and $d = 2$.	
		This mark can be awarded at any point.	
	M1	for attempt to use n th term formula with $n = 200$. Follow through their a a	$\operatorname{nd} d$.
		Must have use of $n = 200$ and one of a or d correct or correct follow through	gh.
		Must be 199 not 200.	
	A 1	for 403 or 4.03 (i.e. condone missing £ sign here). Condone £403 here.	
N.B.		$a = 3$, $d = 2$ is B0 and $a + 200d$ is M0 <u>BUT</u> $3 + 200 \times 2$ is B1M1 and A1 in	f it leads to 403.
		Answer only of 403 (or 4.03) scores 3/3.	
(b)	M1	for use of correct sum formula with $n = 200$. Follow through their a and d	and their 403.
		Must have <u>some</u> use of $n = 200$, and some of a , d or l correct or correct follows:	ow through.
	1 st A1	for any correct expression (i.e. must have $a = 5$ and $d = 2$) but can f.t. their	403 still.
	$2^{nd} A1$	for 40800 or £408 (i.e. the £ sign is required before we accept 408 this time	e).
		40800p is fine for A1 but £40800 is A0.	
ALT	Listing		
(a)	They n	night score B1 if $a = 5$ and $d = 2$ are clearly identified. Then award M1A1 t	ogether for 403.
(b)	$\sum_{r=1}^{200} (2r$	+3). Give M1 for $2 \times \frac{200}{2} \times (201) + 3k$ (with $k > 1$), A1 for $k = 200$ and A1	for 40800.

6663

This resource was created and owned by Pearson Edexcel

Leave blank

5.

Past Paper

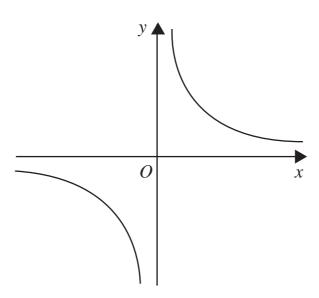


Figure 1

Figure 1 shows a sketch of the curve with equation $y = \frac{3}{x}$, $x \ne 0$.

- (a) On a separate diagram, sketch the curve with equation $y = \frac{3}{x+2}$, $x \ne -2$, showing the coordinates of any point at which the curve crosses a coordinate axis.

 (3)
- (b) Write down the equations of the asymptotes of the curve in part (a). (2)

Summer	, ,	Mathematics C1
Question number	Mark Scheme) This resource was created and owned by Pearson Edexcel Scheme	Marks
5.	Translation parallel to x-axis Top branch intersects +ve y-axis Lower branch has no intersections No obvious overlap $\left(0, \frac{3}{2}\right) \text{ or } \frac{3}{2} \text{ marked on } y\text{- axis}$	M1 A1 B1 (3)
S.C.	(b) $x = -2$, $y = 0$ [Allow ft on first B1 for $x = 2$ when translated "the wrong way" but must be compatible with their sketch.]	B1, B1 (2)
(a)	 M1 for a horizontal translation – two branches with one branch cutting y – a If one of the branches cuts both axes (translation up and across) this is M A1 for a horizontal translation to left. Ignore any figures on axes for this management. B1 for correct intersection on positive y-axis. More than 1 intersection is B x=0 and y = 1.5 in a table alone is insufficient unless intersection of their sketch. A point marked on the graph overrides a point given elsewhere. 	10. ark. 0.
(b)	1 st B1 for $x = -2$. NB $x \ne -2$ is B0. Can accept $x = +2$ if this is compatible with their sketch. Usually they will have M1A0 in part (a) (and usually B0 too) 2 nd B1 for $y = 0$.	
S.C.	If $x = -2$ and $y = 0$ and some other asymptotes are also given award B1B0. The asymptote equations should be clearly stated in part (b). Simply may on the sketch is insufficient <u>unless</u> they are clearly marked "asymptote $x = -2$ " expressions of the sketch is insufficient <u>unless</u> they are clearly marked "asymptote $x = -2$ " expressions.	arking x = -2 or y = 0

This resource was created and owned by Pearson Edexcel

6663 Leave blank

6. (a) By eliminating y from the equations

$$y = x - 4$$
,

$$2x^2 - xy = 8,$$

show that

$$x^2 + 4x - 8 = 0.$$

(2)

(b) Hence, or otherwise, solve the simultaneous equations

$$y = x - 4$$
,

$$2x^2 - xy = 8,$$

giving your answers in the form $a \pm b\sqrt{3}$, where a and b are integers.

