www.mystudybro.com **Mathematics C1** Past Paper This resource was created and owned by Pearson Edexcel | Centre
No. | | | | | Pape | er Refer | ence | | | Surname | Initial(s) | |------------------|--|--|---|---|------|----------|------|---|---|-----------|------------| | Candidate
No. | | | 6 | 6 | 6 | 3 | / | 0 | 1 | Signature | | Paper Reference(s) ## 6663/01 # **Edexcel GCE** # Core Mathematics C1 **Advanced Subsidiary** Monday 13 May 2013 – Afternoon Time: 1 hour 30 minutes | Ех | Examiner's use only | | | | | | |----|---------------------|---|--|--|--|--| | | | | | | | | | | | | | | | | | т. | | 1 | | | | | Team Number 1 2 3 4 5 6 7 8 9 10 11 | L | eader's u | se only | |---|-----------|---------| | | | | | | | | | | | | | | | | | | Question | Leave | Materials required for examination Mathematical Formulae (Pink) Items included with question papers Calculators may NOT be used in this examination. ### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. ### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 11 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated. ### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy ©2013 Pearson Education Ltd. W850/R6663/57570 5/5/5/5/6/ Turn over Total **PEARSON** ### www.mystudybro.com **Mathematics C1** ■ Past Paper This resource was created and owned by Pearson Edexcel | Leave | | |-------|--| | blank | | Simplify $$\frac{7+\sqrt{5}}{\sqrt{5}-1}$$ giving your answer in the form $a + b\sqrt{5}$, where a and b are integers. **(4)** Q1 (Total 4 marks) Summer 2013 www.mystudybro.com Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel | 6 | 0 | c_{0} | |---|---|---------| | n | n | n.s | | Question
Number | Scheme | Marks | | |--------------------|--|--|----------| | 1 | $\frac{7 + \sqrt{5}}{\sqrt{5} - 1} \times \frac{(\sqrt{5} + 1)}{(\sqrt{5} + 1)}$ | Multiplies top and bottom by a correct expression. This statement is sufficient. | M1 | | | (Allow to multiply top and b | pottom by $k(\sqrt{5}+1)$) | | | | = \frac{\dots}{4} | Obtains a denominator of 4 or sight of $(\sqrt{5} - 1)(\sqrt{5} + 1) = 4$ | A1cso | | | Note that M0A1 is not possible. The 4 m | ust come from a correct method. | | | | $(7+\sqrt{5})(\sqrt{5}+1) = 7\sqrt{5}+5+7+\sqrt{5}$ | An attempt to multiply the numerator by $(\pm\sqrt{5}\pm1)$ and get 4 terms with at least 2 correct for their $(\pm\sqrt{5}\pm1)$. (May be implied) | M1 | | | $3 + 2\sqrt{5}$ | Answer as written or $a = 3$
and $b = 2$. (Allow $2\sqrt{5} + 3$) | A1cso | | | Correct answer with no work | king scores full marks | | | | | Tarana arang | [4] | | Way 2 | $\frac{7+\sqrt{5}}{\sqrt{5}-1} \times \frac{(-\sqrt{5}-1)}{(-\sqrt{5}-1)}$ | Multiplies top and bottom by a correct expression. This statement is sufficient. | M1 | | | (Allow to multiply top and bo | | | | | = \frac{\dots}{-4} | Obtains a denominator of -4 | A1cso | | | $(7+\sqrt{5})(-\sqrt{5}-1) = -7\sqrt{5}-5-7-\sqrt{5}$ | An attempt to multiply the numerator by $(\pm\sqrt{5}\pm1)$ and get 4 terms with at least 2 correct for their $(\pm\sqrt{5}\pm1)$. (May be implied) | M1 | | | 2 . 2 /5 | Answer as written or $a = 3$ | A 1 as a | | | $3 + 2\sqrt{5}$ | and $b=2$ | A1cso | | | Correct answer with no work | king scores full marks | F 43 | | | Alternative using Simulta | nnous Equations: | [4] | | | Afternative using simular $\frac{(7+\sqrt{5})}{\sqrt{5}-1} = a+b\sqrt{5} \Rightarrow 7+\sqrt{5} = 0$ Multiplies and collects ration $a-b=1, 5b-a$ Correct equal $a=3, b=0$ | $= (a - b)\sqrt{5} + 5b - a \text{ M1}$ tal and irrational parts $a = 7 \text{ A1}$ tions | | | | M1 for attempt to solve simultaneous eq | quations A1 both answers correct | | ### www.mystudybro.com Past Paper This resource was created and owned by Pearson Edexcel 6663 Leave blank **2.** Find $$\int \left(10x^4 - 4x - \frac{3}{\sqrt{x}}\right) \mathrm{d}x$$ giving each term in its simplest form. **(4)** Q2 (Total 4 marks) **Mathematics C1** Past Paper (Mark Scheme) **www.mystudybro.com**This resource was created and owned by Pearson Edexcel 6663 | Question
Number | Schen | ne | Marks | |--------------------|---|--|----------| | 2 | $(\int =)\frac{10x^5}{5} - \frac{4x^2}{2}, -\frac{3x^{\frac{1}{2}}}{\frac{1}{2}}$ | M1: Some attempt to integrate:
$x^n \to x^{n+1}$ on at least one term.
