www.mystudybro.com

Mathematics C1

Past Paper

This resource was created and owned by Pearson Edexcel

....

Centre No.			Paper Reference				Surname	Initial(s)			
Candidate No.			6	6	6	3	/	0	1	Signature	

Paper Reference(s)

6663/01

Edexcel GCE

Core Mathematics C1 Advanced Subsidiary

Wednesday 13 May 2015 - Morning

Time: 1 hour 30 minutes

Team Leader's use only						

Question

1

2

3

4

5

6

7

8

9

10

Examiner's use only

Materials required for examination

Mathematical Formulae (Pink)

Items included with question papers

Nil

Calculators may NOT be used in this examination.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 10 questions in this question paper. The total mark for this paper is 75.

There are 32 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy.

©2015 Pearson Education Ltd.

P43145A
W850/R6663/57570 5/5/5/1/1/

Total

Turn over

PEARSON

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

0003	
eave lank	

•	Simplify	
	(a) $(2\sqrt{5})^2$	(1)
	(b) $\frac{\sqrt{2}}{2\sqrt{5-3}\sqrt{2}}$ giving your answer in the form $a + \sqrt{b}$, where a and	
	(b) $\frac{1}{2\sqrt{5-3}\sqrt{2}}$ giving your answer in the form $a+\sqrt{b}$, where a and	(4)
_		
_		
_		

Question Number	Scheme				
1.(a)	20	Sight of 20. (4×5 is not sufficient)	B1		
		Maria de la companya	(1)		
(b)	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} \times \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}}$	Multiplies top and bottom by a correct expression. This statement is sufficient. NB $2\sqrt{5} + 3\sqrt{2} \equiv \sqrt{20} + \sqrt{18}$	M1		
	(Allow to multiply top and bottom by $k(2\sqrt{5}+3\sqrt{2})$)				
		Obtains a denominator of 2 or sight of $(2\sqrt{5} - 3\sqrt{2})(2\sqrt{5} + 3\sqrt{2}) = 2$ with no errors			
	$=\frac{\cdots}{2}$	seen in this expansion.	A1		
	-	May be implied by $\frac{\dots}{2k}$			
		. The 2 must come from a correct method.			
		re is no need to consider the numerator. $2\sqrt{5} + 2\sqrt{2}$			
	e.g. $\frac{2(MR?)}{2\sqrt{5}-3\sqrt{2}} \times$	$\frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}} = \frac{\dots}{2} \text{ scores M1A1}$			
		An attempt to multiply the numerator by			
	Numerator =	$\pm (2\sqrt{5} \pm 3\sqrt{2})$ and obtain an expression of the			
	$\sqrt{2}(2\sqrt{5}\pm 3\sqrt{2}) = 2\sqrt{10}\pm 6$	form $p + q\sqrt{10}$ where p and q are integers.	M1		
	, , , , ,	This may be implied by e.g. $2\sqrt{10} + 3\sqrt{4}$ or by their final answer.			
	(Allow attempt to multiply the numerator by $k(2\sqrt{5}\pm 3\sqrt{2})$)				
	$\frac{\sqrt{2}}{2\sqrt{5}-3\sqrt{2}} = \frac{2\sqrt{10}+6}{2} = 3+\sqrt{10}$ Cso. For the answer as written or $\sqrt{10}+3$ or a statement that $a=3$ and $b=10$. Score when first seen and ignore any subsequent attempt to 'simplify'. Allow $1\sqrt{10}$ for $\sqrt{10}$				
		1110 W 1 V 10 101 V 10	(4)		
			(5 marks)		
	Alt	ernative for (b)			
	<i>[</i> 2 1 2	M1: Divides or multiplies top and bottom by $\sqrt{2}$			
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{1}{\sqrt{10} - 3} \text{ or } \frac{2}{2\sqrt{10} - 6}$	A1: $\frac{k}{k(\sqrt{10}-3)}$	M1A1		
	$\sqrt{10}-3$ $\sqrt{10}+3$: Multiplies top and bottom by $\sqrt{10} + 3$	M1		
	$=3+\sqrt{10}$		A1		
2.	v = 2r = A	$= 0, \ 4x^2 + y^2 + 20x = 0$			
	y 2x-4-	0, 1A 1 y 1 20A = 0	<u> </u>		

