www.mystudybro.com **Mathematics C1** Past Paper This resource was created and owned by Pearson Edexcel 6663 | Centre
No. | | | Paper Reference | | | Surname | Initial(s) | | | | | |------------------|--|--|-----------------|---|---|---------|------------|---|---|-----------|--| | Candidate
No. | | | 6 | 6 | 6 | 3 | / | 0 | 1 | Signature | | Paper Reference(s) # 6663/01 # **Edexcel GCE** # **Core Mathematics C1 Advanced Subsidiary** Monday 24 May 2010 – Afternoon Time: 1 hour 30 minutes Materials required for examination
Mathematical Formulae (Pink)Items included with question papers
Nil Calculators may NOT be used in this examination. | Exam | iner's use | eonly | |--------|------------|----------| | | | | | | | | | | | | | Team L | eader's u | ise only | | | | | 1 2 3 4 5 6 7 8 9 10 11 | eauer s t | isc only | |--------------------|----------------| | Question
Number | Leave
Blank | | | | # **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer to each question in the space following the question. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 11 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2010 Edexcel Limited. Printer's Log. No. H35383A Turn over Total W850/R6663/57570 4/5 #### www.mvstudvbro.com **Mathematics C1** | Julillici Zulu | www.mystaaybro.com | |----------------|--| | Past Paper | This resource was created and owned by Pearson Edexcel | | ı | ı | a | L | U | 3 | • | u | • | |---|---|---|---|---|---|---|---|----| | | | | | | | c | c | ۰. | | Write | | |---|-----| | $\sqrt{(75)} - \sqrt{(27)}$ | | | in the form $k\sqrt{x}$, where k and x are integers. | | | | (2) | Past Paper (Mark Scheme) ### www.mystudybro.com This resource was created and owned by Pearson Edexcel June 2010 Core Mathematics C1 6663 Mark Scheme | Question
Number | Scheme | Marks | | |--------------------|--|-------|---| | 1. | $\left(\sqrt{75} - \sqrt{27}\right) = 5\sqrt{3} - 3\sqrt{3}$ | M1 | | | | $\left(\sqrt{75} - \sqrt{27}\right) = 5\sqrt{3} - 3\sqrt{3}$ $= 2\sqrt{3}$ | A1 | 2 | | | Notes | | | | | M1 for $5\sqrt{3}$ from $\sqrt{75}$ or $3\sqrt{3}$ from $\sqrt{27}$ seen anywhere | | | | | A1 for $2\sqrt{3}$; allow $\sqrt{12}$ or or $k = 2, x = 3$ allow $k = 1, x = 12$ Some Common errors $\sqrt{75} - \sqrt{27} = \sqrt{48} \text{ leading to } 4\sqrt{3} \text{ is M0A0}$ $25\sqrt{3} - 9\sqrt{3} = 16\sqrt{3} \text{ is M0A0}$ | | | | | | | | ### www.mystudybro.com **Mathematics C1** Past Paper This resource was created and owned by Pearson Edexcel 6663 Leave blank | 2. | Find | | | | | |----|------|--|-------------|--------------------------|--------| | | | | $\int (8x)$ | $x^3 + 6x^{\frac{1}{2}}$ | -5) dx | giving each term in its simplest form. **(4)** |
 | |------| Q2 (Total 4 marks) | Question
Number | Scheme | Marks | | | | | | |--------------------|---|-------|--|--|--|--|--| | 2. | $\frac{8x^4}{4} + \frac{6x^{\frac{3}{2}}}{\frac{3}{2}} - 5x + c$ | M1 A1 | | | | | | | | $=2x^4+4x^{\frac{3}{2}},-5x+c$ | A1 A1 | | | | | | | | Notes | 4 | | | | | | | | Notes n n+1 | | | | | | | | | M1 for some attempt to integrate a term in x: $x^n \to x^{n+1}$ | | | | | | | | | 1 st A1 for correct, possibly un-simplified x^4 or $x^{\frac{3}{2}}$ term. e.g. $\frac{8x^4}{4}$ or $\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$ | | | | | | | | | 2^{nd} A1 for both $2x^4$ and $4x^{\frac{3}{2}}$ terms correct and simplified on the same line | | | | | | | | | N.B. some candidates write $4\sqrt{x^3}$ or $4x^{1\frac{1}{2}}$ which are, of course, fine for A1 | | | | | | | | | 3^{rd} A1 for $-5x+c$. Accept $-5x^1+c$. The $+c$ must appear on the same line as the $-5x$ N.B. We do not need to see one line with a fully correct integral | | | | | | | | | Ignore ISW (ignore incorrect subsequent working) if a correct answer is followed by an incorrect version. | | | | | | | | | Condone poor use of notation e.g. $\int 2x^4 + 4x^{\frac{3}{2}} - 5x + c$ will score full marks. | | | | | | | | This resource was | created and | owned by | Pearson | Edexcel | |-------------------|-------------|----------|---------|---------| |-------------------|-------------|----------|---------|---------| | | | Leave
blank | |----|---------------------------------------|----------------| | 3. | Find the set of values of x for which | | | | (-) 2(-, 2) | | | (a) $3(x-2) < 8-2x$ | | |---------------------|-----| | | (2) | (b) $$(2x-7)(1+x) < 0$$ (3) (c) both $$3(x-2) < 8-2x$$ and $(2x-7)(1+x) < 0$ (1) | Question | Scheme Marks | | | | |-----------|---|-------|----------|--| | Number | Scheme | | IVIAI NO | | | 3.
(a) | $3x-6 < 8-2x \rightarrow 5x < 14$ (Accept $5x-14 < 0$ (o.e.)) | M1 | | | | | $x < 2.8$ or $\frac{14}{5}$ or $2\frac{4}{5}$ (condone \leq) | A1 | (2) | | | (b) | Critical values are $x = \frac{7}{2}$ and -1 | B1 | | | | | Choosing "inside" $-1 < x < \frac{7}{2}$ | M1 A1 | (3) | | | (c) | -1 < x < 2.8 | B1ft | (1) | | | | Accept any exact equivalents to -1, 2.8, 3.5 | | 6 | | | | Notes Notes | | | | | (a) | M1 for attempt to rearrange to $kx < m$ (o.e.) Either $k = 5$ or $m = 14$ should be correct Allow $5x = 14$ or even $5x > 14$ | | | | | (b) | B1 for both correct critical values. (May be implied by a correct inequality) M1 ft their values and choose the "inside" region A1 for fully correct inequality (Must be in part (b): do not give marks if only seen in Condone seeing x < -1 in working provided -1 < x is in the final answer. e.g. x > -1, x < 7/2 or x > -1 "or" x < 7/2 or x > -1 "blank space" x < 7/2 score M | | | | | | BUT allow $x > -1$ and $x < \frac{7}{2}$ to score M1A1 (the "and" must be seen) Also $\left(-1, \frac{7}{2}\right)$ will score M1A1 | | | | | | NB $x < -1, x < \frac{7}{2}$ is of course M0A0 and a number line even with "open" ends is M | 040 | | | | | Allow 3.5 instead of $\frac{7}{2}$ | | | | | (c) | B1ft for $-1 < x < 2.8$ (ignoring their previous answers) or ft their answers to part (a and part (b) provided both answers were regions and not single values. Allow use of "and" between inequalities as in part (b) If their set is empty allow a suitable description in words or the symbol \emptyset . |) | | | | | Common error: If (a) is correct and in (b) they simply leave their answer as $x < -1$ $x < 3.5$ then in (c) $x < -1$ would get B1ft as this is a correct follow through of these | | | | | | Penalise use of \leq only on the A1 in part (b). [i.e. condone in part (a)] | | | | This resource was created and owned by Pearson Edexcel 6663 Leave blank 4. (a) Show that $x^2 + 6x + 11$ can be written as $(x+p)^2+q$ where p and q are integers to be found. **(2)** (b) In the space at the top of page 7, sketch the curve with equation $y = x^2 + 6x + 11$, showing clearly any intersections with the coordinate axes. **(2)** (c) Find the value of the discriminant of $x^2 + 6x + 11$ **(2)** | _ | |---| _ | | | | _ | Question
Number | Scheme | Marks | | |--------------------|--|----------|----------| | 4.