(5)

Summer		Mathematics C1
Question number	Mark Scheme) This resource was created and owned by Pearson Edexcel Scheme	6663 Marks
6.	(a) $2x^2 - x(x-4) = 8$	M1
	$x^2 + 4x - 8 = 0 (*)$	A1cso (2)
	(b) $x = \frac{-4 \pm \sqrt{4^2 - (4 \times 1 \times -8)}}{2}$ or $(x+2)^2 \pm 4 - 8 = 0$	M1
	$x = -2 \pm \text{(any correct expression)}$	A1
	$\sqrt{48} = \sqrt{16}\sqrt{3} = 4\sqrt{3}$ or $\sqrt{12} = \sqrt{4}\sqrt{3} = 2\sqrt{3}$	B1
	$y = (-2 \pm 2\sqrt{3}) - 4$ M: Attempt at least one y value	M1
	$x = -2 + 2\sqrt{3}, y = -6 + 2\sqrt{3}$ $x = -2 - 2\sqrt{3}, y = -6 - 2\sqrt{3}$	A1 (5)
		7
(a)	M1 for correct attempt to form an equation in x only. Condone sign errors	/slips but attempt at
	this line must be seen. E.g. $2x^2 - x^2 \pm 4x = 8$ is OK for M1.	
	A1cso for correctly simplifying to printed form. No incorrect working seen. T	The = 0 is required.
	These two marks can be scored in part (b). For multiple attempts	pick best.
(b)	1 st M1 for use of correct formula. If formula is not quoted then a fully correct	t substitution is
	required. Condone missing $x = \text{or just} + \text{or} - \text{instead of } \pm \text{ for M1}.$	
	For completing the square must have as printed or better.	
	If they have $x^2 - 4x - 8 = 0$ then M1 can be given for $(x-2)^2 \pm 4 - 8 = 0$	= 0 .
	1 st A1 for $-2 \pm any$ correct expression. (The $\pm a$ is required but $x = a$ is not)	
	B1 for simplifying the surd e.g. $\sqrt{48} = 4\sqrt{3}$. Must reduce to $b\sqrt{3}$ so $\sqrt{16}$	$\sqrt{3}$ or $\sqrt{4}\sqrt{3}$ are OK.
	2^{nd} M1 for attempting to find at least one y value. Substitution into one of the	given equations
	and an attempt to solve for y.	
	2 nd A1 for correct y answers. Pairings need <u>not</u> be explicit but they must say	which is x and which y .
	Mis-labelling x and y loses final A1 only.	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(a) Share that 12 At 12: 0	
(a) Show that $k^2 - 4k - 12 > 0$.	(2)
(b) Find the set of possible values of k .	(4)

Question number	Scheme		Marks	
7.	(a) Attempt to use discriminant $b^2 - 4ac$		M1	
	$k^2 - 4(k+3) > 0 \implies k^2 - 4k - 12 > 0$ (*	')	Alcso	(2)
	(b) $k^2 - 4k - 12 = 0 \implies$			
	$(k \pm a)(k \pm b)$, with $ab = 12$ or $(k =)\frac{4 \pm \sqrt{4^2 - 4 \times 12}}{2}$ or $(k-2)^2 \pm 2^2 - 1$	12	M1	
	k = -2 and 6 (b)	ooth)	A1	
	$\underline{k < -2, k > 6}$ or $(-\infty, -2); (6, \infty)$ M: choosing "ou	tside"	M1 A1ft	(4)
				6
(a)	M1 for use of $b^2 - 4ac$, one of b or c must be correct. Or full attempt using completing the square that leads to a 3TQ in k e.g. $\left[\left[x + \frac{k}{2}\right]^2 = \right] \frac{k^2}{4} - (k+3)$ A1cso Correct argument to printed result. Need to state (or imply) that $b^2 - (k+3)$ incorrect working seen. Must have >0. If > 0 just appears with $k^2 - (k+3)$ if >0 appears on last line only with no explanation give A0. $b^2 - 4ac$ followed by $k^2 - 4k - 12 > 0$ only is insufficient so M0A0 e.g. $k^2 - 4 \times 1 \times k + 3$ (missing brackets) can get M1A0 but $k^2 + 4(k+3)$ is M Using $\sqrt{b^2 - 4ac} > 0$ is M0.	4(k +	3) > 0 that is 0	
(b)	1^{st} M1 for attempting to find critical regions. Factors, formula or con 1^{st} A1 for $k = 6$ and -2 only 2^{nd} M1 for choosing the outside regions 2^{nd} A1f.t. as printed or f.t. their (non identical) critical values $6 < k < -2$ is M1A0 but ignore if it follows a correct version $-2 < k < 6$ is M0A0 whatever their diagram looks like Condone use of x instead of x for critical values and final answers in	(b).		