Mathematics C1

Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	١
Leave	,
hlank	

	y - 2x - 4 = 0
	$x^2 + y^2 + 20x = 0$
4,3	$x^2 + y^2 + 20x = 0 ag{7}$

Question Number	Scheme				
1.(a)	20	Sight of 20. (4×5 is not sufficient)	B1		
		Maria de la companya	(1)		
(b)	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} \times \frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}}$	Multiplies top and bottom by a correct expression. This statement is sufficient. NB $2\sqrt{5} + 3\sqrt{2} \equiv \sqrt{20} + \sqrt{18}$	M1		
	(Allow to multiply top and bottom by $k(2\sqrt{5}+3\sqrt{2})$)				
		Obtains a denominator of 2 or sight of $(2\sqrt{5} - 3\sqrt{2})(2\sqrt{5} + 3\sqrt{2}) = 2$ with no errors			
	$=\frac{\cdots}{2}$	seen in this expansion.	A1		
	-	May be implied by $\frac{\dots}{2k}$			
		. The 2 must come from a correct method.			
		re is no need to consider the numerator. $2\sqrt{5} + 2\sqrt{2}$			
	e.g. $\frac{2(MR?)}{2\sqrt{5}-3\sqrt{2}} \times$	$\frac{2\sqrt{5} + 3\sqrt{2}}{2\sqrt{5} + 3\sqrt{2}} = \frac{\dots}{2} \text{ scores M1A1}$			
		An attempt to multiply the numerator by			
	Numerator =	$\pm (2\sqrt{5} \pm 3\sqrt{2})$ and obtain an expression of the			
	$\sqrt{2}(2\sqrt{5}\pm 3\sqrt{2}) = 2\sqrt{10}\pm 6$	form $p + q\sqrt{10}$ where p and q are integers.	M1		
	, , , , ,	This may be implied by e.g. $2\sqrt{10} + 3\sqrt{4}$ or by their final answer.			
	(Allow attempt to multiply the numerator by $k(2\sqrt{5}\pm 3\sqrt{2})$)				
	$\frac{\sqrt{2}}{2\sqrt{5}-3\sqrt{2}} = \frac{2\sqrt{10}+6}{2} = 3+\sqrt{10}$ Cso. For the answer as written or $\sqrt{10}+3$ or a statement that $a=3$ and $b=10$. Score when first seen and ignore any subsequent attempt to 'simplify'. Allow $1\sqrt{10}$ for $\sqrt{10}$				
		1110 W 1 V 10 101 V 10	(4)		
			(5 marks)		
	Alt	ernative for (b)			
	<i>[</i> 2 1 2	M1: Divides or multiplies top and bottom by $\sqrt{2}$			
	$\frac{\sqrt{2}}{2\sqrt{5} - 3\sqrt{2}} = \frac{1}{\sqrt{10} - 3} \text{ or } \frac{2}{2\sqrt{10} - 6}$	A1: $\frac{k}{k(\sqrt{10}-3)}$	M1A1		
	$\sqrt{10}-3$ $\sqrt{10}+3$: Multiplies top and bottom by $\sqrt{10} + 3$	M1		
	$=3+\sqrt{10}$		A1		
2.	v = 2r = A	$= 0, \ 4x^2 + y^2 + 20x = 0$			
	y 2x-4-	0, 1A 1 y 1 20A = 0	<u> </u>		

