Summer 2008

www.mystudybro.com wood by Dooroon Edoyool This resour ----ام مرم ام

Mathematics C1 ~~~~

Past Paper	1113 1630	burce was o	Jealeu	anu u	Mieu	Ју геа	13011			6663
Centre No.			Pap	er Refe	rence			Surname	Initia	l(s)
Candidate No.		6 6	6 6	3	/	0	1	Signature		
<u> </u>	Paper Reference(s) 66663/01							E	kaminer's use	e only
	Edex	cel (GC	E				Tea	m Leader's u	ise only
	Core M	athe	mat	ics	C 1	-				
	Advance	ed Sul	bsid	iary	Y				Question	Leave
	Monday 2	2 June	2008	5 – N	Aor	ning	-		Number	Blank
	Time: 1 h					C	,		1	
									3	
									4	
	Materials requir Mathematical For			$\frac{\mathbf{It}}{\mathbf{N}}$		cluded	with	question papers	5	
	Wathematical I of			1					6	
	Calculators may	NOT be u	sed in th	is exa	minati	on.			7	
									8	
									9	
Instructions to Ca	indidates								10	
In the boxes above, w Check that you have Answer ALL the que	the correct question	· · ·	didate 1	numbe	r, you	r surna	ime, i	nitials and signature.	11	
You must write your		uestion in 1	the space	e follo	wing	the que	estion			
Information for C										
A booklet 'Mathema Full marks may be o					ovided	l.				
The marks for indivi There are 11 question There are 28 pages in	ns in this question	paper. The	e total n	nark fo	r this	paper i		brackets: e.g. (2).		
Advice to Candida	ates									
You must ensure that You should show suf Answers without wo	t your answers to p fficient working to	make you	r metho					:		
	muj not gun									
									Total	
This publication may be reproduced of Edexcel Limited copyright policy. ©2008 Edexcel Limited. Printer's Log. No. H299992A W850/R6663/57570 3/3/3/3/	nly in accordance with							edex advancing lear	Turn	

euexcei advancing learning, changing lives

Mathematics C1

$1 \text{Eind} \int (2 + 5x^2) dx$	Leave blank
1. Find $\int (2+5x^2) dx$. (3)	
	Q1
(Total 3 marks)	

June 2008 6663 Core Mathematics C1 Mark Scheme

Question number	Scheme	Marks	
1.	$2x + \frac{5}{3}x^3 + c$	M1A1A1	
			(3) 3
	M1 for an attempt to integrate $x^n \to x^{n+1}$. Can be given if $+c$ is only correct terms	rm.	
	1 st A1 for $\frac{5}{3}x^3$ or $2x + c$. Accept $1\frac{2}{3}$ for $\frac{5}{3}$. Do <u>not</u> accept $\frac{2x}{1}$ or $2x^1$ as final	answer	
	2^{nd} A1 for as printed (no extra or omitted terms). Accept $1\frac{2}{3}$ or 1.6 for $\frac{5}{3}$ but not	1.6 or 1.67 etc	2
	Give marks for the first time correct answers are seen e.g. $\frac{5}{3}$ that later becomes 1.67, the 1.67 is		
	treated as ISW		
	NB M1A0A1 is not possible		

ast Pape	r	This resource was created and owned by Pearson Edexce		6663
2	Easterize compl			Leave blank
2.	Factorise comple	etery		
		x^3-9x .		
			(3)	•
				Q2
			(Total 3 marks)	
				3
		H 2 9 9 9 2 A 0 3 2 8		
		H 2 9 9 9 2 A 0 3 2 8		Turn over

6663

Question number			ΣS
2.	$x(x^2-9)$ or $(x\pm 0)(x^2-9)$ or $(x-3)(x^2+3x)$ or $(x+3)(x^2-3x)$ x(x-3)(x+3)	B1 M1A1	(3)
			3
	B1 for first factor taken out correctly as indicated in line 1 above. So x	$(x^2 + 9)$ is B0	
	M1 for attempting to factorise a relevant quadratic.		
	"Ends" correct so e.g. $(x^2 - 9) = (x \pm p)(x \pm q)$ where $pq = 9$ is OK.		
	This mark can be scored for $(x^2-9)=(x+3)(x-3)$ seen anywhere	·.	
	A1 for a fully correct expression with all 3 factors.		
	Watch out for $-x(3-x)(x+3)$ which scores A1		
	Treat any working to solve the equation $x^3 - 9x$ as ISW.		