(a) | $(x+3)^2 + 2$ or $p = 3$ or $\frac{6}{2}$ $q = 2$ | B1
B1 | (2) | | (b) | U shape with min in 2^{nd} quad (Must be above x-axis and not on y=axis) U shape crossing y-axis at $(0, 11)$ only (Condone $(11,0)$ marked on y-axis) | B1 | (2) | | (c) | $b^2 - 4ac = 6^2 - 4 \times 11$ $= -8$ | M1
A1 | (2)
6 | | | <u>Notes</u> | | | | (a) | Ignore an "= 0" so $(x+3)^2 + 2 = 0$ can score both marks | | | | (b) | The U shape can be interpreted fairly generously. Penalise an obvious V on 1 st B1 on The U needn't have equal "arms" as long as there is a clear min that "holds water" 1 st B1 for U shape with minimum in 2 nd quad. Curve need not cross the <i>y</i> -axis but minimum should NOT touch <i>x</i> -axis and should be left of (not on) <i>y</i> -axis 2 nd B1 for U shaped curve crossing at (0, 11). Just 11 marked on <i>y</i> -axis is fine. The point must be marked on the sketch (do not allow from a table of values) Condone stopping at (0, 11) | ly. | | | (c) | M1 for some correct substitution into b^2-4ac . This may be as part of the quadratic formula but must be in part (c) and must be only numbers (no x terms present). Substitution into $b^2 < 4ac$ or $b^2 = 4ac$ or $b^2 > 4ac$ is M0 A1 for -8 only. If they write $-8 < 0$ treat the < 0 as ISW and award A1 If they write $-8 \ge 0$ then score A0 A substitution in the quadratic formula leading to -8 inside the square root is A So substituting into $b^2 - 4ac < 0$ leading to $-8 < 0$ can score M1A1. Only award marks for use of the discriminant in part (c) | | | This resource was created and owned by Pearson Edexcel | eave | | |-------|-----| | hlank | - 1 | A sequence of positive numbers is defined by $$a_{n+1} = \sqrt{(a_n^2 + 3)}, \quad n \ge 1,$$ $a_1 = 2$ (a) Find a_2 and a_3 , leaving your answers in surd form. **(2)** (b) Show that $a_5 = 4$ **(2)** | Question
Number | Scheme | Marks | 3 | |--------------------|---|--------|-----| | 5.
(a) | $a_2 = \left(\sqrt{4+3}\right) = \sqrt{7}$ | B1 | | | | $a_3 = \sqrt{\text{"their 7"} + 3} = \sqrt{10}$ | B1ft | (2) | | (b) | $a_4 = \sqrt{10+3} \left(=\sqrt{13}\right)$ | M1 | | | | $a_5 = \sqrt{13+3} = 4 *$ | A1 cso | (2) | | | Notes Notes | | 4 | | | 110113 | | | | (a) | 1^{st} B1 for $\sqrt{7}$ only 2^{nd} B1ft follow through their "7" in correct formula provided they have \sqrt{n} , where n is a integer. | nn | | | | | | | | (b) | M1 for an attempt to find a_4 . Should see $\sqrt{\text{"their"}(a_3)^2 + 3}$. Must see evidence for $a_4 = \sqrt{13}$ provided this follows from their a_3 working or answer is sufficient | M1. | | | | A1cso for a correct solution (M1 explicit) must include the = 4. | | | | | Ending at $\sqrt{16}$ only is A0 and ending with ± 4 is A0. | | | | | Ignore any incorrect statements that are not used e.g. common difference = $\sqrt{3}$ | | | | | <u>Listing</u> : A <u>full</u> list: $2 = \sqrt{4}$, $\sqrt{7}$, $\sqrt{10}$, $\sqrt{13}$, $\sqrt{16} = 4$ is fine for M1A1 | | | | ALT | Formula: Some may state (or use) $a_n = \sqrt{3n+1}$ leading to $a_5 = \sqrt{3\times5+1} = 4$. This will get marks in (a) [if correct values are seen] and can score the M1 in (1) if $a_n = \sqrt{3n+1}$ or $a_4 = \sqrt{13}$ are seen. | b) | | | ±√ | If $\pm \sqrt{}$ appear any where ignore in part (a) and withhold the final A mark only | ý | | This resource was created and owned by Pearson Edexcel Leave blank **6.