(not for + c)
(If they think $\frac{3}{\sqrt{x}}$ is $3x^{\frac{1}{2}}$ you can still award the method mark for $\frac{1}{x^2} \to \frac{3}{x^2}$
A1: $\frac{10x^5}{5}$ and $\frac{-4x^2}{2}$ or better | M1A1, A1 | | | $= 2x^5 - 2x^2 - 6x^{\frac{1}{2}} + c$ Do not apply isw. If they obtain the correction they lose the | | A1 | | | 1335 616 | | [4] | ■ Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel 6663 | Leave | | |-------|--| | blank | | | 3. (a) Find the value of 8 | 3 | |----------------------------|---| |----------------------------|---| **(2)** | (b) Simplify fully | $\frac{\left(2x^{\frac{1}{2}}\right)^3}{4x^2}$ | |--------------------|--| |--------------------|--| **(3)** | Mathematics | C 1 | |--------------------|------------| | 4 | 3663 | | Question
Number | Scheme | | Marks | |--------------------|--|---|-------| | 3(a) | $8^{\frac{1}{3}} = 2$ or $8^5 = 32768$ | A correct attempt to deal with the $\frac{1}{3}$ or the 5. $8^{\frac{1}{3}} = \sqrt[3]{8}$ or $8^5 = 8 \times 8 \times 8 \times 8 \times 8$ | M1 | | | $\left(8^{\frac{5}{3}} = \right) 32$ | Cao | A1 | | | | working scores full marks | | | | | native | | | | $8^{\frac{3}{3}} = 8 \times 8^{\frac{2}{3}} = 8 \times 2^2 = N$ = 32 | M1 (Deals with the 1/3) | | | | | | (2) | | (b) | $\left(2x^{\frac{1}{2}}\right)^3 = 2^3 x^{\frac{3}{2}}$ | One correct power either 2^3 or $x^{\frac{3}{2}}$. $ \left(2x^{\frac{1}{2}}\right) \times \left(2x^{\frac{1}{2}}\right) \times \left(2x^{\frac{1}{2}}\right) $ on its own is not sufficient for this mark. | M1 | | | $\frac{8x^{\frac{3}{2}}}{4x^2} = 2x^{-\frac{1}{2}} \text{ or } \frac{2}{\sqrt{x}}$ | M1: Divides coefficients of x and subtracts their powers of x. Dependent on the previous M1 | dM1A1 | | | | A1: Correct answer | | | | Note that unless the power of <i>x</i> imp | plies that they have subtracted their | | | | powers you would need to see evidence of subtraction. E.g. $\frac{8x^{\frac{3}{2}}}{4x^2} = 2x^{\frac{1}{2}}$ would score dM0 unless you see some evidence that $3/2 - 2$ was intended | | | | | Note that there is a misconception that | ower of x. $ \frac{\left(2x^{\frac{1}{2}}\right)^3}{4x^2} = \left(\frac{2x^{\frac{1}{2}}}{4x^2}\right)^3 - \text{this scores } 0/3 $ | | | | | | (3) | | | | | [5] | ■ Past Paper This resource was created and owned by Pearson Edexcel Leave blank **4.** A sequence $a_1, a_2, a_3, ...$ is defined by $$a_1 = 4$$ $a_{n+1} = k(a_n + 2), \quad \text{for } n \ge 1$ where k is a constant. (a) Find an expression for a_2 in terms of k. (1) Given that $\sum_{i=1}^{3} a_i = 2$, (b) find the two possible values of k. **(6)** Past Paper (Mark Scheme) **www.mystudybro.com**This resource was created and owned by Pearson Edexcel **Mathematics C1** 6663 | Question
Number | Scho | eme | Marks | |--------------------|---|--|-------| | | For this question, mark (a) and (| b) together and ignore labelling. | | | 4(a) | $(a_2 =) k(4+2) (= 6k)$ | Any correct (possibly un-simplified) expression | B1 | | | | | (1) | | (b) | $a_3 = k$ (their $a_2 + 2$) (= $6k^2 + 2k$) | An attempt at a_3 . Can follow through their answer to (a) but a_2 must be an expression in k . | M1 | | | $a_1 + a_2 + a_3 = 4 + (6k) + (6k^2 + 2k)$ | An attempt to find their $a_1 + a_2 + a_3$ | M1 | | | $4 + (6k) + (6k^2 + 2k) = 2$ | A correct equation in any form. | A1 | | | Solves $6k^2 + 8k + 2 = 