This resource was created and owned by Pearson Edexcel

Leave blank

8. A sequence $a_1, a_2, a_3,...$ is defined by

$$a_1 = k$$
,

$$a_{n+1} = 3a_n + 5, \qquad n \geqslant 1,$$

where k is a positive integer.

(a) Write down an expression for a_2 in terms of k.

(1)

(b) Show that $a_3 = 9k + 20$.

(2)

(c) (i) Find $\sum_{r=1}^{4} a_r$ in terms of k.

(4)

(ii)	Show that	$\sum a_r$ is divisible by 1	0
		r=1	

Summer	2007 Mark Scheme)	www.mystudybro.com This resource was created and owned by Pearson Edexce		lathematics	6663
Question number	wark ocheme)	Scheme	51	Mark	
8.	(a) $(a_2 = \underline{)3}$	[must be seen in part (a) or labelled $a_2 = $]		B1	(1)
	(b) $(a_3 =)3$	3(3k+5)+5		M1	
	=9	k + 20	(*)	Alcso	(2)
	(c)(i) $a_4 =$	3(9k+20)+5 (=27k+65)		M1	
	$\sum_{r=0}^{4} a_{r} =$	= k + (3k + 5) + (9k + 20) + (27k + 65)		M1	
		=40k+90		A1	
	=	$= \underline{10(4k+9)} $ (or explain why divisible by 10)		A1ft	(4) 7
(c)	1 st M1	for attempting to find a_4 . Can allow a slip here e.g. 3(9)	9k + 20) [i.	e. forgot +5]	
(c)	2 nd M1	·			
	2 IVI I	for attempting sum of 4 relevant terms, follow through Must have 4 terms starting with <i>k</i> .	meir (a) ai	ia (b).	
		Use of arithmetic series formulae at this point is M0A0	A O		
	1 st A1	for simplifying to $40k + 90$ or better	AU		
	2 nd A1ft	for taking out a factor of 10 or dividing by 10 or an exp	lanation ir	words true	$\forall k$
	2 /1111	Follow through their sum of 4 terms provided that both		words true	V 1C .
		scored and their sum <u>is</u> divisible by 10.	ivis are		
		A comment is <u>not</u> required.			
		e.g. $\frac{40k+90}{10} = 4k+9$ is OK for this final A1.			
S.C.	$\sum_{r=2}^{5} a$	$_{r} = 120k + 290 = 10(12k + 29)$ can have M1M0A0A1ft.			

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6663

Leave

	The curve C with equation $y = f(x)$ passes through the point $(5, 65)$.
	The curve C with equation $y = \Gamma(x)$ passes through the point (3, 63).
	Given that $f'(x) = 6x^2 - 10x - 12$,
	(a) use integration to find $f(x)$.
	(4)
	(b) Hence show that $f(x) = x(2x+3)(x-4)$.
	(2)
	(c) In the space provided on page 17, sketch C , showing the coordinates of the points
	where C crosses the x -axis. (3)
	(- <i>)</i>
-	
_	