** Figure 1 Figure 1 shows a sketch of the curve with equation y = f(x). The curve has a maximum point A at (-2, 3) and a minimum point B at (3, -5). On separate diagrams sketch the curve with equation (a) $$y = f(x+3)$$ (b) $$y = 2f(x)$$ (3) On each diagram show clearly the coordinates of the maximum and minimum points. The graph of y = f(x) + a has a minimum at (3, 0), where a is a constant. (c) Write down the value of a. **(1)** | Question
Number | Scheme | Marks | 3 | |--------------------|--|-----------|-----| | 6. | | | | | | (-5, 3) Horizontal translation of ± 3 | M1 | | | (a) | (-5,3) marked on sketch or in text | B1 | | | | (0, -5) and min intentionally on y-axis
Condone (-5 , 0) if correctly placed on
negative y-axis | A1 | (3) | | | Correct shape and intentionally through (0,0) between the max and min | B1 | | | (b) | (-2, 6) marked on graph or in text | B1 | | | | (3, -10) marked on graph or in text | B1 | (3) | | (c) | (a=) 5 | B1 | (1) | | | Notes | I | | | | Turning points (not on axes) should have both co-ordinates given in form(x , y). Do not accept points marked on axes e.g. -5 on x -axis and 3 on y -axis is not sufficient. For repeated offenders apply this penalty once only at first offence and condone elsewhere x in (a) and (b) no graphs means no marks. | nere. | | | | In (a) and (b) the ends of the graphs do not need to cross the axes provided max and min | are clear | | | | | | | | (a) | M1 for a horizontal translation of ± 3 so accept i.e max in 1 st quad coordinates of $(1, 3)$ or $(6, -5)$ seen. [Horizontal translation to the left should have a min on the y-axis] | and and | | | | If curve passes through (0,0) then M0 (and A0) but they could score the B1 mark. A1 for minimum clearly on negative y-axis and at least -5 marked on y-axis. Allow this mark if the minimum is very close and the point (0, -5) clearly indicated | | | | (b) | 1 st B1 Ignore coordinates for this mark Coordinates or points on sketch override coordinates given in the text. Condone (y, x) confusion for points on axes only. So (-5,0) for (0, -5) is OK if the point is marked correctly but (3,10) is B0 even if in 4 th quadrant. | | | | (c) | This may be at the bottom of a page or in the questionmake sure you scroll up and | d down! | | **Mathematics C1** ■ Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | | _ | _ | _ | | |----|----|----|---|---| | | _ | _ | | 7 | | _(| 20 | l٧ | e | | | hl | a | n | k | | | 7. | Given mai | | |----|-----------|--| | | | | | | | | | $y = 8x^3 - 4\sqrt{x} +$ | $\frac{3x^2+2}{x},$ | x > 0 | |--------------------------|---------------------|-------| | | | | find $\frac{\mathrm{d}y}{\mathrm{d}x}$. **(6)** | | | - | |----|--|---| | | | _ | | | | | | | | _ | | | | - | | | | _ | | | | | | | | _ | | | | - | | | | _ | | | | | | | | _ | | | | - | | | | _ | | | | | | | | _ | | | | - | | | | _ | | | | | | | | - | | | | - | | 12 | | | 6663 Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel | Question