This resource was	created and	owned by	Pearson	Edexcel

Question Number	Scheme				
	$y = 2x + 4 \Rightarrow 4x^{2} + (2x + 4)^{2} + 20x = 0$ or $2x = y - 4 \text{ or } x = \frac{y - 4}{2}$ $\Rightarrow (y - 4)^{2} + y^{2} + 10(y - 4) = 0$	Attempts to rearrange the linear equation to $y =$ or $x =$ or $2x =$ and attempts to fully substitute into the second equation.	M1		
	$8x^{2} + 36x + 16 = 0$ or $2y^{2} + 2y - 24 = 0$	M1: Collects terms together to produce quadratic expression = 0. The '= 0' may be implied by later work. A1: Correct three term quadratic equation in <i>x</i> or <i>y</i> . The '= 0' may be implied by later work.	M1 A1		
	$(4)(2x+1)(x+4) = 0 \Rightarrow x = \dots$ or $(2)(y+4)(y-3) = 0 \Rightarrow y = \dots$	Attempt to factorise and solve or complete the square and solve or uses a correct quadratic formula for a 3 term quadratic.	M1		
	x = -0.5, x = -4 or y = -4, y = 3	Correct answers for either both values of <i>x</i> or both values of <i>y</i> (possibly un-simplified)	A1 cso		
	Sub into $y = 2x + 4$ or Sub into $x = \frac{y - 4}{2}$	Substitutes at least one of their values of x into a correct equation as far as $y =$ or substitutes at least one of their values of y into a correct equation as far as $y =$	M1		
	y = 3, y = -4 and x = -4, x = -0.5	Fully correct solutions and simplified. Pairing not required. If there are any extra values of <i>x</i> or <i>y</i> , score A0.	A1		
			(7 marks)		
	Special Cas	e: Uses $y = -2x - 4$			
	$y = 2x + 4 \Rightarrow 4x^{2} + (-2x - 4)^{2} + 20x = 0$		M1		
	$8x^2 + 36x + 16 = 0$		M1A1		
	$(4)(2x+1)(x+4) = 0 \Rightarrow x = \dots$		M1		
	x = -0.5, x = -4		A0		
	Sub into $y = 2x + 4$	Sub into $y = -2x - 4$ is M0	M1		
	y = 3, y = -4 and x = -4, x = -0.5		A0		

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6663

Leave blank

3.	Given that $y = 4x^3 - 4x^3$	$\frac{5}{x^2}, x \neq 0,$	find in th	neir simplest	form
----	------------------------------	----------------------------	------------	---------------	------

(a)
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$

(3)

(b)
$$\int y dx$$

(3)

Question Number	Scheme	
3.	$y = 4x^3 - \frac{5}{x^2}$ $M1: x^n \to x^{n-1}$	
(a)	e.g. Sight of x^2 or x^{-3} or $\frac{1}{x^3}$ A1: $3 \times 4x^2$ or $-5 \times -2x^{-3}$ (oe) (Ignore + c for this mark) A1: $12x^2 + \frac{10}{x^3}$ or $12x^2 + 10x^{-3}$ all on one line and no + c	M1A1A1
	Apply ISW here and award marks when first seen.	
(b)	M1: $x^{n} \rightarrow x^{n+1}$. e.g. Sight of x^{4} or x^{-1} or $\frac{1}{x^{1}}$ Do not award for integrating their answer to part (a) A1: $4\frac{x^{4}}{4}$ or $-5 \times \frac{x^{-1}}{-1}$ A1: For fully correct and simplified answer with $+ c$ all on one line. Allow $x^{4} + 5 \times \frac{1}{x} + c$ Allow $1x^{4}$ for x^{4}	(3) M1A1A1
	Apply ISW here and award marks when first seen. Ignore spurious integral signs for all marks.	
	DAGAM AVA MARAMA	(3)
		(6 marks)

Past Paper

6663

This resource was created and owned by Pearson Edexcel

Leave blank

4. (i) A sequence U_1 , U_2 , U_3 , ... is defined by

$$U_{n+2} = 2U_{n+1} - U_n, \quad n \geqslant 1$$

$$U_1 = 4$$
 and $U_2 = 4$

Find the value of

(a) U_3

(1)

(b)
$$\sum_{n=1}^{20} U_n$$

(2)

(ii) Another sequence V_1 , V_2 , V_3 , ... is defined by

$$V_{n+2} = 2V_{n+1} - V_n, \quad n \geqslant 1$$

 $V_1 = k$ and $V_2 = 2k$, where k is a constant

(a) Find V_3 and V_4 in terms of k.

(2)

Given that $\sum_{n=1}^{5} V_n = 165,$

(b) find the value of k.

