www.mystudybro.com

Mathematics C1

Past Paper

This resource was created and owned by Pearson Edexcel

6663

Centre No.			Paper Reference				Surname	Initial(s)			
Candidate No.			6	6	6	3	/	0	1	Signature	

Paper Reference(s)

6663/01

Edexcel GCE

Core Mathematics C1 Advanced Subsidiary

Friday 5 June 2009 – Afternoon

Time: 1 hour 30 minutes

Examiner's use only							
				\perp			
TC.			,		1		

Team Leader's use only

Question

1

2

3

4

5

6

7

8

9

10

11

Materials required for examination
Mathematical Formulae
(Orange or Green)

Items included with question papers
Nil

Calculators may NOT be used in this examination.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 11 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited.

Printer's Log. No. H34262A

Turn over

Total

■ Pas

mm t Pape	er 2009 er	www.mystudybro.com This resource was created and owned by Pearson Edexcel		cs C1 6663
1.	Simplify			Leave blank
	(a) $(3\sqrt{7})^2$		(1)	
	(b) $(8+\sqrt{5})(2$	$(2-\sqrt{5})$	(3)	

(Total 4 marks)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

June 2009 6663 Core Mathematics C1 Mark Scheme

Ques		Scheme	Mark	S	
Q1	(a)	$(3\sqrt{7})^2 = 63$ $(8+\sqrt{5})(2-\sqrt{5}) = 16-5+2\sqrt{5}-8\sqrt{5}$	B1	(1)	
	(b)	$(8+\sqrt{5})(2-\sqrt{5})=16-5+2\sqrt{5}-8\sqrt{5}$	M1		
		$=11, -6\sqrt{5}$	A1, A1		
				(3) [4]	
	(a)	B1 for 63 only			
	(b)	M1 for an attempt to expand <u>their</u> brackets with ≥ 3 terms correct.			
		They may collect the $\sqrt{5}$ terms to get $16-5-6\sqrt{5}$			
		Allow $-\sqrt{5} \times \sqrt{5}$ or $-\left(\sqrt{5}\right)^2$ or $-\sqrt{25}$ instead of the -5			
		These 4 values may appear in a list or table but they should have minus signs			
		included			
		The next two marks should be awarded for the final answer but check that correct values follow from correct working. Do not use ISW rule			
		1 st A1 for 11 from $16 - 5$ or $-6\sqrt{5}$ from $-8\sqrt{5} + 2\sqrt{5}$			
		2^{nd} A1 for both 11 and $-6\sqrt{5}$.			
		S.C - Double sign error in expansion			
		For $16-5-2\sqrt{5}+8\sqrt{5}$ leading to $11 + \dots$ allow <u>one</u> mark			

Mathematics C1

	_	
Past P	aner	This

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

; [I	Id	LI	C	5		J	
						_		

Leave

Given that $32\sqrt{2} = 2^a$, find the value of a .	(3)

		T
Question Number	Scheme	Marks
Q2	$32 = 2^5$ or $2048 = 2^{11}$, $\sqrt{2} = 2^{\frac{1}{2}}$ or $\sqrt{2048} = (2048)^{\frac{1}{2}}$	B1, B1
	$a = \frac{11}{2}$ (or $5\frac{1}{2}$ or 5.5)	B1
		[3]
	1st B1 for $32 = 2^5$ or $2048 = 2^{11}$ This should be explicitly seen: $32\sqrt{2} = 2^a$ followed by $2^5\sqrt{2} = 2^a$ is OK Even writing $32 \times 2 = 2^5 \times 2 \left(=2^6\right)$ is OK but simply writing $32 \times 2 = 2^6$ is NOT 2^{nd} B1 for $2^{\frac{1}{2}}$ or $\left(2048\right)^{\frac{1}{2}}$ seen. This mark may be implied 3^{rd} B1 for answer as written. Need $a = \dots$ so $2^{\frac{11}{2}}$ is B0 $a = \frac{11}{2} \left(\text{or } 5\frac{1}{2} \text{ or } 5.5 \right) \text{ with no working scores full marks.}$ If $a = 5.5$ seen then award 3/3 unless it is clear that the value follows from totally incorrect work. Part solutions: e.g. $2^5\sqrt{2}$ scores the first B1. Special case: If $\sqrt{2} = 2^{\frac{1}{2}}$ is not explicitly seen, but the final answer includes $\frac{1}{2}$, e.g. $a = 2\frac{1}{2}$, $a = 4\frac{1}{2}$, the second B1 is given by implication.	