Past Paper

Mathematics C1

(2)

6663

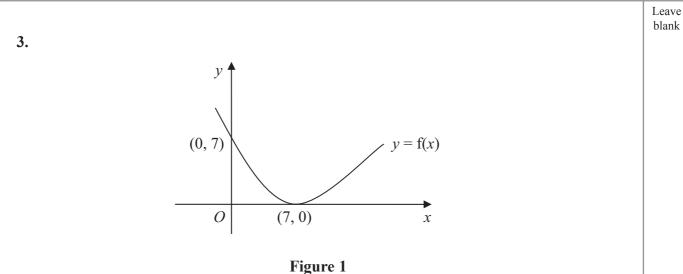
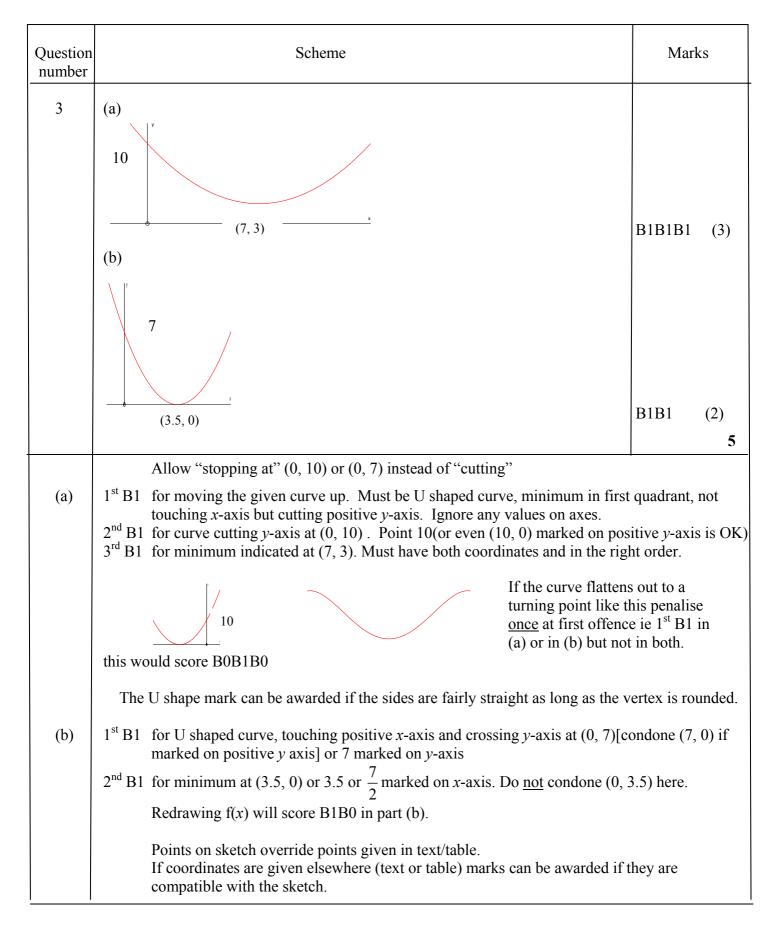


Figure 1 shows a sketch of the curve with equation y = f(x). The curve passes through the point (0, 7) and has a minimum point at (7, 0).

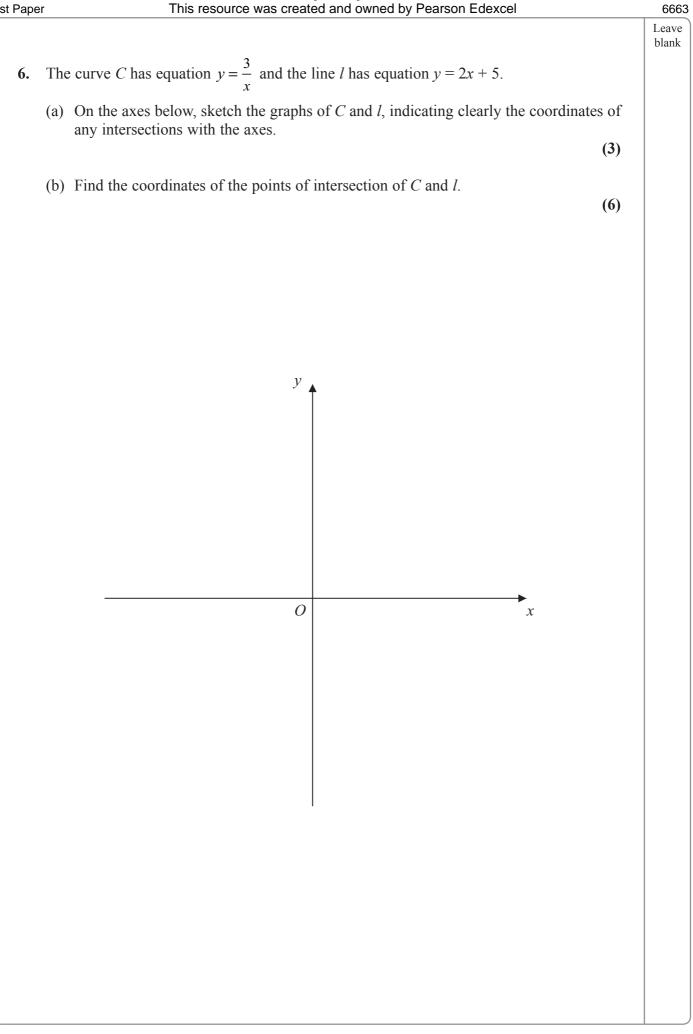
On separate diagrams, sketch the curve with equation