(3)

Question Number	Scheme		Marks
4(i).(a)	$U_3 = 4$	cao	B1
	· · · · · · · · · · · · · · · · · · ·		(1)
(b)	$\sum_{n=1}^{n=20} U_n = 4 + 4 + 4 \dots + 4 \text{ or } 20 \times 4$	For realising that all 20 terms are 4 and that the sum is required. Possible ways are $4+4+4+4$ or 20×4 or $\frac{1}{2}\times20(2\times4+19\times0)$ or $\frac{1}{2}\times20(4+4)$ (Use of a correct sum formula with $n=20, a=4$ and $d=0$ or $n=20, a=4$ and $l=4$)	M1
	= 80	cao	A1
	Correct answer with no	o working scores M1A1	
			(2)
(ii)(a)	$V_3 = 3k, V_4 = 4k$	May score in (b) if clearly identified as V_3 and V_4	B1, B1
			(2)
(b)	$\sum_{n=1}^{n=5} V_n = k + 2k + 3k + 4k + 5k = 165$ or $\frac{1}{2} \times 5(2 \times k + 4 \times k) = 165$ or $\frac{1}{2} \times 5(k + 5k) = 165$	Attempts V_5 , adds their V_1, V_2, V_3, V_4, V_5 AND sets equal to 165 or Use of a correct sum formula with $a = k$, $d = k$ and $n = 5$ or $a = k$, $l = 5k$ and $n = 5$ AND sets equal to 165	M1
	$15k = 165 \Longrightarrow k = \dots$	Attempts to solve their linear equation in k having set the sum of their first 5 terms equal to 165. Solving $V_5 = 165$ scores no marks.	M1
	k = 11	cao and cso	A1 (2)
			(3) (8 marks)

www.mystudybro.com

■ Past Paper

This resource was created and owned by Pearson Edexcel

6663

	1
Leave	1
hlank	- 1

The eq	uation
	The eq

 $(p-1)x^2 + 4x + (p-5) = 0$, where p is a constant

has no real roots.

(a) Show that p satisfies $p^2 - 6p + 1 > 0$

(3)

(b) Hence find the set of possible values of p.

(4)

Question Number		Scheme		Marks	
5(a)	$b^{2} - 4ac < 0 \Rightarrow$ $4^{2} - 4(p-1)(p-5)$ $0 > 4^{2} - 4(p-1)(p-5)$ $4^{2} < 4(p-1)(p-5)$	5) < 0 or (5) < 0 or (5) < 0 or (5) < 0 or	two of quadra examp Must b equation M1.Th	ttempts to use $b^2 - 4ac$ with at least a , b or c correct. May be in the stic formula. Could also be, for ale, comparing or equating b^2 and $4ac$, be considering the given quadratic on. Inequality sign not needed for this are must be no x terms. Or a correct un-simplified inequality not the given answer	M1A1
	$4 < p^2 -$	6 <i>p</i> + 5			
	p^2-6p	+1>0		Correct solution with no errors that includes an expansion of $(p-1)(p-5)$	A1*
~ `			I		(3)
(b)	For an attempt to solve $p^2 - 6p + 1 = 0$ (not their quadratic) leading to 2 solutions for p (do not allow attempts to factorise – must be using the quadratic formula or completing the square)		M1		
	$p = 3 \pm 2\sqrt{2}$ or any equivalent correct expressions e.g.				
	$p = 3 \pm \sqrt{8}$	_		y be implied by their inequalities)	A1
	Allow the M1A	Discriminant must be a single number not e.g. 36 - 4 he M1A1 to score anywhere for solving the given quadratic			
	$p < 3 - \sqrt{8}$ or			M1: Chooses outside region – not dependent on the previous method mark A1: $p < 3 - \sqrt{8}$, $p > 3 + \sqrt{8}$ or equivalent e.g. $p < \frac{6 - \sqrt{32}}{2}$, $p > \frac{6 + \sqrt{32}}{2}$ $(-\infty, 3 - \sqrt{8}) \cup (3 + \sqrt{8}, \infty)$ Allow ",", "or" or a space between the answers but do not allow $p < 3 - \sqrt{8}$ and $p > 3 + \sqrt{8}$ (this scores M1A0) Apply ISW if necessary.	M1A1
	A correct solution to	the quadr	atic foll	lowed by $p > 3 \pm \sqrt{8}$ scores M1A1M0A	. 0
				$\sqrt{8}$ scores M1A0	
A	Allow candidates to u	· ·		but must be in terms of p for the final	A1
				•	(4)
					(7 marks)

www.mystudybro.com

■ Past Paper

This resource was created and owned by Pearson Edexcel

Leave

blank

6. The curve *C* has equation

 $y = \frac{(x^2 + 4)(x - 3)}{2x}, \quad x \neq 0$

(a) Find $\frac{dy}{dx}$ in its simplest form.