www.mystudybro.com

t Pape	er I his resource was created and owned by Pearson Edexcei		666
			Leave
	•		blank
3.	Given that $y = 2x^3 + \frac{3}{x^2}$, $x \neq 0$, find		
	$\frac{2x}{x^2}$, $\frac{2}{x}$, $\frac{2}{x}$		
	dv		
	(a) $\frac{dy}{dx}$		
	ux	(3)	
	(b) $\int y dx$, simplifying each term.		
	(b) Jy ax, simplifying each term.	(2)	
		(3)	

Questio Numbe		Scheme					
Q3 (a	$\frac{\mathrm{d}y}{\mathrm{d}x}$	$=6x^2-6x^{-3}$	M1 A1 A1				
(k)	$= 6x^{2} - 6x^{-3}$ $+ \frac{3x^{-1}}{-1} (+C)$ $+ 3x^{-1} + C$	(3 M1 A1				
	$\frac{x^4}{2}$	$3x^{-1} + C$	A1				
			(3 [6				
(8		for an attempt to differentiate $x^n \to x^{n-1}$ 1 for $6x^2$ 1 for $-6x^{-3}$ or $-\frac{6}{x^3}$ Condone + $-6x^{-3}$ here. Inclusion of + c scores A0 here.					
(k	o) M1	for some attempt to integrate an x term of the given y. $x^n \to x^{n+1}$					
	1 st A here	for both x terms correct but unsimplified- as printed or better. Ignore $+c$					
	2 nd A	for both x terms correct and simplified and +c. Accept $-\frac{3}{x}$ but NOT					
	+-3	x^{-1} Condone the +c appearing on the first (unsimplified) line but missing on the					
	final	(simplified) line					
		Apply ISW if a correct answer is seen					
	_	rt (b) is attempted first and this is clearly labelled then apply the scheme and the marks. Otherwise assume the first solution is for part (a).					

This resource was created and owned by Pearson Edexcel

6663

		blank
4.	Find the set of values of x for which	

(a)	4x	- 3	>	/ ·	-x

(2)

(b)
$$2x^2 - 5x - 12 < 0$$

(4)

(c) **both**
$$4x - 3 > 7 - x$$
 and $2x^2 - 5x - 12 < 0$

(1)

watnematics	5 C1
edexcel	6663

	,				
Ques Num		Scheme	N	larks	5
Q4	(a)	$5x > 10$, $x > 2$ [Condone $x > \frac{10}{2} = 2$ for M1A1]	M1,	A1	(2)
	(b)	$(2x+3)(x-4) = 0$, 'Critical values' are $-\frac{3}{2}$ and 4	M1,	A 1	(-)
		$-\frac{3}{2} < x < 4$	M1 A	.1ft	(4)
	(c)	2 < x < 4	B1ft		(4) (1) [7]
	(a)	M1 for attempt to collect like terms on each side leading to $ax > b$, or $ax < b$, or $ax = b$			
		Must have a or b correct so eg $3x > 4$ scores M0			
	(b)	1 st M1 for an attempt to factorize or solve to find critical values. Method must potentially give 2 critical values			
		1 st A1 for $-\frac{3}{2}$ and 4 seen. They may write $x < -\frac{3}{2}$, $x < 4$ and still get this A1			
		2 nd M1 for choosing the "inside region" for their critical values 2 nd A1ft follow through their 2 distinct critical values			
		Allow $x > -\frac{3}{2}$ with "or" "," " \cup " " " $x < 4$ to score M1A0 but "and" or " \cap " score			
		M1A1 $x \in (-\frac{3}{2},4)$ is M1A1 but $x \in [-\frac{3}{2},4]$ is M1A0. Score M0A0 for a number line or graph			
		only			
	(c)	B1ft Allow if a correct answer is seen or follow through their answer to (a) and their answer to (b) but their answers to (a) and (b) <u>must be regions</u> . Do not follow through single values. If their follow through answer is the empty set accept ∅ or {} or equivalent in words If (a) or (b) are not given then score this mark for cao			
		NB You may see x<4 (with anything or nothing in-between) x < -1.5 in (b) and empty set in (c) for B1ft Do not award marks for part (b) if only seen in part (c)			
		Use of \leq instead of $<$ (or \geq instead of $>$) loses one accuracy mark only, at first occurrence.			