Number | Scheme | | Marks | |--------------------|---|---|---------------| | 7. | $\frac{3x^2 + 2}{x} = 3x + 2x^{-1}$ | | M1 A1 | | | $(y'=)24x^2, -2x^{-\frac{1}{2}}, +3-2x^{-2}$ | | M1 A1 A1A1 | | | $\frac{3x^2 + 2}{x} = 3x + 2x^{-1}$ $(y' =) 24x^2, -2x^{-\frac{1}{2}}, +3 - 2x^{-2}$ $\left[24x^2 - 2x^{-\frac{1}{2}} + 3 - 2x^{-2}\right]$ | | | | | Notes | | 6 | | | Notes 1 st M1 for attempting to divide(one term correct) | | | | | | 2 | | | | 1 st A1 for both terms correct on the same line, accept 3 | $3x^1$ for $3x$ or $\frac{2}{x}$ for $2x^{-1}$ | | | | These first two marks may be implied by a correct of | lifferentiation at the end. | | | | 2^{nd} M1 for an attempt to differentiate $x^n \to x^{n-1}$ for at | east one term of their expression | on | | | "Differentiating" $\frac{3x^2 + 2}{x}$ and getting $\frac{6x}{1}$ is M0 | | | | | 2^{nd} A1 for $24x^2$ only | | | | | 3^{rd} A1 for $-2x^{-\frac{1}{2}}$ allow $\frac{-2}{\sqrt{x}}$. Must be simplified to this, not e.g. $\frac{-4}{2}x^{-\frac{1}{2}}$ | | | | | 4^{th} A1 for $3-2x^{-2}$ allow $\frac{-2}{x^2}$. Both terms needed. Condone $3+(-2)x^{-2}$ | | | | | If " $+c$ " is included then they lose this final mark | | | | | They do not need one line with all terms correct for full marks. Award marks when first seen in this question and apply ISW. | | | | | Condone a mixed line of some differentiation and some division | | | | | e.g. $24x^2 - 4x^{\frac{1}{2}} + 3x + 2x^{-1}$ can score 1 st M1A1 and 2 nd M1A1 | | | | Quotient | $r(6r) - (3r^2 + 2) \times 1$ | 1^{st} M1 for an attempt: $\frac{P-Q}{r^2}$ or | R + (-S) with | | /Product
Rule | $\frac{x(6x) - (3x^2 + 2) \times 1}{x^2} \text{or} 6x(x^{-1}) + (3x^2 + 2)(-x^{-2})$ | one of P,Q or R,S correct.
1 st A1 for a correct expression | on | | | $\frac{3x^2-2}{2}$ or $3-\frac{2}{2}$ (o.e.) | 4 th A1 same rules as above | | **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | 8. | (a) Find an equation of the line joining $A(7, 4)$ and $B(2, 0)$, giving your answer in | the | |----|--|-----| | • | form $ax+by+c=0$, where a, b and c are integers. | | | | | (3) | | | (b) Find the length of AB, leaving your answer in surd form. | | | | | (2) | | | The point C has coordinates $(2, t)$, where $t > 0$, and $AC = AB$. | | | | (c) Find the value of <i>t</i> . | | | | (c) I ma the value of t. | (1) | | | (d) Find the area of triangle <i>ABC</i> . | | | | (a) That the area of triangle ABC. | (2) | Question | Scheme | Marks | | |-----------|--|----------|-----| | Number | Scheme | IVIGI KS | | | 8.