(5)

(b) Find an equation of the tangent to C at the point where x = -1

Give your answer in the form ax + by + c = 0, where a, b and c are integers.

(5)

Question Number	Scher	me	Marks
6(a)	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{x^3 - 3x^2 + 4x - 12}{2x} = \frac{x^2}{2} - \frac{3}{2}x + 2 - 6x^{-1}$	M1: Attempt to divide each term by $2x$. The powers of x of at least two terms must follow from their expansion. Allow an attempt to multiply by $2x^{-1}$ A1: Correct expression. May be un-simplified but powers of x must be combined e.g. $\frac{x^2}{2}$ not $\frac{x^3}{2x}$	M1A1
	$\frac{dy}{dx} = x - \frac{3}{2} + \frac{6}{x^2}$ oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	ddM1: $x^n \to x^{n-1}$ or $2 \to 0$ Dependent on both previous method marks. A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept $1x$ or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 . If they lose the previous A1 because of an incorrect constant only then allow recovery here and in part (b) for a correct derivative.	ddM1A1
-			(5)
	See appendix for alternatives u	ising product/quotient rule	
(b)	At $x = -1$, $y = 10$	Correct value for y	B1
	$\left(\frac{dy}{dx} = \right) - 1 - \frac{3}{2} + \frac{6}{1} = 3.5$	M1: Substitutes $x = -1$ into their expression for dy/dx A1: 3.5 oe cso	M1A1
	y-'10'='3.5'(x1)	Uses their tangent gradient which must come from calculus with $x = -1$ and their numerical y with a correct straight line method. If using $y = mx + c$, this mark is awarded for correctly establishing a value for c .	M1
	2y - 7x - 27 = 0	$\pm k(2y-7x-27) = 0 \operatorname{cso}$	A1
			(5)
			(10 marks)

Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6663 Leave

•	Given that $y = 2^x$,	
	(a) express 4^x in terms of y .	(1)
		(1)
	(b) Hence, or otherwise, solve	
	$8(4^x) - 9(2^x) + 1 = 0$	
		(4)
_		
_		
_		

Question Number	Scheme		Marks
7.(a)	$\left(4^{x} =\right)y^{2}$	Allow y^2 or $y \times y$ or "y squared" " $4^x =$ " not required	B1
	Must be seen i	n part (a)	
			(1)
(b)	$8y^{2} - 9y + 1 = (8y - 1)(y - 1) = 0 \Rightarrow y = \dots$ or $(8(2^{x}) - 1)((2^{x}) - 1) = 0 \Rightarrow 2^{x} = \dots$	For attempting to solve the given equation as a 3 term quadratic in y or as a 3 term quadratic in 2^x leading to a value of y or 2^x (Apply usual rules for solving the quadratic – see general guidance) Allow x (or any other letter) instead of y for this mark e.g. an attempt to solve $8x^2 - 9x + 1 = 0$ Both correct answers of $\frac{1}{8}$ (oe)	M1
	$2^{x}(\text{or }y) = \frac{1}{8}, 1$	and 1 for 2^x or y or their letter but not x unless 2^x (or y) is implied later	A1
	x = -3 $x = 0$	M1: A correct attempt to find one numerical value of x from their 2^x (or y) which must have come from a 3 term quadratic equation . If logs are used then they must be evaluated. A1: Both $x = -3$ and/or $x = 0$ May be implied by e.g. $2^{-3} = \frac{1}{8} \text{ and } 2^0 = 1 \text{ and no extra values.}$	M1A1
			(4)
			(5 marks)