Mathematics C1

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6663

Leave

5.	A 40-year building programme for new houses began in Oldtown in the year 1951 (Year 1) and finished in 1990 (Year 40).	Diank
	The numbers of houses built each year form an arithmetic sequence with first term a and common difference d .	
	Given that 2400 new houses were built in 1960 and 600 new houses were built in 1990, find	
	(a) the value of d , (3)	
	(b) the value of a , (2)	
	(c) the total number of houses built in Oldtown over the 40-year period. (3)	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C1 edexcel

Past Paper (Mark Scheme)

		ı	
Question Number	Scheme	Mark	S
Q5 (a)	$a + 9d = 2400 \qquad a + 39d = 600$	M1	
	$d = \frac{-1800}{30} \qquad d = -60 \qquad \text{(accept } \pm 60 \text{ for A1)}$	M1 A1	(3)
	a - 540 = 2400 $a = 2940$	M1 A1	(2)
(c)	Total = $\frac{1}{2}n\{2a + (n-1)d\} = \frac{1}{2} \times 40 \times (5880 + 39 \times -60)$ (ft values of a and d)	M1 A1ft	
	$=\frac{70\ 800}{}$	A1cao	(3) [8]
	Note: If the sequence is considered 'backwards', an equivalent solution may be given using $d = 60$ with $a = 600$ and $l = 2940$ for part (b). This can still score full marks. Ignore labelling of (a) and (b)		
(b) (c)	A1 their a must be compatible with their d so $d = 60$ must have $a = 600$ and $d = -60$, $a = 2940$ So for example they can have $2400 = a + 9(60)$ leading to $a =$ for M1 but it scores A0 Any approach using a list scores M1A1 for a correct a but M0A0 otherwise M1 for use of a correct S_n formula with $n = 40$ and at least one of a , d or l correct or correct ft. 1st A1ft for use of a correct S_{40} formula and both a , d or a , l correct or correct follow through ALT Total = $\frac{1}{2}n\{a+l\} = \frac{1}{2} \times 40 \times (2940 + 600)$ (ft value of a) M1 A1ft		
	2 nd A1 for 70800 only		

Mathematics C1

■ Past Paper

6663
Leave

F J	nd the value of p .	
		(4)

Question Number	Scheme	Mark	(S
Q6	$b^2 - 4ac$ attempted, in terms of p.	M1	
	$(3p)^2 - 4p = 0$ o.e.	A1	
	Attempt to solve for p e.g. $p(9p-4)=0$ Must potentially lead to $p=k, k \neq 0$	M1	
	$p = \frac{4}{9}$ (Ignore $p = 0$, if seen)	A1cso	
			[4]
	1 st M1 for an attempt to substitute into $b^2 - 4ac$ or $b^2 = 4ac$ with b or c correct Condone x's in one term only.		
	This can be inside a square root as part of the quadratic formula for example. Use of inequalities can score the M marks only		
	1 st A1 for any correct equation: $(3p)^2 - 4 \times 1 \times p = 0$ or better		
	2^{nd} M1 for an attempt to factorize or solve their quadratic expression in p .		
	Method must be sufficient to lead to their $p = \frac{4}{9}$.		
	Accept factors or use of quadratic formula or $(p \pm \frac{2}{9})^2 = k^2$ (o.e. eg) $(3p \pm \frac{2}{3})^2 = k^2$ or		
	equivalent work on their eqn.		
	$9p^2 = 4p \Rightarrow \frac{9p^3}{\cancel{R}} = 4$ which would lead to $9p = 4$ is OK for this 2^{nd} M1		
	ALT Comparing coefficients		
	M1 for $(x + \alpha)^2 = x^2 + \alpha^2 + 2\alpha x$ and A1 for a correct equation eg $3p = 2\sqrt{p}$		
	M1 for forming solving leading to $\sqrt{p} = \frac{2}{3}$ or better		
	Use of quadratic/discriminant formula (or any formula) Rule for awarding M mark If the formula is quoted accept some correct substitution leading to a partially correct expression. If the formula is not quoted only award for a fully correct expression using their values.		

This resource was created and owned by Pearson Edexcel

Leave blank

7. A sequence a_1, a_2, a_3, \dots is defined by

$$a_1 = k$$

$$a_{n+1}=2a_n-7, \qquad n\geqslant 1,$$

where k is a constant.

(a) Write down an expression for a_2 in terms of k.

(1)

(b) Show that $a_3 = 4k - 21$.

(2)

Given that $\sum_{r=1}^{4} a_r = 43$,

(c) find the value of k.