0$ to obtain $k = (6k^2 + 8k + 2 = 2(3k + 1)(k + 1))$ | Solves their 3TQ as far as $k =$ according to the general principles. (An independent mark for solving their three term quadratic) | M1 | | | k = -1/3 | Any equivalent fraction | A1 | | | <i>k</i> = −1 | Must be from a correct equation. (Do not accept un-simplified) | B1 | | | Note that it is quite common to think the a_3 , this is likely only to score the M1 | <u>-</u> | | | | | | (6) | | | | | [7] | Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel 6663 | | Le | |---------------------------------------|-----| | | bl | | | | | (2) | | | · · · · · · · · · · · · · · · · · · · | | | (4) | | | (-) | (2) | ### **Mathematics C1** 6663 Past Paper (Mark Scheme) **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | Question
Number | Scheme | | Marks | 5 | |--------------------|---|---|--------|------------| | 5 (a) | 6x + x > 1 - 8 | Attempts to expand the bracket and collect x terms on one side and constant terms on the other.
Condone sign errors and allow one error in expanding the bracket.
Allow $<$, \leq , \geq ,= instead of $>$. | M1 | | | | x > -1 | Cao | A1 | | | | Do not isw here, ma | rk their final answer. | | | | | | | | (2) | | (b) | (x+3)(3x-1)[=0] | M1: Attempt to solve the quadratic to obtain two critical values | | | | | $\Rightarrow x = -3 \text{ and } \frac{1}{3}$ | A1: $x = -3$ and $\frac{1}{3}$ (may be implied by | M1A1 | | | | | their inequality). Allow all equivalent fractions for -3 and 1/3. (Allow 0.333 for 1/3) | | | | | $-3 < x < \frac{1}{3}$ | M1: Chooses "inside" region (The letter x does not need to be used here) A1ft: Allow $x < \frac{1}{3}$ and $x > -3$ or $\left(-3, \frac{1}{3}\right)$ or $x < \frac{1}{3} \cap x > -3$. Follow through their critical values. (must be in terms of x here) Allow all equivalent fractions for -3 and 1/3. Both $\left(x < \frac{1}{3} \text{ or } x > -3\right)$ and | M1A1ft | | | | | $(x < \frac{1}{3}, x > -3)$ as a final answer score A0. | | (4)
[6] | | | Note that use of <or>annearing in a</or> | n otherwise correct answer in (a) or (b) | | լսյ | | | | nce, the first time it occurs. | | | ■ Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel 6663 | The straight line L_1 passes through the points $(-1,3)$ and $(11,12)$. | | |--|-----| | (a) Find an equation for L_1 in the form $ax + by + c = 0$, | | | where a , b and c are integers. | (4) | | | (4) | | The line L_2 has equation $3y + 4x - 30 = 0$. | | | (b) Find the coordinates of the point of intersection of L_1 and L_2 . | (2) | | | (3) | Mathematics | C1 | |--------------------|-----------| | | 6663 | | Question
Number | Schen | me | Marks | |--------------------|--|---|-------| | 6 | (-1, 3) , | (11, 12) | | | (a) | $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{12 - 3}{11 - (-1)}, = \frac{3}{4}$ | M1:Correct method for the gradient A1: Any correct fraction or decimal | M1,A1 | | | $y-3 = \frac{3}{4}(x+1)$ or $y-12 = \frac{3}{4}(x-11)$
or $y = \frac{3}{4}x + c$ with attempt at substitution to find c | Correct straight line method using either of the given points and a numerical gradient. | M1 | | | 4y - 3x - 15 = 0 | Or equivalent with integer coefficients (= 0 is required) | A1 | | | This A1 should only | be awarded in (a) | | | | | | (4) | | (a)