Mathematics C1

www.mystudybro.comThis resource was created and owned by Pearson Edexcel ■ Past Paper

eave	1
lank	

(a) Factorise completely $9x - 4x^3$	(3)
(b) Sketch the curve C with equation	
$y = 9x - 4x^3$	
Show on your sketch the coordinates at which the curve meets the <i>x</i> -axis.	(3)
The points A and B lie on C and have x coordinates of -2 and 1 respectively.	
(c) Show that the length of AB is $k\sqrt{10}$ where k is a constant to be found.	(4)

This resource was created and owned by Pearson Edexcel

Question Number	Scho	Marks			
8(a)	$9x-4x^3 = x(9-4x^2)$ or $-x(4x^2-9)$	Takes out a common factor of x or $-x$ correctly.	B1		
	$9-4x^2 = (3+2x)(3-2x)$ or	$9-4x^2 = (\pm 3 \pm 2x)(\pm 3 \pm 2x)$ or	M1		
	$4x^2 - 9 = (2x - 3)(2x + 3)$	$4x^2 - 9 = (\pm 2x \pm 3)(\pm 2x \pm 3)$			
	$1 0_{24} 4_{24}^{2} m(2+2_{24})(2-2_{24}) 1$	but allow equivalents e.g.	A1		
	$\lambda(-$	(3-2x)(-3+2x) or $-x(2x+3)(2x-3)$			
Note: 4x	$x^3 - 9x = x(4x^2 - 9) = x(2x - 3)(2x + 3)$ so		e full marks		
	Note: Correct work leading to $9x(1-$	· · · · · · · · · · · · · · · · · · ·			
	Allow $(x \pm 0)$ or $(-x \pm$	0) instead of x and -x	(2)		
(b)			(3)		
(6)	\ y ↑	A cubic shape with one maximum and one minimum	M1		
		Any line or curve drawn passing through (not touching) the origin	B1		
	(-1.5,0)	Must be the correct shape and in all four quadrants and pass through (-1.5, 0) and (1.5, 0) (Allow (0, -1.5) and (0, 1.5) or just -1.5 and 1.5 provided they are positioned correctly). Must be on the diagram (Allow $\sqrt{\frac{9}{4}}$ for 1.5)	A1		
		101 1.3)	(3)		
(c)	A = (-2, 14), B = (1, 5)	B1: $y = 14$ or $y = 5$ B1: $y = 14$ and $y = 5$	- B1 B1		
	These must be se				
	$(AB =) \sqrt{(-2-1)^2 + (14-5)^2} (= \sqrt{90})$	M1			
	E.g. $AB = \sqrt{(-2+1)^2}$	correct formula is not quoted $+(14-5)^2$ scores M0.			
	However $AB = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2} = \sqrt{(-2+1)^2 + (14-5)^2}$ scores M1				
	$(AB =) 3\sqrt{10}$	cao	A1		
			(4)		
	3		(10 marks)		
	ase: Use of $4x^3 - 9x$ for the curve gives n of B0B0M1A1 as a special case in par				

Mathematics C1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

a	a	a	2
v	v	v	J

creased by £1500 each year, so that her annual salary in year 2 was £20000 and so on, forming an arithmetic sequence. This coner maximum annual salary of £32000 in year k . Her annual salary	ontinued until she
0.	
the value of the constant k .	(2)
ulate the total amount that Jess has earned in the 20 years.	
arate the total amount that Jess has earned in the 20 years.	(5)