Summer		lybro.com N	lathematics		
Past Paper (Question number	Mark Scheme) This resource was created and Scheme	owned by Pearson Edexcel	Marks	6663 S	
9.	(a) $f(x) = \frac{6x^3}{3} - \frac{10x^2}{2} - 12x \ (+C)$		M1 A1		
	x = 5: $250 - 125 - 60 + C = 65$	C = 0	M1 A1	(4)	
	(b) $x(2x^2 - 5x - 12)$ or $(2x^2 + 3x)(x - 4)$	or $(2x+3)(x^2-4x)$	M1		
	= x(2x+3)(x-4)	(*)	A1cso	(2)	
	(c)	Shape Through origin $\left(-\frac{3}{2},0\right) \text{ and } (4,0)$	B1 B1 B1	(3) 9	
(a)	1 st M1 for attempting to integrate, $x^n \rightarrow x^{n+1}$				
	1^{st} A1 for all x terms correct, need not be simplified. Ignore + C here.				
	2^{nd} M1 for some use of $x = 5$ and $f(5)=65$ to form an equation in C based on their integration.				
	There must be some visible attempt to use $x = 5$ and $f(5)=65$. No $+C$ is M0.				
	2^{nd} A1 for $C = 0$. This mark cannot be scored unless a suitable equation is seen.				
(b)	M1 for attempting to take out a correct factor or to verify. Allow usual errors on signs.				

They must get to the equivalent of one of the given partially factorised expressions or, if verifying, $x(2x^2+3x-8x-12)$ i.e. with no errors in signs.

Alcso for proceeding to printed answer with no incorrect working seen. Comment not required. This mark is dependent upon a fully correct solution to part (a) so M1A1M0A0M1A0 for (a) & (b). Will be common or M1A1M1A0M1A0. To score 2 in (b) they must score 4 in (a).

 1^{st} B1 for positive x^3 shaped curve (with a max and a min) positioned anywhere. (c) 2nd B1 for any curve that passes through the origin (B0 if it only touches at the origin) 3^{rd} B1 for the two points <u>clearly</u> given as coords or values marked in appropriate places on x axis. Ignore any extra crossing points (they should have lost first B1). Condone (1.5, 0) if clearly marked on –ve x-axis. Condone (0, 4) etc if marked on +ve x axis.

A point on the graph overrides coordinates given elsewhere.

Curve can stop (i.e. not pass through) at (-1.5, 0) and (4, 0).

www.mystudybro.com

■ Past Paper

This resource was created and owned by Pearson Edexcel

6663

Leave blank

10.	The curve C has equation	$y = x^2(x-6) + \frac{4}{x}, \ x > 0.$
-----	----------------------------	--

The points P and Q lie on C and have x-coordinates 1 and 2 respectively.

(a) Show that the length of PQ is $\sqrt{170}$.

(4)

(b) Show that the tangents to C at P and Q are parallel.

(5)

(c) Find an equation for the normal to C at P, giving your answer in the form ax + by + c = 0, where a, b and c are integers.

(4)

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

Ouestion Scheme Marks number 1st B1 for – 1 (a) x = 1: y = -5 + 4 = -1, x = 2: y = -16 + 2 = -1410. (can be given 2nd B1 for - 14 in (b) or (c)) $PQ = \sqrt{(2-1)^2 + (-14 - (-1))^2} = \sqrt{170}$ (*) M1 A1cso (4) (b) $y = x^3 - 6x^2 + 4x^{-1}$ M1 $\frac{dy}{dx} = 3x^2 - 12x - 4x^{-2}$ M1 A1 x = 1: $\frac{dy}{dx} = 3 - 12 - 4 = -13$ M: Evaluate at one of the points M1x = 2: $\frac{dy}{dx} = 12 - 24 - 1 = -13$: Parallel A: Both correct + conclusion A1 (5)(c) Finding gradient of normal $\left(m = \frac{1}{13}\right)$ M1 $y - -1 = \frac{1}{13}(x - 1)$ M1 A1ft x - 13y - 14 = 0A1cso (4)o.e. 13 for attempting PQ or PQ^2 using their P and their Q. Usual rules about quoting formulae. M1(a) We must see attempt at $1^2 + (y_P - y_Q)^2$ for M1. $PQ^2 = \sqrt{...}$ etc could be M1A0. Alcso for proceeding to the correct answer with no incorrect working seen. 1^{st} M1 for multiplying by x^2 , the x^3 or $-6x^2$ must be correct. (b) 2nd M1 for some correct differentiation, at least one term must be correct as printed. 1st A1 for a fully correct derivative. These 3 marks can be awarded anywhere when first seen. 3^{rd} M1 for attempting to substitute x = 1 or x = 2 in their derivative. Substituting in y is M0. 2nd A1 for -13 from both substitutions and a brief comment. The -13 must come from their derivative. $\begin{array}{c} 1^{st}\,M1 \\ 2^{nd}\,M1 \end{array}$ for use of the perpendicular gradient rule. Follow through their -13. (c) for full method to find the equation of the normal or tangent at P. If formula is quoted allow slips in substitution, otherwise a correct substitution is required. 1st A1ft 2nd A1cso for a correct expression. Follow through their -1 and their changed gradient. for a correct equation with = 0 and integer coefficients. This mark is dependent upon the -13 coming from their derivative in (b) hence cso. Tangent can get M0M1A0A0, changed gradient can get M0M1A1A0orM1M1A1A0. Condone confusion over terminology of tangent and normal, mark gradient and equation. Allow for $-\frac{4}{x}$ or (x+6) but not omitting $4x^{-1}$ or treating it as 4x. MR