Way 2 | $\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1} \Rightarrow \frac{y - 3}{12 - 3} = \frac{x + 1}{11 + 1}$ | M1: Use of a correct formula for the straight line A1: Correct equation | M1A1 | | | 12(y-3) = 9(x+1) | Eliminates fractions | M1 | | | 4y - 3x - 15 = 0 | Or equivalent with integer coefficients (= 0 is required) | A1 | | | | | (4) | | (b) | Solves their equation from part (a) and L_2 simultaneously to eliminate one variable | Must reach as far as an equation in <i>x</i> only or in <i>y</i> only. (Allow slips in the algebra) | M1 | | | x = 3 or y = 6 | One of $x = 3$ or $y = 6$ | A1 | | | Both $x = 3$ and $y = 6$ | Values can be un-simplified fractions. | A1 | | | Fully correct answers with no | working can score 3/3 in (b) | | | | | | (3) | | (b)
Way 2 | $(-1,3) \rightarrow -a + 3b + c = 0$
$(11,12) \rightarrow 11a + 12b + c = 0$ | Substitutes the coordinates to obtain two equations | M1 | | | $\therefore a = -\frac{3}{4}b, \ b = -\frac{4}{15}c$ e.g. $c = 1 \Rightarrow b = -\frac{4}{15}, \ a = \frac{3}{15}$ | Obtains sufficient equations to establish values for <i>a</i> , <i>b</i> and <i>c</i> | A1 | | | e.g. $c = 1 \Rightarrow b = -\frac{4}{15}, \ a = \frac{3}{15}$ | Obtains values for a, b and c | M1 | | | $\frac{3}{15}x - \frac{4}{15}y + 1 = 0 \Rightarrow 4y - 3x - 15 = 0$ | Correct equation | A1 | | | | | (4) | | | | | [7] | ■ Past Paper ## Mathe **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | ematics C1 | | | |------------|-------|--| | | Leave | | | its | blank | | | in
N. | | | | 2) | | | | ng | | | | 5) | | | | | | | | | | | | _ | | | | _ | _ | | | | | | | | _ | | | | | | | | _ | | | | 7. | A company, which is making 200 mobile phones each week, plans to increase its | b | |----|--|---| | | production. | | | | The number of mobile phones produced is to be increased by 20 each week from 200 in week 1 to 220 in week 2, to 240 in week 3 and so on, until it is producing 600 in week N . | | | | (a) Find the value of N . | | | | (2) | | | | The company then plans to continue to make 600 mobile phones each week. | | | | (b) Find the total number of mobile phones that will be made in the first 52 weeks starting from and including week 1. | | | | (5) | **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | s C1
6663 | | |---------------------|--| | | | | | | | | | | Question
Number | Scheme | Marks | | | |--------------------|---|--|--------|--| | 7(a) | $600 = 200 + (N-1)20 \Rightarrow N = \dots$ | Use of 600 with a correct formula in an attempt to find <i>N</i> . A correct formula could be implied by a correct answer. | M1 | | | | N = 21 | cso | A1 | | | | Accept correct an | iswer only. | | | | | $\frac{600 = 200 + 20\text{N} \Rightarrow N = 20 \text{ is M0A0 (wrong formula)}}{600 - 200} = 20 : N = 21 \text{ is M1A1 (correct formula implied)}$ | | | | | | Listing: All terms must be listed up to A solution that scores 2 if fully | _ | | | | | A solution that scores 2 if fully | correct and 0 otherwise. | (2) | | | (b) | Look for an A | ⊥