Question Number	Scheme					Marks					
9.(a)	3200	00 = 1700	0+(k-1))×1500=	<i>⇒ k</i> =	in an atte	2000 with a empt to find could be in	k. A cor	rect	M1	
			(k =) 1	1		Cso (All	low n = 11)		A1	
				Accept	t correct	answer o	ıly.				
		32000	-17000				A0 (wrong trect formula))		
	т;		500 1 torms n	aust ba li	stad up to	× 22000 or	nd 11 corre	otly idon	tified		
	1.1	_			_		and 0 othe	•	umea.		
		71.	SOLUTION	illat score	25 2 11 1u1		and o othe	I WISC.		(2)	
(b)		$S = \frac{k}{2}$		M1: $0+(k-1)$	×1500) o	r	M1: Use of formula w	ith their	integer	(2)	
		_	(17000+		1500)		n = k or k where $3 <$	k < 20 and	a = a		
		=		`)×1500) o	or	17000 and				
		$\frac{k-2}{2}$	$\frac{1}{2}(17000)$	+30500)			below for using $n =$	_	case for	M1A1	
				A1:			using n –	20.			
	$S=\frac{1}{2}$	$\frac{1}{2}(2\times1700)$	$00+10\times$	1500) or ¹	$\frac{11}{2}(17000 -$	+32000)	A1: Any	correct ur	1-		
	$S = \frac{10}{2}(2 \times 17000 + 9 \times 1500) \text{ or } $ simplified numerical										
	$\frac{10}{17000 + 30500}$ expression with $n = 11$ or										
		(=	-	0 or 237			n = 10				
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	32000×		/	32000× and 3 <	α where α	γis an int	eger	M1	
	M1: Attempts to add their two values. It is dependent upon the two previous M's being scored and must be the sum of 20 terms i.e. $\alpha + k = 20$				ddM1A1						
						A1: 557					
	Sı	necial Ca	se: If the	ev just fi	nd Saa (f			e the firs	st M1		
	Special Case: If they just find S_{20} (£625 000) in (b) score the first M1 otherwise apply the scheme.										
					11-7					(5)	
							(7 marks)				
					List	ing:					
n	1	2	3	4	5	6	7	8	9	10	
$u_n = 1$	7000	18500	20000	21500	23000	24500	26000	27500	29000	30500	
n	11	12	13	14	15	16	17	18	19	20	
	2000	32000	32000	32000	32000	32000	32000 M's as ab	32000	32000	32000	

■ Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

10. A curve with equation y = f(x) passes through the point (4, 9).

Given that

$$f'(x) = \frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2, \quad x > 0$$

(a) find f(x), giving each term in its simplest form.

(5)

Point *P* lies on the curve.

The normal to the curve at P is parallel to the line 2y + x = 0

(b) Find the *x* coordinate of *P*.

(5)

Question Number	Scheme			Marks
10(a)	$f(x) = x^{\frac{3}{2}} - \frac{9}{2}x^{\frac{1}{2}} + 2x(+c)$		M1: $x^n \rightarrow x^{n+1}$ A1: Two terms in x correct, simplification is not required in coefficients or powers A1: All terms in x correct. Simplification not required in coefficients or powers and $+$ c is not required M1: Sub $x = 4$, $y = 9$ into f (x) to	- M1A1A1
	Sub $x = 4$, $y = 9$ into $f(x) \Rightarrow c$	=	obtain a value for c. If no + c then M0. Use of $x = 9$, $y = 4$ is M0.	M1
	$(f(x) =) x^{\frac{3}{2}} - \frac{9}{2} x^{\frac{1}{2}} + 2x + 2$	simpl Must	ified e.g. $f(x) = x^{\frac{3}{2}} - 4.5\sqrt{x} + 2x + 2$ be all 'on one line' and simplified .	A1
(b)				(5)
(b)	Gradient of normal is $-\frac{1}{2} \Rightarrow$ Gradient of tangent = +2	M1: Gradient of $2y + x = 0 \text{ is } \pm \frac{1}{2}(m) \Rightarrow \frac{dy}{dx} = -\frac{1}{\pm \frac{1}{2}}$ A1: Gradient of tangent = +2 (May be implied)		M1A1
	The A1 may be implied by $\frac{-1}{\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2} = -\frac{1}{2}$			
	$\boxed{\frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}} + 2 = 2 \Rightarrow \frac{3\sqrt{x}}{2} - \frac{9}{4\sqrt{x}}}$	$\sqrt{x} = 0$	Sets the given $f'(x)$ or their $f'(x)$ = their changed m and not their m where m has come from $2y + x = 0$	M1
	$\times 4\sqrt{x} \Rightarrow 6x - 9 = 0 \Rightarrow x = \dots$	only value solvi corre	x or equivalent correct algebraic essing (allow sign/arithmetic errors) and attempt to solve to obtain a e for x . If $f'(x) \neq 2$ they need to be ang a three term quadratic in \sqrt{x} ectly and square to obtain a value for ust be using the given $f'(x)$ for this k .	M1
	$x = 1.5$ $x = \frac{3}{2}(1.5)$ If any 'e		A1 (5)	
	2 4\v/\lambda		$\frac{\sqrt{x}}{2} - \frac{1}{2} = -\frac{1}{2}$ etc. leads to the correct	(5)
	answer and could score M1A1M1M0(incorrect processing)A0			(10 marks)
		(10 marks)		