(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C1 edexcel

Past Paper	(Mark	Scheme)
------------	-------	---------

Question Number	Scheme	Marl	KS
Q7 (a) (b) (c)	$(a_{2} =)2k-7$ $(a_{3} =)2(2k-7)-7 \text{ or } 4k-14-7,= 4k-21 $ $(*)$ $(a_{4} =)2(4k-21)-7 (= 8k-49)$ $\sum_{r=1}^{4} a_{r} = k + "(2k-7)" + (4k-21) + "(8k-49)"$ $k + (2k-7) + (4k-21) + (8k-49) = 15k-77 = 43 $ $k = 8$	B1 M1, A1d M1 M1 M1 A1	(1) cso (2) (4) [7]
(b)	M1 must see 2(their a_2) - 7 or $2(2k-7)-7$ or $4k-14-7$. Their a_2 must be a function of k . A1cso must see the $2(2k-7)-7$ or $4k-14-7$ expression and the $4k-21$ with no incorrect working 1^{st} M1 for an attempt to find a_4 using the given rule. Can be awarded for $8k-49$ seen. Use of formulae for the sum of an arithmetic series scores M0M0A0 for the next 3 marks. 2^{nd} M1 for attempting the sum of the 1^{st} 4 terms. Must have "+" not just , or clear attempt to sum. Follow through their a_2 and a_4 provided they are linear functions of k . Must lead to linear expression in k . Condone use of their linear $a_3 \neq 4k-21$ here too. 3^{rd} M1 for forming a linear equation in k using their sum and the 43 and attempt to solve for k as far as $pk=q$ A1 for $k=8$ only so $k=\frac{120}{15}$ is A0 Answer Only (e.g. trial improvement) Accept $k=8$ only if $8+9+11+15=43$ is seen as well Sum $a_2+a_3+a_4+a_5$ or $a_2+a_3+a_4$ Allow: M1 if $8k-49$ is seen, M0 for the sum (since they are not adding the 1^{st} 4 terms) then M1 if they use their sum along with the 43 to form a linear equation and attempt to solve but A0		

8.

6663

Leave blank

Figure 1

The points A and B have coordinates (6, 7) and (8, 2) respectively.

The line l passes through the point A and is perpendicular to the line AB, as shown in Figure 1.

(a) Find an equation for l in the form ax + by + c = 0, where a, b and c are integers.

(4)

Given that l intersects the y-axis at the point C, find

(b) the coordinates of C,

(2)

(c) the area of $\triangle OCB$, where O is the origin.

(2)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C1 edexcel

Past Paper (Mark Scheme)

Question Number	Scheme	Mark	.S
Q8 (a)	AB: $m = \frac{2-7}{8-6}$, $\left(=-\frac{5}{2}\right)$	B1	
	Using $m_1 m_2 = -1$: $m_2 = \frac{2}{5}$	M1	
	$y-7=\frac{2}{5}(x-6)$, $2x-5y+23=0$ (o.e. with integer coefficients)	M1, A1	(4)
(b)	Using $x = 0$ in the answer to (a), $y = \frac{23}{5}$ or 4.6	M1, A1f	t (2)
(c)	Area of triangle = $\frac{1}{2} \times 8 \times \frac{23}{5} = \frac{92}{5}$ (o.e) e.g. $\left(18\frac{2}{5}, 18.4, \frac{184}{10}\right)$	M1 A1	(2) [8]
(a) (b)	B1 for an expression for the gradient of AB . Does not need the $= -2.5$ 1^{st} M1 for use of the perpendicular gradient rule. Follow through their m 2^{nd} M1 for the use of $(6, 7)$ and their changed gradient to form an equation for l . Can be awarded for $\frac{y-7}{x-6} = \frac{2}{5}$ o.e. Alternative is to use $(6, 7)$ in $y = mx + c$ to find a value for c . Score when $c = \dots$ is reached. A1 for a correct equation in the required form and must have "= 0" and integer coefficients M1 for using $x = 0$ in their answer to part (a) e.g. $-5y + 23 = 0$ A1ft for $y = \frac{23}{5}$ provided that $x = 0$ clearly seen or $C(0, 4.6)$. Follow through their equation in (a) If $x = 0$, $y = 4.6$ are clearly seen but C is given as $(4.6,0)$ apply ISW and award the mark. This A mark requires a simplified fraction or an exact decimal Accept their 4.6 marked on diagram next to C for M1A1ft M1 for $\frac{1}{2} \times 8 \times y_C$ so can follow through their y coordinate of y . A1 for $y = 0$ triangles or trapezium and triangle Award M1 when an expression for area of $y = 0$ only is seen		
	Determinant approach Award M1 when an expression containing $\frac{1}{2} \times 8 \times y_C$ is seen		

www.mystudybro.com

Mathematics C1

■ Past Paper This resource was created and owned by Pearson Edexcel

6663

Leave

9

$$f(x) = \frac{\left(3 - 4\sqrt{x}\right)^2}{\sqrt{x}}, \quad x > 0$$

(a) Show that $f(x) = 9x^{-\frac{1}{2}} + Ax^{\frac{1}{2}} + B$, where A and B are constants to be found.