(a)
$$y = f(x) + 3$$
, (3)

(b) y = f(2x).

On each diagram, show clearly the coordinates of the minimum point and the coordinates of the point at which the curve crosses the *y*-axis.

Summer 2008 Past Paper	www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematics	C1
4.	$f(x) = 3x + x^3, \qquad x > 0.$		eave ank
(a) Differentiat	te to find $f'(x)$.	(2)	
Given that $f'(x)$) = 15,		
(b) find the val	lue of <i>x</i> .	(3)	


Scheme	Marks			
$[f'(x) =] 3 + 3x^2$	M1A1	(2)		
$3+3x^2 = 15$ and start to try and simplify $x^2 = k \rightarrow x = \sqrt{k}$ (ignore <u>+</u>) x = 2 (ignore $x = -2$)	M1 M1 A1	(3) 5		
M1 for attempting to differentiate $x^n \rightarrow x^{n-1}$. Just one term will do. A poor integration attempt that gives $3x^2 +$ (or similar) scores M0A0 A1 for a fully correct expression. Must be 3 not $3x^0$. If there is a + <i>c</i> they score A0.				
e.g. $3x^2 = 15 - 3$ or $1 + x^2 = 5$ or even $3 + 3x^2 \rightarrow 3x^2 = \frac{15}{3}$ or $3x^{-1} + 3x^2 = 15 \rightarrow 6x = 15$ (i.e algebra can be awful as long as they try to collect terms in their $f'(x) = 15$ equation)				
2 nd M1 this is dependent upon their f'(x) being of the form $a + bx^2$ and attempting to solve $a + bx^2 = 15$ For correct processing leading to $x =$ Can condone arithmetic slips but processes should be correct so e.g. $3 + 3x^2 = 15 \rightarrow 3x^2 = \frac{15}{3} \rightarrow x = \frac{\sqrt{15}}{3}$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow x^2 = 9 \rightarrow x = 3$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow 3x = \sqrt{12} \rightarrow x = \frac{\sqrt{12}}{3}$ scores M1M0A0				
	[f'(x) =] $3+3x^2$ $3+3x^2 = 15$ and start to try and simplify $x^2 = k \rightarrow x = \sqrt{k}$ (ignore \pm) x = 2 (ignore $x = -2$) M1 for attempting to differentiate $x^n \rightarrow x^{n-1}$. Just one term will do. A poor integration attempt that gives $3x^2 +$ (or similar) scores M0A0 A1 for a fully correct expression. Must be 3 not $3x^0$. If there is $a + c$ they sco 1^{st} M1 for forming a correct equation and trying to rearrange their $f'(x) = 15$ e.g. e.g. $3x^2 = 15-3$ or $1+x^2 = 5$ or even $3+3x^2 \rightarrow 3x^2 = \frac{15}{3}$ or $3x^{-1}+3x^2 = 15 \rightarrow$ (i.e algebra can be awful as long as they try to collect terms in their $f'(x) = 15$ eq 2^{nd} M1 this is dependent upon their $f'(x)$ being of the form $a + bx^2$ and attempting to solve $a + bx^2 = 15$ For correct processing leading to $x =$ Can condone arithmetic slips but processes should be correct so e.g. $3+3x^2 = 15 \rightarrow 3x^2 = \frac{15}{3} \rightarrow x = \frac{\sqrt{15}}{3}$ scores M1M0A0 $3+3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow x^2 = 9 \rightarrow x = 3$ scores M1M0A0	$[f'(x) =] 3+3x^2$ M1A1 $3+3x^2=15$ and start to try and simplify $x^2 = k \rightarrow x = \sqrt{k}$ (ignore \pm) $x = 2$ (ignore $x = -2$)M1M1for attempting to differentiate $x^n \rightarrow x^{n-1}$. Just one term will do. A poor integration attempt that gives $3x^2 +$ (or similar) scores M0A0A1for a fully correct expression. Must be 3 not $3x^0$. If there is a + c they score A0. 1^{st} M1 for forming a correct equation and trying to rearrange their $f'(x) = 15$ e.g. collect terms. e.g. $3x^2 = 15 - 3$ or $1 + x^2 = 5$ or even $3 + 3x^2 \rightarrow 3x^2 = \frac{15}{3}$ or $3x^{-1} + 3x^2 = 15 \rightarrow 6x = 15$ (i.e algebra can be awful as long as they try to collect terms in their $f'(x) = 15$ equation) 2^{nd} M1 this is dependent upon their $f'(x)$ being of the form $a + bx^2$ and attempting to solve $a + bx^2 = 15$ For correct processing leading to $x =$ Can condone arithmetic slips but processes should be correct soe.g. $3 + 3x^2 = 15 \rightarrow 3x^2 = \frac{15}{3} \rightarrow x = \frac{\sqrt{15}}{3}$ scores M1M0A0 $3 + 3x^2 = 15 \rightarrow 3x^2 = 12 \rightarrow x^2 = 9 \rightarrow x = 3$ scores M1M0A0		