(a) | $m_{AB} = \frac{4-0}{7-2} \left(=\frac{4}{5}\right)$ | M1 | | | | Equation of AB is: $y-0 = \frac{4}{5}(x-2)$ or $y-4 = \frac{4}{5}(x-7)$ (o.e.) | M1 | | | | 4x - 5y - 8 = 0 (o.e.) | A1 | (3) | | (b) | $(AB =)\sqrt{(7-2)^2+(4-0)^2}$ | M1 | | | | $=\sqrt{41}$ | A1 | (2) | | (c) | Using isos triangle with $AB = AC$ then $t = 2 \times y_A = 2 \times 4 = 8$ | B1 | (1) | | (d) | Area of triangle = $\frac{1}{2}t \times (7-2)$ | M1 | (0) | | | $=$ $\underline{20}$ | A1 | (2) | | | Notes | | 8 | | (a) | Apply the usual rules for quoting formulae here. For a correctly quoted formula with some correct substitution award M1 If no formula is quoted then a fully correct expression is needed for the M mark 1 st M1 for attempt at gradient of AB. Some correct substitution in correct formula. 2 nd M1 for an attempt at equation of AB. Follow through their gradient, not e.g. $-\frac{1}{m}$ Using $y = mx + c$ scores this mark when c is found. Use of $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ scores 1 st M1 for denominator, 2 nd M1 for use of a correct point A1 requires integer form but allow $5y + 8 = 4x$ etc. Must have an "=" or A0 | | | | (b) | M1 for an expression for AB or AB^2 . Ignore what is "left" of the equals sign | | | | (c) | B1 for $t = 8$. May be implied by correct coordinates (2, 8) or the value appearing in (d) | | | | (d) | M1 for an expression for the area of the triangle, follow through their $t \neq 0$ but mu have the $(7-2)$ or 5 and the $\frac{1}{2}$. | st | | | DET | e.g. $\frac{2}{0} \cdot \frac{7}{4} \cdot \frac{2}{t} \cdot \frac{2}{0}$ Area $= \frac{1}{2} \left[8 + 7t + 0 - (0 + 8 + 2t) \right]$ Must have the $\frac{1}{2}$ for M1 | | | | | | | | # **Mathematics C1** **www.mystudybro.com**This resource was created and owned by Pearson Edexcel ■ Past Paper Leave | 9. | 9. A farmer has a pay scheme to keep fruit pickers working throughout the 30 day season. He pays £a for their first day, £ $(a+d)$ for their second day, £ $(a+2d)$ for their third day, and so on, thus increasing the daily payment by £d for each extra day they work. | | | |----|---|-----|--| | | A picker who works for all 30 days will earn £40.75 on the final day. | | | | | (a) Use this information to form an equation in a and d . | (2) | | | | A picker who works for all 30 days will earn a total of £1005 | | | | | (b) Show that $15(a+40.75) = 1005$ | (2) | | | | (c) Hence find the value of a and the value of d. | (4) | | | | | | | | | | | | | | | | | | _ | Question
Number | Scheme | Marks | S | |--------------------|--|--------------|----------| | 9.
(a) | a + 29d = 40.75 or $a = 40.75 - 29d$ or $29d = 40.75 - a$ | M1 A1 | (2) | | (b) | $(S_{30}) = \frac{30}{2}(a+l) \text{ or } \frac{30}{2}(a+40.75) \text{ or } \frac{30}{2}(2a+(30-1)d) \text{ or } 15(2a+29d)$ So $1005 = 15[a+40.75]$ * | M1
A1 cso | (2) | | (c) | 67 = a +40.75 so $\underline{a} = (\pounds) 26.25 \text{ or } 2625 \underline{p} \text{ or } 26\frac{1}{4} \text{ NOT } \frac{105}{4}$ | M1 A1 | | | | $29d = 40.75 - 26.25$ $= 14.5$ so $d = (£)0.50 \text{ or } 0.5 \text{ or } 50p \text{ or } \frac{1}{2}$ | M1
A1 | (4)
8 | | | Notes | | | | (a) | M1 for attempt to use a + (n - 1)d with n = 30 to form an equation. So a + (30 - 1)d = any number is OK A1 as written. Must see 29d not just (30 - 1)d. Ignore any floating £ signs e.g. a + 29d = £40.75 is OK for M1A1 These two marks must be scored in (a). Some may omit (a) but get correct equation in (c) [or (b)] but we do not give the marks retrospectively. | | | | | Parts (b) and (c) may run together | | | | (b) | M1 for an attempt to use an S_n formula with $n = 30$. | | | | | Must see one of the printed forms. ($S_{30} = $ is not required) | | | | | A1cso for forming an equation with 1005 and S_n and simplifying to printed answer.