(3)

(b) Find f'(x).

(3)

(c) Evaluate f'(9).

(2)

Mathematics C1

Past Paper (Mark Scheme)

matrioriatio	J
a day(aa)	6663
edexcel	. 000

Question Number	Scheme	Mark	S
Q9 (a)	$ [(3-4\sqrt{x})^2] = 9-12\sqrt{x}-12\sqrt{x}+(-4)^2 x $ $9x^{-\frac{1}{2}}+16x^{\frac{1}{2}}-24$	M1 A1, A1	(3)
(b)	$f'(x) = -\frac{9}{2}x^{-\frac{3}{2}}, +\frac{16}{2}x^{-\frac{1}{2}}$	M1 A1, A	A1ft (3)
(c)	$f'(9) = -\frac{9}{2} \times \frac{1}{27} + \frac{16}{2} \times \frac{1}{3} = -\frac{1}{6} + \frac{16}{6} = \frac{5}{2}$	M1 A1	(2) [8]
(a)	M1 for an attempt to expand $(3-4\sqrt{x})^2$ with at least 3 terms correct- as printed or better		
(b)	M1 for an attempt to differentiate an x term $x^n \to x^{n-1}$ 1st A1 for $-\frac{9}{2}x^{-\frac{3}{2}}$ and their constant B differentiated to zero. NB $-\frac{1}{2} \times 9x^{-\frac{3}{2}}$ is A0 2nd A1ft follow through their $Ax^{\frac{1}{2}}$ but can be scored without a value for A , i.e. for $\frac{A}{2}x^{-\frac{1}{2}}$		
(c)	M1 for some correct substitution of $x = 9$ in their expression for $f'(x)$ including an attempt at $(9)^{\pm \frac{k}{2}}$ (k odd) somewhere that leads to some appropriate multiples of $\frac{1}{3}$ or 3 A1 accept $\frac{15}{6}$ or any exact equivalent of 2.5 e.g. $\frac{45}{18}$, $\frac{135}{54}$ or even $\frac{67.5}{27}$ Misread (MR) Only allow MR of the form $\frac{\left(3-k\sqrt{x}\right)^2}{\sqrt{x}}$ N.B. Leads to answer in (c) of $\frac{k^2-1}{6}$		
	Score as M1A0A0, M1A1A1ft, M1A1ft		

This resource was created and owned by Pearson Edexcel

Leave blank

10. (a) Factorise completely $x^3 - 6x^2 + 9x$

(3)

(b) Sketch the curve with equation

$$y = x^3 - 6x^2 + 9x$$

showing the coordinates of the points at which the curve meets the *x*-axis.

(4)

Using your answer to part (b), or otherwise,

(c) sketch, on a separate diagram, the curve with equation

$$y = (x-2)^3 - 6(x-2)^2 + 9(x-2)$$

showing the coordinates of the points at which the curve meets the *x*-axis.

(2)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Past Paper (I	Mark Scheme)
---------------	--------------

Question Number	Sche	me	Mark	(S
Q10 (a)	$x(x^2 - 6x + 9)$ = $x(x-3)(x-3)$		B1 M1 A1	(3)
(b)	Shape	/ 🗸	B1 B1	(3)
	Toucl Toucl	hing x-axis only once thing at (3, 0), or 3 on x-axis the on graph not in a table	B1 B1ft	(4)
(c)		ed horizontally (either way) and (5, 0), or 2 and 5 on <i>x</i> -axis	M1 A1 (2)	
				[9]
(a)	B1 for correctly taking out a factor of 2	x		
	So $(x-3)(x+3)$ will score M1 bu			
A1 for a fully correct factorized expression - accept $x(x-3)^2$ If they "solve" use ISW S.C. If the only correct linear factor is $(x-3)$, perhaps from factor theorem, award				
	B0M1A0 Do not award marks for factorising	in part (b)		
		in (b) but otherwise be generous on shape ,5) in (c) if the points are marked in the		
	correct places.			