Summer Past Paper	2008 www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematic	cs C1 6663
			Leave blank
5.	A sequence x_1, x_2, x_3, \dots is defined by		
	$x_1 = 1$,		
	$x_{n+1} = ax_n - 3, \ n \ge 1,$		
	where <i>a</i> is a constant.		
((a) Find an expression for x_2 in terms of <i>a</i> .		
		(1)	
((b) Show that $x_3 = a^2 - 3a - 3$.	(2)	
	Given that $x_3 = 7$,		
	(c) find the possible values of <i>a</i> .	(3)	

Question number	Scheme		
5. (a)	$[x_2 =]a - 3$	B1	(1)
(b)	$[x_3 =] ax_2 - 3$ or $a(a-3) - 3$	M1	
	= a(a-3)-3 = a^2-3a-3 (*) both lines needed for A1		
	$=a^2-3a-3$ (*)	Alcso	(2)
(c)	$a^{2}-3a-3=7$ $a^{2}-3a-10=0 or a^{2}-3a=10$ $(a-5)(a+2)=0$		
	$a^2 - 3a - 10 = 0$ or $a^2 - 3a = 10$	M1	
	(a-5)(a+2) = 0	dM1	
	a = 5 or -2	A1	(3)
			6
(a) (b)	 B1 for a×1−3 or better. Give for a−3 in part (a) or if it appears in (b) they must This must be seen in (a) or before the a(a−3)−3 step. M1 for clear show that. Usually for a(a−3)−3 but can follow through their x₂ and 		
	A1 for correct processing leading to printed answer. Both lines needed and no incorr	ect working see	en.
(c)	1 st M1 for attempt to form a correct equation and start to collect terms. It must be need not lead to a 3TQ=0	a quadratic bu	ut
	2^{nd} dM1 This mark is dependent upon the first M1.		
	for attempt to factorize their 3TQ=0 or to solve their 3TQ=0. The "=0" can	be implied.	
	$(x \pm p)(x \pm q) = 0$, where $pq = 10$ or $(x \pm \frac{3}{2})^2 \pm \frac{9}{4} - 10 = 0$ or correct use of quadratic	c formula with	h <u>+</u>
	They must have a form that leads directly to 2 values for <i>a</i> .		
	Trial and Improvement that leads to only one answer gets M0 here.		
	A1 for both correct answers. Allow $x =$		
	Give 3/3 for correct answers with no working or trial and improvement that gives	<u>both</u> values fo	or a

.