∆P first: | (2) | | | | $S = \frac{21}{2}(2 \times 200 + 20 \times 20) \text{ or } \frac{21}{2}(200 + 600)$ or $S = \frac{20}{2}(2 \times 200 + 19 \times 20) \text{ or } \frac{20}{2}(200 + 580)$ (= 8400 or 7800) | M1: Use of correct sum formula with their integer $n = N$ or $N - 1$ from part (a) where $3 < N < 52$ and $a = 200$ and $d = 20$. A1: Any correct un-simplified numerical expression with $n = 20$ or $n = 21$ (No follow through here) | - M1A1 | | | | Then for the cons | | | | | | 600×(52-"N") (= 18600) | M1: $600 \times k$ where k is an integer and $3 < k < 52$ A1: A correct un-simplified follow through expression with their k consistent with n so that $n + k = 52$ | M1A1ft | | | | So total is 27000 | Cao | A1 | | | | Note that for the constant terms, they may | | | | | | There are no marks in (b) | | | | | | | | (5) | | | | If they obtain $N = 20$ in (a) $(0/2)$ and $S = \frac{20}{2}(2 \times 200 + 19 \times 20) + 32 \times 600$ allow them to 'recover' and similarly If they obtain $N = 22$ in (a) $(0/2)$ and $S = \frac{21}{2}(2 \times 200 + 20 \times 20) + 31 \times 600$ | 0 = 7800 + 19 200 = 27 000
score full marks in (b)
y
nd then in (b) proceed with, | [7] | | | | allow them to 'recover' and | | | | 6663 Leave blank 8. Figure 1 Figure 1 shows a sketch of the curve with equation y = f(x) where $$f(x) = (x + 3)^2 (x - 1), x \in \mathbb{R}.$$ The curve crosses the x-axis at (1, 0), touches it at (-3, 0) and crosses the y-axis at (0, -9) (a) In the space below, sketch the curve C with equation y = f(x+2) and state the coordinates of the points where the curve C meets the x-axis. **(3)** (b) Write down an equation of the curve C. **(1)** (c) Use your answer to part (b) to find the coordinates of the point where the curve *C* meets the *y*-axis. **(2)** ### **Mathematics C1** 6663 [6] Past Paper (Mark Scheme) **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | Question
Number | Scheme | | | 8 | |--------------------|--|--|-------|------------| | (a) | √t | Horizontal translation – does not have to cross the <i>y</i> -axis on the right but must at least reach the <i>x</i> -axis. | B1 | | | | -6 | Touching at (-5, 0). This could be stated anywhere or -5 could be marked on the <i>x</i> -axis. Or (0, -5) marked in the correct place. Be fairly generous with 'touching' if the intention is clear. | B1 | | | | / -10 | The right hand tail of their cubic shape crossing at (-1, 0). This could be stated anywhere or -1 could be marked on the <i>x</i> -axis. Or (0, -1) marked in the correct place. The curve must cross the <i>x</i> -axis and not stop at -1. | B1 | | | | | | | (3) | | (b) | $(x+5)^2(x+1)$ | Allow $(x+3+2)^2(x-1+2)$ | B1 | | | | | | | (1) | | (c) | When $x = 0$, $y = 25$ | M1: Substitutes $x = 0$ into their expression in part (b) which is not $f(x)$. This may be implied by their answer. Note that the question asks them to use part (b) but allow independent methods. A1: $y = 25$ (Coordinates not | M1 A1 | | | | | needed) | | | | | If they expand <u>incorrectly</u> prior to s | | | | | | $\mathbf{NB}\ \mathbf{f}(x+2) = x^3 + 1$ | $1x^2 + 35x + 25$ | | | | | | | | (2) | ### www.mystudybro.com **Mathematics C1** ■ Past Paper This resource was created and owned by Pearson Edexcel Leave blank 9. $$f'(x) = \frac{(3-x^2)^2}{x^2}, \quad x \neq 0$$ - (a) Show that - $f'(x) = 9x^{-2} + A + Bx^2,$ where A and B are constants to be found. **(3)** (b) Find f''(x). **(2)** Given that the point (-3, 10) lies on the curve with equation y = f(x), (c) find f(x). **(5)** **www.mystudybro.com**This resource was created and owned by Pearson Edexcel 6663 | Question