Condone £ signs e.g. $15[a+ £40.75]=1005$ is OK for A1 | | | | (c) | 1 st M1 for an attempt to simplify the given linear equation for a . Correct processes. Must get to $ka = \dots$ or $k = a + m$ i.e. one step (division or subtraction) from $a = \dots$ Commonly: $15a = 1005 - 611.25 (= 393.75)$ 1 st A1 For $a = 26.25$ or $2625p$ or $26\frac{1}{4}$ NOT $\frac{105}{4}$ or any other fraction | | | | | 2 nd M1 for correct attempt at a linear equation for <i>d</i> , follow through their <i>a</i> or equation in Equation just has to be linear in <i>d</i> , they don't have to simplify to <i>d</i> = 2 nd A1 depends upon 2 nd M1 and use of correct <i>a</i> . Do not penalise a second time if there were minor arithmetic errors in finding <i>a</i> provided <i>a</i> = 26.25 (o.e.) is used. | | | | | Do not accept other fractions other than $\frac{1}{2}$ | | | | | If answer is in pence a "p" must be seen. | | | | Sim Equ | Use this scheme: 1st M1A1 for a and 2^{nd} M1A1 for d .
Typically solving: $1005=30a+435d$ and $40.75=a+29d$.
If they find d first then follow through use of their d when finding a . | | | This resource was created and owned by Pearson Edexcel 6663 Leave blank 10. (a) On the axes below sketch the graphs of (i) $$y = x(4-x)$$ (ii) $$y = x^2(7-x)$$ showing clearly the coordinates of the points where the curves cross the coordinate axes. **(5)** (b) Show that the x-coordinates of the points of intersection of $$y = x(4-x)$$ and $y = x^2(7-x)$ are given by the solutions to the equation $x(x^2 - 8x + 4) = 0$ **(3)** The point A lies on both of the curves and the x and y coordinates of A are both positive. (c) Find the exact coordinates of A, leaving your answer in the form $(p+q\sqrt{3}, r+s\sqrt{3})$, where p, q, r and s are integers. **(7)** | Question | Scheme | Marks | | |-------------------|--|--------------|--| | Number
10. (a) | (i) ∩ shape (anywhere on diagram) | B1 | | | (2) | Passing through or stopping at $(0, 0)$ and $(4,0)$ only (Needn't be \cap shape) | B1 | | | | (ii) correct shape (-ve cubic) with a max and min drawn anywhere | B1 | | | | 4 7 Minimum or maximum at (0,0) | B1 | | | | Passes through or stops at (7,0) but NOT touching. (7, 0) should be to right of (4,0) or B0 | B1 (5) | | | | Condone (0,4) or (0, 7) marked correctly on x-axis. Don't penalise poor overlap near ori Points must be marked on the sketchnot in the text | gin. | | | (b) | $x(4-x) = x^{2}(7-x) (0 =)x[7x-x^{2}-(4-x)]$ | M1 | | | | $(0 =)x[7x - x^2 - (4 - x)] mtext{(o.e.)}$ | B1ft | | | | $0 = x\left(x^2 - 8x + 4\right) *$ | A1 cso (3) | | | (0) | $\left(0 = x^2 - 8x + 4 \Rightarrow\right) x = \frac{8 \pm \sqrt{64 - 16}}{2} \text{or} (x \pm 4)^2 - 4^2 + 4 = 0$ | M1 | | | (c) | (x-4) = 12 | A1 | | | | $=\frac{8\pm4\sqrt{3}}{2}$ or $(x-4)=\pm2\sqrt{3}$ | B1 | | | | $x = 4 \pm 2\sqrt{3}$ | A1 | | | | From sketch A is $x = 4 - 2\sqrt{3}$ | M1 | | | | So $y = (4 - 2\sqrt{3})(4 - [4 - 2\sqrt{3}])$ (dependent on 1 st M1) | M1 | | | | $=-12+8\sqrt{3}$ | A1 (7)