Question Number	Scheme	Marks			
6. (a)	5	B1M1A1 (3)			
(b)	$2x+5 = \frac{3}{x}$ $2x^{2}+5x-3[=0] \text{or} 2x^{2}+5x=3$ $(2x-1)(x+3)[=0]$ $x = -3 \text{ or } \frac{1}{2}$ $y = \frac{3}{-3} \text{ or } 2 \times (-3) + 5 \text{or} y = \frac{3}{\frac{1}{2}} \text{ or } 2 \times (\frac{1}{2}) + 5$ Points are (-3,-1) and ($\frac{1}{2}$,6) (correct pairings)	M1 A1 M1 A1 M1 A1ft			
(a)	B1 for curve of correct shape i.e 2 branches of curve, in correct quadrants, of roughly	9 7 the correct shape			
	 and no touching or intersections with axes. Condone up to 2 inward bends but there must be some ends that are roughly asym M1 for a straight line <u>cutting</u> the positive <i>y</i>-axis and the negative <i>x</i>-axis. Ignore A1 for (0,5) and (-2.5,0) or points correctly marked on axes. Do not give for v Condone mixing up (x, y) as (y, x) if one value is zero and other value correctly 	e any values. values in tables.			
(b)	1 st M1 for attempt to form a suitable equation and multiply by x (at least one of 2x or +5) multiplied. 1 st A1 for correct 3TQ - condone missing = 0 2 nd M1 for an attempt to solve a relevant 3TQ leading to 2 values for $x =$ 2 nd A1 for both $x = -3$ and 0.5. T&I for x values <u>may</u> score 1 st M1A1 otherwise no marks unless both values correct Answer only of $x = -3$ and $x = \frac{1}{2}$ scores 4/4, then apply the scheme for the 3 rd M1 for an attempt to find at least one y value by substituting their x in either $\frac{3}{x}$) should be ect. final M1A1ft or $2x + 5$			
	3^{rd} A1ft follow through both their x values, in either equation but the same for each, correct pairings required but can be $x = -3$, $y = -1$ etc				

st Pape	r This resource was created and owned by Pearson Edexcel	6663
7.	Sue is training for a marathon. Her training includes a run every Saturday starting with a run of 5 km on the first Saturday. Each Saturday she increases the length of her run from the previous Saturday by 2 km.	Leave blank
	(a) Show that on the 4th Saturday of training she runs 11 km. (1)	
	(b) Find an expression, in terms of n, for the length of her training run on the nth Saturday.	
	(2)	
	(c) Show that the total distance she runs on Saturdays in <i>n</i> weeks of training is $n(n + 4)$ km. (3)	
	On the <i>n</i> th Saturday Sue runs 43 km.	
	(d) Find the value of <i>n</i> . (2)	
	(e) Find the total distance, in km, Sue runs on Saturdays in <i>n</i> weeks of training. (2)	

		1	
Question number	Scheme	Mar	ks
7. (a)	5, 7, 9, 11 or 5+2+2+2=11 or 5+6=11 use $a = 5$, $d = 2$, $n = 4$ and $t_4 = 5 + 3 \times 2 = 11$	B1	(1)
(b)	$t_n = a + (n-1)d$ with one of $a = 5$ or $d = 2$ correct (can have a letter for the other)	M1	
	= 5 + 2(n - 1) or $2n + 3$ or $1 + 2(n + 1)$	A1	(2)
(c)	$S_n = \frac{n}{2} [2 \times 5 + 2(n-1)] \text{ or use of } \frac{n}{2} (5 + \text{"their } 2n+3") \text{ (may also be scored in (b))} M1A1$		
	$= \{n(5+n-1)\} = n(n+4) (*)$	Alcso	(3)
(d)	43 = 2n+3	M1	
	[n] = 20	A1	(2)
(e)	$S_{20} = 20 \times 24$, $= \underline{480}$ (km)	M1A1	(2)
			10
(a)	B1 Any other sum must have a convincing argument	I	
(b)	 M1 for an attempt to use a + (n - 1)d with one of a or d correct (the other can b Allow any answer of the form 2n + p (p ≠ 5) to score M1. A1 for a correct expression (needn't be simplified) [Beware 5+(2n-1) score Expression must be in n not x. Correct answers with no working scores 2/2. 		
(c)	M1 for an attempt to use S_n formula with $a = 5$ or $d = 2$ or $a = 5$ and their " $2n + 3$ " 1 st A1 for a fully correct expression 2 nd A1 for correctly simplifying to given answer. No incorrect working seen. Must see S_n used.		ised.
(d)	Do not give credit for part (b) if the equivalent work is given in part (d) M1 for forming a suitable equation in n (ft their (b)) and attempting to solve leading to $n =$ A1 for 20 Correct answer only scores 2/2. Allow 20 following a restart but check working. eg 43 = $2n + 5$ that leads to 40 = $2n$ and $n = 20$ should score M1A0.		
(e)	M1 for using their answer for n in $n(n + 4)$ or S_n formula, their n must be a val A1 for 480 (ignore units but accept 480 000 m etc)[no matter where their 20 c		1]
	NB "attempting to solve" eg part (d) means we will allow sign slips and slips in ar but not in processes. So dividing when they should subtract etc would lead to	o M0.	
	Listing in parts (d) and (e) can score 2 (if correct) or 0 otherwise in each pa		
	Poor labelling may occur (especially in (b) and (c)). If you see work to get $n(n + 1)$	4) mark as	s (c)