Number | Scheme | | | |--------------------|---|---|---------| | 9 (a) | $(3-x^2)^2 = 9 - 6x^2 + x^4$ | $(3-x^2)^2 = 9-6x^2+x^4$ An attempt to expand the numerator obtaining an expression of the form $9 \pm px^2 \pm qx^4, p,q \neq 0$ | | | | $9x^{-2} + x^2$ | Must come from $\frac{9+x^4}{x^2}$ | A1 | | | -6 | Must come from $\frac{-6x^2}{x^2}$ | A1 | | | | is $(3x^{-1} - x)^2$ and attempts to expand = M1 | | | | | 1 as in the scheme. | | | | | $Ax^2 + Bx^4$, expands $(3-x^2)^2$ and compares hen A1A1 as in the scheme. | | | | | | (3) | | | (f'(x) | $=9x^{-2}-6+x^2$ | | | (b) | $-18x^{-3} + 2x$ | M1: $x^n \to x^{n-1}$ on separate terms at least once. Do not award for $A \to 0$ (Integrating is M0) A1ft: $-18x^{-3} + 2"B"x$ with a numerical B and no extra terms. (A may have been incorrect or even zero) | M1 A1ft | | | | | (2) | | (c) | $f(x) = -9x^{-1} - 6x + \frac{x^3}{3}(+c)$ | M1: $x^n \to x^{n+1}$ on separate terms at least once. (Differentiating is M0) A1ft: $-9x^{-1} + Ax + \frac{Bx^3}{3}(+c)$ with numerical A and B, $A, B \ne 0$ | M1A1ft | | | $10 = \frac{-9}{-3} - 6(-3) + \frac{(-3)^3}{3} + c \text{ so } c$ $= \dots$ | Uses $x = -3$ and $y = 10$ in what they think is $f(x)$ (They may have differentiated here) but it must be a changed function i.e. not the original $f'(x)$, to form a linear equation in c and attempts to find c . No $+ c$ gets M0 and A0 unless their method implies that they are correctly finding a constant. | M1 | | | c = -2 | cso | A1 | | | $(f(x) =) -9x^{-1} - 6x + \frac{x^3}{3} + \text{their}$ | Follow through their c in an otherwise (possibly un-simplified) correct expression . Allow $-\frac{9}{x}$ for $-9x^{-1}$ or even $\frac{9x^{-1}}{-1}$. | A1ft | | | | no marks there but if they then go on to | | | | use their integration in (c), th | e marks for integration are available. | /=· | | | | | (5) | | | | | [10] | Past Paper This resource was created and owned by Pearson Edexcel Leave blank 10. Given the simultaneous equations $$2x + y = 1$$ $$x^2 - 4ky + 5k = 0$$ where k is a non zero constant, (a) show that $$x^2 + 8kx + k = 0$$ **(2)** Given that $x^2 + 8kx + k = 0$ has equal roots, (b) find the value of k. **(3)** (c) For this value of k, find the solution of the simultaneous equations. (3) Past Paper (Mark Scheme) | Question
Number | Scheme | Marks | | |-------------------------|--|---|-----------| | 10(a) | $x^2 - 4k(1 - 2x) + 5k(=0)$ | Makes y the subject from the first equation and substitutes into the second equation (= 0 not needed here) or eliminates y by a correct method. | M1 | | | So $x^2 + 8kx + k = 0 *$ | Correct completion to printed answer. There must be no incorrect statements. | A1cso (2) | | (b) | $(8k)^2 - 4k$ | M1: Use of $b^2 - 4ac$ (Could be in the quadratic formula or an inequality, = 0 not needed yet). There must be some correct substitution but there must be no x 's. No formula quoted followed by e.g. $8k^2 - 4k = 0$ is M0. A1: Correct expression. Do not condone missing brackets unless they are implied by later work but can be implied by $(8k)^2 > 4k$ etc. | M1 A1 | | | $k = \frac{1}{16} \text{ (oe)}$ | Cso (Ignore any reference to $k = 0$) but there must be no contradictory earlier statements. A fully correct solution with no errors. | A1 | | (b) | _ | M1. Compat strategy for a goal maste | (3) | | Way 2
Equal