translation

and 5 only

 $y = x(x-a)^2$

(c)

M1

A1

 4^{th} B1ft for a curve that touches (not crossing or terminating) at (a, 0) where their

for their graph moved horizontally (only) or a fully correct graph

Condone a partial stretch if ignoring their values looks like a simple

for their graph translated 2 to the right and crossing or touching the axis at 2

Allow a fully correct graph (as shown above) to score M1A1 whatever

This resource was created and owned by Pearson Edexcel

Leave blank

11. The curve *C* has equation

$$y = x^3 - 2x^2 - x + 9$$
, $x > 0$

The point P has coordinates (2, 7).

(a) Show that P lies on C.

(1)

(b) Find the equation of the tangent to C at P, giving your answer in the form y = mx + c, where m and c are constants.

(5)

The point Q also lies on C.

Given that the tangent to C at Q is perpendicular to the tangent to C at P,

(c) show that the *x*-coordinate of *Q* is $\frac{1}{3}(2+\sqrt{6})$.

(5)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C1 edexcel

Past Paper (Mark Scheme)

Ques		Scheme	Marl	KS
Q11	(a) (b)	x = 2: $y = 8 - 8 - 2 + 9 = 7$ (*) $\frac{dy}{dx} = 3x^2 - 4x - 1$	B1 M1 A1	(1)
		$x = 2$: $\frac{dy}{dx} = 12 - 8 - 1 (= 3)$	A1ft	
	(c)	$y-7 = 3(x-2),$ $m = -\frac{1}{3}$ $y = 3x+1$ (for $-\frac{1}{m}$ with their m)	M1, <u>A1</u> B1ft	(5)
			DIII	
		$3x^2 - 4x - 1 = -\frac{1}{3}$, $9x^2 - 12x - 2 = 0$ or $x^2 - \frac{4}{3}x - \frac{2}{9} = 0$ (o.e.)	M1, A1	
		$\left(x = \frac{12 + \sqrt{144 + 72}}{18}\right) \left(\sqrt{216} = \sqrt{36}\sqrt{6} = 6\sqrt{6}\right) \text{ or } (3x - 2)^2 = 6 \to 3x = 2 \pm \sqrt{6}$	M1	
		$x = \frac{1}{3} \left(2 + \sqrt{6} \right) \tag{*}$	A1cso	(5)
				[11]
	(a)	B1 there must be a clear attempt to substitute $x = 2$ leading to 7		
	(b)	e.g. $2^3 - 2 \times 2^2 - 2 + 9 = 7$ 1^{st} M1 for an attempt to differentiate with at least one of the given terms fully		
		correct. 1 st A1 for a fully correct expression		
		2 nd A1ft for sub. $x=2$ in their $\frac{dy}{dx}$ ($\neq y$) accept for a correct expression e.g.		
		$\frac{1}{3\times(2)^2-4\times2-1} dx^{(y,y)} = \frac{1}{3\times(2)^2-4\times2-1} dx^{(y,y)} $		
		2^{nd} M1 for use of their "3" (provided it comes from their $\frac{dy}{dx} \neq y$) and $x=2$) to find		
		equation of tangent. Alternative is to use (2, 7) in $y = mx + c$ to find a value for c.		
		Award when $c = \dots$ is seen.		
		No attempted use of $\frac{dy}{dx}$ in (b) scores 0/5		
	(c)	1 st M1 for forming an equation from their $\frac{dy}{dx} (\neq y)$ and their $-\frac{1}{m}$ (must be		
		changed from m) 1^{st} A1 for a correct 3TQ all terms on LHS (condone missing =0)		
		2^{nd} M1 for proceeding to $x = \dots$ or $3x = \dots$ by formula or completing the square for a 3TQ.		
		Not factorising. Condone \pm 2 nd A1 for proceeding to given answer with no incorrect working seen. Can still		
	ALT	have \pm . Verify (for M1A1M1A1)		
'	, <u> </u>	1 st M1 for attempting to square need ≥ 3 correct values in $\frac{4+6+4\sqrt{6}}{9}$, 1 st A1 for $\frac{10+4\sqrt{6}}{9}$		
		2^{nd} M1 Dependent on 1^{st} M1 in this case for substituting in all terms of their $\frac{dy}{dy}$		
		2^{nd} A1cso for cso with a full comment e.g. "the x co-ord of Q is"		