Poor labelling may occur (especially in (b) and (c)). If you see work to get n(n + 4) mark as (c)

<u> </u>	er This resource was created and owned by Pearson Edexcel	
•	Given that the equation $2qx^2 + qx - 1 = 0$, where q is a constant, has no real roots,	
	Siven that the equation $2qx + qx = 1 = 0$, where q is a constant, has no real roots,	
	(a) show that $q^2 + 8q < 0$.	
		(2)
	(b) Hence find the set of possible values of q .	
		(3)
_		

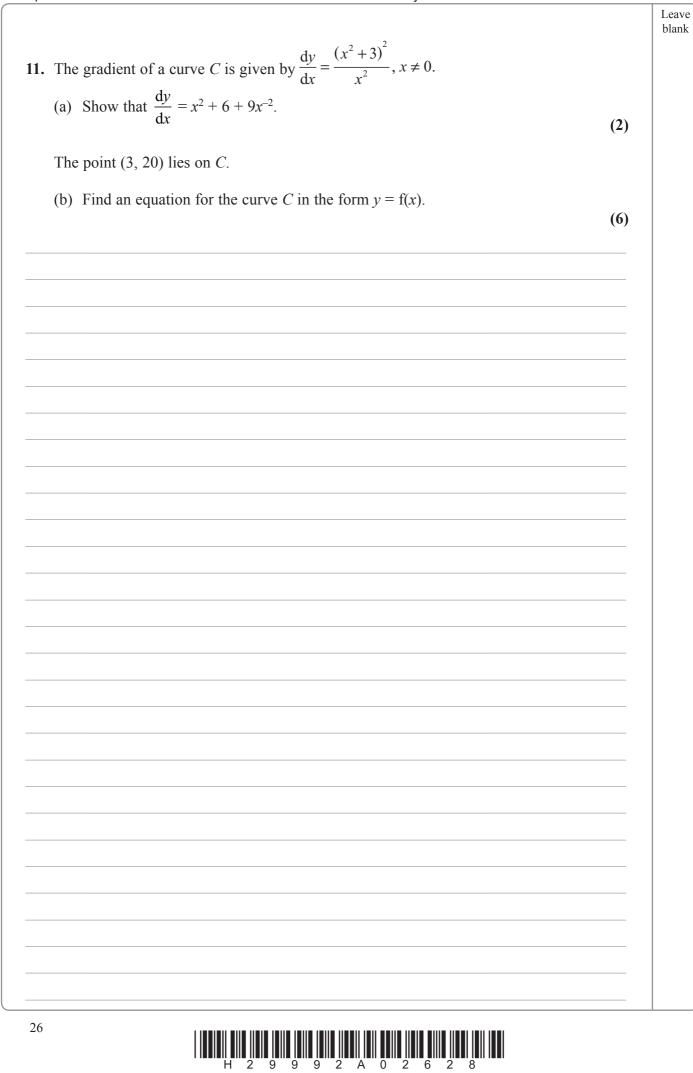
Question number	Scheme	Marks	
8. (a)	[No real roots implies $b^2 - 4ac < 0$.] $b^2 - 4ac = q^2 - 4 \times 2q \times (-1)$ So $q^2 - 4 \times 2q \times (-1) < 0$ i.e. $q^2 + 8q < 0$ (*)	A1cso (2)	
(b)	$q(q+8) = 0 or (q \pm 4)^2 \pm 16 = 0 (2 cvs) -8 < q < 0 or q \in (-8, 0) or q < 0 and q > -8$	M1 A1 A1ft (3) 5	
(a)	 M1 for attempting b² - 4ac with one of b or a correct. < 0 not needed for M1 This may be inside a square root. A1cso for simplifying to printed result with no incorrect working or statements seen. Need an intermediate step e.g. q²8q < 0 or q² - 4×2q×-1<0 or q² - 4(2q)(-1) < 0 or q² - 8q(-1) < 0 or q² - 8q×-1<0 or q² - 4(2q)(-1) < 0 or q² - 8q(-1) < 0 or q² - 8q×-1<0 i.e. must have × or brackets on the 4ac term < 0 must be seen at least one line before the final answer. 		
(b)	M1 for factorizing or completing the square or attempting to solve $q^2 \pm 8q = 0$. A method that would lead to 2 values for q . The "= 0" may be implied by values appearing later. 1 st A1 for $q = 0$ and $q = -8$ 2 nd A1 for $-8 < q < 0$. Can follow through their cvs but must choose "inside" region. q < 0, q > -8 is A0, $q < 0$ or $q > -8$ is A0, (-8, 0) on its own is A0 BUT " $q < 0$ and $q > -8$ " is A1 Do not accept a number line for final mark		