15 | | | | Notes | | | | (b) | M1 for forming a suitable equation B1 for a common factor of x taken out legitimately. Can treat this as an M mark. Can ft their cubic = 0 found from an attempt at solving their equations e.g. x³-8x²-4x = x(A1cso no incorrect working seen. The "= 0" is required but condone missing from some lines of working. Cancelling the x scores B0A0. | | | | (c) | 1 st M1 for some use of the correct formula or attempt to complete the square | | | | | 1 st A1 for a fully correct expression: condone + instead of \pm or for $(x-4)^2 = 12$ | | | | | B1 for simplifying $\sqrt{48} = 4\sqrt{3}$ or $\sqrt{12} = 2\sqrt{3}$. Can be scored independently of this expression | | | | | 2^{nd} A1 for correct solution of the form $p + q\sqrt{3}$: can be \pm or \pm or \pm or \pm | | | | | 2^{nd} M1 for selecting their answer in the interval (0,4). If they have no value in (0,4) scor 3^{rd} M1 for attempting $y = \dots$ using their x in correct equation. An expression needed for M 3^{rd} A1 for correct answer. If 2 answers are given A0. | | | This resource was created and owned by Pearson Edexcel Leave blank 11. The curve C has equation y=f(x), x>0, where $$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x - \frac{5}{\sqrt{x}} - 2$$ Given that the point P(4, 5) lies on C, find (a) f(x), **(5)** (b) an equation of the tangent to C at the point P, giving your answer in the form ax+by+c=0, where a, b and c are integers. **(4)** | Question
Number | Scheme | Marks | |--------------------|--|------------------------| | 11. (a) | $(y =) \frac{3x^2}{2} - \frac{5x^{\frac{1}{2}}}{\frac{1}{2}} - 2x (+c)$ $f(4) = 5 \implies 5 = \frac{3}{2} \times 16 - 10 \times 2 - 8 + c$ | M1A1A1
M1
A1 (5) | | (b) | $\begin{bmatrix} f(x) = \frac{3}{2}x^2 - 10x^{\frac{1}{2}} - 2x + 9 \end{bmatrix}$ | (4) | | | $m = 3 \times 4 - \frac{5}{2} - 2$ $\left(= 7.5 \text{ or } \frac{15}{2} \right)$
Equation is: $y - 5 = \frac{15}{2}(x - 4)$ | M1
M1A1 | | | $\frac{2y - 15x + 50 = 0}{}$ o.e. | A1 (4)
(9marks) | | (a) | 1st M1 for an attempt to integrate $x^n \to x^{n+1}$ 1st A1 for at least 2 correct terms in x (unsimplified) 2nd A1 for all 3 terms in x correct (condone missing $+c$ at this point). Needn't be simplified 2nd M1 for using the point $(4, 5)$ to form a linear equation for c . Must use $x = 4$ and $y = 5$ and have no x term and the function must have "changed". 3rd A1 for $c = 9$. The final expression is not required. | | | (b) | They must therefore have at least 3×4 or $-\frac{5}{2}$ and clearly be using $f'(x)$ with $x = 4$. Award this mark wherever it is seen. | | | | 2^{nd} M1 for using their value of m [or their $-\frac{1}{m}$] (provided it clearly comes from using $x = 4$ in $f'(x)$) to form an equation of the line through $(4,5)$). | | | | Allow this mark for an attempt at a normal or tangent. Their m must be numerical. Use of $y = mx + c$ scores this mark when c is found. 1 st A1 for any correct expression for the equation of the line 2 nd A1 for any correct equation with integer coefficients. An "=" is required. e.g. $2y = 15x - 50$ etc as long as the equation is correct and has integer coefficients. | | | Normal | Attempt at normal can score both M marks in (b) but A0A0 | |