roots | $\Rightarrow x^2 + 8kx + k = (x + \sqrt{k})^2$ $\Rightarrow 8k = 2\sqrt{k}$ | M1: Correct strategy for equal roots A1: Correct equation | M1A1 | | | $k = \frac{1}{16} \text{ (oe)}$ | Cso (Ignore any reference to $k = 0$) | A1 | | <i>a</i> > | Completes the Square $x^{2} + 8kx + k = (x + 4k)^{2} + 16k^{2} + k$ | M1: $(x \pm 4k)^2 \pm p \pm k, p \neq 0$ | | | (b)
Way 3 | $x^{2} + 8kx + k = (x + 4k)^{2} - 16k^{2} + k$ $\Rightarrow 16k^{2} - k = 0$ | A1: Correct equation | M1A1 | | | $k = \frac{1}{16} \text{ (oe)}$ | Cso (Ignore any reference to $k = 0$) | A1 | | | | Substitutes their value of <i>k</i> into the given | (3 | | (c) | $x^{2} + \frac{1}{2}x + \frac{1}{16} = 0$ so $(x + \frac{1}{4})^{2} = 0 \Rightarrow x =$ | quadratic and attempt to solve their 2 or 3 term quadratic as far as $x = $ (may be implied by substitution into the quadratic formula) or starts again and substitutes their value of k into the second equation and solves simultaneously to obtain a value for x . | M1 | | | $x = -\frac{1}{4}, y = 1\frac{1}{2}$ | First A1 one answer correct, second A1 both answers correct. | A1A1 | | | Special Case: $x^2 + \frac{1}{2}x + \frac{1}{16} = 0 \implies$ | $\Rightarrow x = -\frac{1}{4}, \frac{1}{4} \Rightarrow y = 1\frac{1}{2}, \frac{1}{2} \text{ allow M1A1A0}$ | | | | | | (3 | | | <u> </u> | | [8] | This resource was created and owned by Pearson Edexcel 6663 Leave blank 11. Past Paper Figure 2 Figure 2 shows a sketch of the curve H with equation $y = \frac{3}{x} + 4$, $x \neq 0$. (a) Give the coordinates of the point where H crosses the x-axis. (1) (b) Give the equations of the asymptotes to H. **(2)** (c) Find an equation for the normal to H at the point P(-3, 3). **(5)** This normal crosses the x-axis at A and the y-axis at B. (d) Find the length of the line segment AB. Give your answer as a surd. (3) 6663 [11] | Question
Number | Scho | Scheme | | |--------------------|--|---|----------| | 11
(a) | $\left(-\frac{3}{4}, 0\right). \text{Accept} x = -\frac{3}{4}$ | | B1 | | | | | (1) | | (b) | y = 4 | B1: One correct asymptote | | | | x = 0 or 'y-axis' | B1: Both correct asymptotes and no extra ones. | B1B1 | | | Special case $x \neq 0$ an | d $y \neq 4$ scores B1B0 | | | | | | (2) | | (c) | $\frac{\mathrm{d}y}{\mathrm{d}x} = -3x^{-2}$ | $\frac{dy}{dx} = kx^{-2} \text{ (Allow } \frac{dy}{dx} = kx^{-2} + 4\text{)}$ | M1 | | | At $x = -3$, gradient of curve $= -\frac{1}{3}$ | Cao (may be un-simplified but must
be a fraction with no powers) e.g.
$-3(-3)^{-2}$ scores A0 unless evaluated
as e.g. $\frac{-3}{9}$ or is implied by their
normal gradient. | A1 | | | Gradient of normal = $-1/m$ | Correct perpendicular gradient rule applied to a numerical gradient that must have come from substituting <i>x</i> = -3 into their derivative. Dependent on the previous M1. | dM1 | | | Normal at <i>P</i> is $(y-3) = 3(x+3)$ | M1: Correct straight line method using (-3, 3) and a "changed" gradient. A wrong equation with no formula quoted is M0. Also dependent on the first M1. A1: Any correct equation | dM1A1 | | | | | (5) | | (d) | (-4, 0) and (0, 12). | Both correct (May be seen on a sketch) | B1 | | | So AB has length $\sqrt{160}$ or AB^2 has length 160 | M1: Correct use of Pythagoras for their <i>A</i> and <i>B</i> one of which lies on the <i>x</i> -axis and the other on the <i>y</i> -axis, obtained from their equation in (c). A correct method for AB^2 or AB . A1: $\sqrt{160}$ or better e.g. $4\sqrt{10}$ with no errors seen | M1 A1cso |