mmer	2008 www.mystudybro.com This resource was created and owned by Pearson Edex	Mathematics
t Paper	This resource was created and owned by Fearson Edex	Lea
9. 1	The curve <i>C</i> has equation $y = kx^3 - x^2 + x - 5$, where <i>k</i> is a constant.	bla
((a) Find $\frac{dy}{dx}$.	(2)
		(2)
] V	The point A with x-coordinate $-\frac{1}{2}$ lies on C. The tangent to C at A is with equation $2y - 7x + 1 = 0$.	s parallel to the line
ł	Find	
((b) the value of k ,	
		(4)
((c) the value of the <i>y</i> -coordinate of <i>A</i> .	
		(2)

Question number	Scheme	Marks	
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = 3kx^2 - 2x + 1$	M1A1	(2)
(b)	Gradient of line is $\frac{7}{2}$	B1	
	When $x = -\frac{1}{2}$: $3k \times (\frac{1}{4}) - 2 \times (-\frac{1}{2}) + 1, = \frac{7}{2}$	M1, M1	
	$\frac{3k}{4} = \frac{3}{2} \Longrightarrow k = 2$	A1	(4)
(c)	$x = -\frac{1}{2} \Longrightarrow y = k \times (-\frac{1}{8}) - (\frac{1}{4}) - \frac{1}{2} - 5, = -6$	M1, A1	(2)
		8	
(a)	M1 for attempting to differentiate $x^n \to x^{n-1}$ (or -5 going to 0 will do)		
	A1 all correct. A "+ c " scores A0		
(b)	B1 for $m = \frac{7}{2}$. Rearranging the line into $y = \frac{7}{2}x + c$ does not score this mark until you are sure they are using $\frac{7}{2}$ as the gradient of the line or state $m = \frac{7}{2}$		sure
	1 st M1 for substituting $x = -\frac{1}{2}$ into their $\frac{dy}{dx}$, some correct substitution seen		
	2^{nd} M1 for forming a suitable equation in k and attempting to solve leading to $k =$		
	Equation must use their $\frac{dy}{dx}$ and <u>their gradient of line</u> . Assuming the gradient is 0 or 7 scores		
	M0 unless they have clearly stated that this is the gradient of the line.		
	A1 for $k = 2$		
(c)	M1 for attempting to substitute their <i>k</i> (however it was found or can still be a le $x = -\frac{1}{2}$ into <i>y</i> (some correct substitution)	etter) and	
	A1 for - 6		

Mathematics C1

6663


www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper Leave blank 10. У l_2 Q l_1 0 R х Figure 2 The points Q(1, 3) and R(7, 0) lie on the line l_1 , as shown in Figure 2. The length of *QR* is $a\sqrt{5}$. (a) Find the value of *a*. (3) The line l_2 is perpendicular to l_1 , passes through Q and crosses the y-axis at the point P, as shown in Figure 2. Find (b) an equation for l_2 , (5) (c) the coordinates of P, (1) (d) the area of ΔPQR . (4)