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

. The line l_1 has equation $y = 3x + 2$ and the line l_2 has equation $3x + 2y - 8 = 0$.	
(a) Find the gradient of the line l_2 .	(2)
The point of intersection of l_1 and l_2 is P .	
(b) Find the coordinates of <i>P</i> .	(3)
The lines l_1 and l_2 cross the line $y = 1$ at the points A and B respectively.	
(c) Find the area of triangle <i>ABP</i> .	(4)

Summer		athematics C1				
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel	6663				
Question number	Scheme	Marks				
11.	(a) $y = -\frac{3}{2}x(+4)$ Gradient = $-\frac{3}{2}$	M1 A1 (2)				
	(b) $3x + 2 = -\frac{3}{2}x + 4$ $x =, \frac{4}{9}$	M1, A1				
	$y = 3\left(\frac{4}{9}\right) + 2 = \frac{10}{3} \left(= 3\frac{1}{3}\right)$	A1 (3)				
	(c) Where $y = 1$, $l_1: x_A = -\frac{1}{3}$ $l_2: x_B = 2$ M: Attempt one of these	M1 A1				
	Area = $\frac{1}{2}(x_B - x_A)(y_P - 1)$	M1				
	$= \frac{1}{2} \times \frac{7}{3} \times \frac{7}{3} = \frac{49}{18} = 2\frac{13}{18}$ o.e.	A1 (4)				
		9				
(a)	M1 for an attempt to write $3x + 2y - 8 = 0$ in the form $y = mx + c$ or a full method that leads to $m = 0$, e.g find 2 points, and attempt gradient using $\frac{y_2 - y_1}{x_2 - x_1}$ e.g. finding $y = -1.5x + 4$ alone can score M1 (even if they go on to say $m = 4$) A1 for $m = -\frac{3}{2}$ (can ignore the $+c$) or $\frac{dy}{dx} = -\frac{3}{2}$					
(b)	M1 for forming a suitable equation in one variable and attempting to solve leading to $x =$ or $y = 1^{st} A1$ for any exact correct value for $x = 2^{nd} A1$ for any exact correct value for $y = 2^{nd} A1$ for any ex					
(c)	1 st M1 for attempting the <i>x</i> coordinate of <i>A</i> or <i>B</i> . One correct value seen scores M1. 1 st A1 for $x_A = -\frac{1}{3}$ and $x_B = 2$					
	2^{nd} M1 for a full method for the area of the triangle – follow through their x_A, x_B, y_P .					
	e.g. determinant approach $\frac{1}{2}\begin{vmatrix} 2 & -\frac{1}{3} & \frac{4}{9} & 2\\ 1 & 1 & \frac{10}{3} & 1 \end{vmatrix} = \frac{1}{2} 2 - \dots - (-\frac{1}{3}\dots) $					
	2^{nd} A1 for $\frac{49}{18}$ or an exact equivalent.					
	All accuracy marks require answers as single fractions or mixed numbers not necesterms.	essarily in lowest				