$\frac{Appendix}{6(a)}$

	6 (a)		
	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct M1: Correct application of	M1
	$\frac{dy}{dx} = \frac{2x(3x^2 - 6x + 4) - 2(x^3 - 3x^2 + 4x - 1)}{(2x)^2}$	M1A1	
Way 2 Quotient	$= \frac{4x^3}{4x^2} - \frac{6x^2}{4x^2} + \frac{24}{4x^2} = x - \frac{3}{2} + \frac{6}{x^2}$	M1: Collects terms and divides by denominator. Dependent on both previous method marks.	
	$4x^{2} 4x^{2} 4x^{2} 2 x^{2}$ oe e.g. $\frac{2x^{3} - 3x^{2} + 12}{2x^{2}}$	A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not $\frac{2x}{2}$ and not x^0 .	ddM1A1
	$y = \left(\frac{x}{2} + \frac{2}{x}\right)(x-3)\operatorname{or}(x^2 + 4)\left(\frac{1}{2} - \frac{3}{2x}\right)$	Divides one bracket by $2x$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(x - 3\right) \left(\frac{1}{2} - \frac{2}{x^2}\right) + \left(\frac{x}{2} + \frac{2}{x}\right) \text{ or }$	M1: Correct application of product rule	M1A1
Way 3	$\frac{dy}{dx} = \left(x^2 + 4\right) \frac{3}{2x^2} + 2x \left(\frac{1}{2} - \frac{3}{2x}\right)$	A1: Correct derivative	
Product	$=\frac{3}{2}+\frac{6}{x^2}+x-3=x-\frac{3}{2}+\frac{6}{x^2}$	M1: Expands and collects terms. Dependent on both previous method marks.	ddM1A1
	oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^3 - 3x^2 + 12}$	A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw Accept 1x or even $1x^1$ but not	
	$\frac{2x^2-3x^2+12}{2x^2}$	$\frac{2x}{2} \text{ and not } x^0.$	
Way 4 Product	$(x^2+4)(x-3) = x^3 - 3x^2 + 4x - 12$	Attempt to multiply out the numerator to get a cubic with 4 terms and at least 2 correct	M1
	$\frac{dy}{dx} = (x^3 - 3x^2 + 4x - 12) \times -\frac{1}{2}x$ M1: Correct application of product	M1A1	
	$\frac{dy}{dx} = -\frac{x}{2} + \frac{3}{2} - \frac{2}{x} + \frac{6}{x^2} + \frac{3x}{2}$ ddM1: Expands and collects terms Dependent		
	A1: $x - \frac{3}{2} + \frac{6}{x^2}$ on e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$ and in $\frac{2x}{2}$ and not	ddM1A1	
	2		
1		İ	1

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	$y = \left(\frac{x}{2} + \frac{2}{x}\right)(x-3)\operatorname{or}\left(x^2 + 4\right)\left(\frac{1}{2} - \frac{3}{2x}\right)$	Divides one bracket by 2x	M1
	$=\frac{x^2}{2} - \frac{3}{2}x + 2 - 6x^{-1}$	M1: Expands	N/1 A 1
		A1: Correct expression	M1A1
Way 5		ddM1: $x^n \rightarrow x^{n-1}$ or $2 \rightarrow 0$ Dependent on both previous method marks.	
Way 5	$\frac{\mathrm{d}y}{\mathrm{d}x} = x - \frac{3}{2} + \frac{6}{x^2}$	A1: $x - \frac{3}{2} + \frac{6}{x^2}$ oe and isw	113 (1 4 1
	oe e.g. $\frac{2x^3 - 3x^2 + 12}{2x^2}$	Accept $1x$ or even $1x^1$ but not $\frac{2x}{2}$	ddM1A1
		If they lose the previous A1 because of an incorrect constant	
		only then allow recovery here for a correct derivative.	