Question number	Scheme		Marks	
10. (a)	$QR = \sqrt{(7-1)^2 + (0-3)^2}$ = $\sqrt{36+9}$ or $\sqrt{45}$	$(condone \pm)$	M1 A1	
	$=3\sqrt{5}$ or $a=3$	$(\pm 3\sqrt{5} \text{ etc is A0})$	A1 (3)	
(b)	Gradient of QR (or l_1) = $\frac{3-0}{1-7}$ or $\frac{3}{-6}$, = $-\frac{1}{2}$		M1, A1	
	Gradient of l_2 is $-\frac{1}{-\frac{1}{2}}$ or 2		M1	
	Equation for l_2 is: $y-3 = 2(x-1)$ or $\frac{y-3}{x-1} = 2$ [or $y = 2$.	x + 1]	M1 A1ft (5)	
(c)	<i>P</i> is $(0, 1)$ (allow " <i>x</i> = 0, <i>y</i> = 1" but it must be c	elearly identifiable as P	B1 (1)	
(d)	$PQ = \sqrt{(1 - x_P)^2 + (3 - y_P)^2}$	Determinant Method e.g(0+0+7) - (1+21+0)	M1	
	$PQ = \sqrt{1^2 + 2^2} = \sqrt{5}$	= - 15 (o.e.)	A1	
	$PQ = \sqrt{1^2 + 2^2} = \sqrt{5}$ Area of triangle is $\frac{1}{2}QR \times PQ = \frac{1}{2}3\sqrt{5} \times \sqrt{5}, = \frac{15}{2}$ or 7.5	Area = $\frac{1}{2} -15 $,= 7.5	dM1, A1 (4) 13	
(a) (b)	then M1 can be awarded, if no values are correct then M0. If no correct formula is seen then M1 can only be scored for a fully correct expression. M1 for attempting QR or QR^2 . May be implied by $6^2 + 3^2$ 1^{st} A1 for as printed or better. Must have square root. Condone \pm 1^{st} A1 for attempting gradient of QR 1^{st} A1 for - 0.5 or $-\frac{1}{2}$, can be implied by gradient of $l_2 = 2$ 2^{nd} M1 for an attempt to use the perpendicular rule on their gradient of QR . 3^{rd} M1 for attempting equation of a line using Q with their changed gradient. 2^{nd} A1ft requires all 3 Ms but can ft their gradient of QR .			
(d)	 1st M1 for attempting PQ or PQ² follow through their coordinates of P 1st A1 for PQ as one of the given forms. 2nd dM1 for correct attempt at area of the triangle. Follow through their value of a and their PQ. This M mark is dependent upon the first M mark 2nd A1 for 7.5 or some exact equivalent. Depends on both Ms. Some working must be seen. 			
ALT	Use QS where S is (1, 0) 1 st M1 for attempting area of OPQS and QSR and OPR. N 1 st A1 for $OPQS = \frac{1}{2}(1+3) \times 1 = 2$, $QSR = 9$, $OPR = \frac{7}{2}$ 2 nd dM1 for $OPQS + QSR - OPR = \dots$ Follow through the 2 nd A1 for 7.5	M1 for attem value in each A1 if correct M1 for accert	A1 if correct (± 15) M1 for correct area formula	
MR	Misreading x-axis for y-axis for P. Do NOT use MR rule a They can only get M marks in (d) if they use PQ and QR .	as this oversimplifies th	e question.	

Mathematics C1

Question number	Scheme	Marks	
11. (a)	$\left(x^{2}+3\right)^{2} = x^{4}+3x^{2}+3x^{2}+3^{2}$	M1	
	$\left(x^{2}+3\right)^{2} = x^{4}+3x^{2}+3x^{2}+3^{2}$ $\frac{\left(x^{2}+3\right)^{2}}{x^{2}} = \frac{x^{4}+6x^{2}+9}{x^{2}} = x^{2}+6+9x^{-2} \qquad (*)$	A1cso (2)	
(b)	$y = \frac{x^3}{3} + 6x + \frac{9}{-1}x^{-1}(+c)$	M1A1A1	
	$3^{3} = -1^{3}$ $20 = \frac{27}{3} + 6 \times 3 - \frac{9}{3} + c$ c = -4 $[y =]\frac{x^{3}}{3} + 6x - 9x^{-1} - 4$	M1	
	c = -4	A1	
	$[y=]\frac{x^3}{3} + 6x - 9x^{-1} - 4$	A1ft (6)	
		8	
(a)	M1 for attempting to expand $(x^2 + 3)^2$ and having at least 3(out of the 4) correct this should be seen and no incorrect working seen	ct terms.	
	A1 at least this should be seen and no incorrect working seen. If they never write $\frac{9}{x^2}$ as $9x^{-2}$ they score A0.		
(b)	1 st M1 for some correct integration, one correct <i>x</i> term as printed or better Trying $\frac{\int u}{\int v}$ loses the first M mark but could pick up the second. 1 st A1 for two correct <i>x</i> terms, un-simplified, as printed or better 2 nd A1 for a fully correct expression. Terms need not be simplified and + <i>c</i> is not required. No + <i>c</i> loses the next 3 marks		
	2^{nd} M1 for using $x = 3$ and $y = 20$ in their expression for $f(x) \left[\neq \frac{dy}{dx} \right]$ to form a linear equation for c		
	3^{rd} A1 for $c = -4$		
	4 th A1ft for an expression for y with simplified x terms: $\frac{9}{x}$ for $9x^{-1}$ is OK.		
	Condone missing " $y =$ " Follow through their numerical value of <i>c</i> only.		