Summer 2011 www.mystudybro.com Mathematics C2 Past Paper This resource was created and owned by Pearson Edexcel 6664 Surname Initial(s) Centre Paper Reference No. Signature Candidate 6 6 4 () 1 6 No. Paper Reference(s) 6664/01 Examiner's use only **Edexcel GCE** Team Leader's use only **Core Mathematics C2 Advanced Subsidiary** Question Leave Number Blank Thursday 26 May 2011 – Morning 1 Time: 1 hour 30 minutes 2 3 4 Materials required for examination Items included with question papers 5 Mathematical Formulae (Pink) Nil 6 Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic 7 algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them. 8 9 **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. You must write your answer for each question in the space following the question. When a calculator is used, the answer should be given to an appropriate degree of accuracy. **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 9 questions in this question paper. The total mark for this paper is 75. There are 32 pages in this question paper. Any blank pages are indicated. Advice to Candidates You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. Total This publication may be reproduced only in accordance with Edexcel Limited copyright policy. Turn over ©2011 Edexcel Limited

Printer's Log. No. P38158A W850/R6664/57570 5/5/3/3

Summer 20 Past Paper	Www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematics C2
		Leave
1.	$f(x) = 2x^3 - 7x^2 - 5x + 4$	blank
(a)	Find the remainder when $f(x)$ is divided by $(x-1)$.	
		(2)
(b)	Use the factor theorem to show that $(x+1)$ is a factor of $f(x)$.	
		(2)
(c)	Factorise $f(x)$ completely.	(4)
		(4)
2		

June 2011 Core Mathematics C2 6664 Mark Scheme

Question Number	Scheme		Marks
1. (a)	$f(x) = 2x^{3} - 7x^{2} - 5x + 4$ Remainder = f(1) = 2 - 7 - 5 + 4 = -6 = -6	Attempts $f(1)$ or $f(-1)$. - 6	M1 A1 [2]
(b)	$f(-1) = 2(-1)^3 - 7(-1)^2 - 5(-1) + 4$ and so $(x + 1)$ is a factor.	Attempts $f(-1)$. f(-1) = 0 with no sign or substitution errors and for conclusion .	M1 A1 [2]
(c)	$f(x) = \{(x+1)\}(2x^2 - 9x + 4) \\ = (x+1)(2x-1)(x-4)$ (Note: Ignore the ePEN notation of (b) (should be		M1 A1 dM1 A1 [4
(a)	M1 for <i>attempting</i> either $f(1)$ or $f(-1)$. Can be	implied. Only one slip permitted.	
	M1 can also be given for an attempt (at least two "subtracting" processes) at long division to give a remainder which is independent of x. A1 can be given also for -6 seen at the bottom of long division working. Award A0 for a candidate who finds -6 but then states that the remainder is 6. Award M1A1 for -6 without any working.		
(b)	M1: attempting only $f(-1)$. A1: must correctly show $f(-1) = 0$ and give a conclusion <i>in part (b) only</i> . Note: Stating "hence factor" or "it is a factor" or a "tick" or "QED" is fine for the conclusion. Note also that a conclusion can be implied from a <u>preamble</u> , eg: "If $f(-1) = 0$, $(x + 1)$ is a factor" Note: Long division scores no marks in part (b). The <u>factor theorem</u> is required.		
(c)	1 st M1: Attempts long division or other method, Working need not be seen as this could be done " <i>only</i> . Award 1 st M0 if the quadratic factor is clear candidates use their $(2x^2 - 5x - 10)$ in part (c) for 1 st A1: For seeing $(2x^2 - 9x + 4)$. 2 nd dM1: Factorises a 3 term quadratic. (see rule previous method mark being awarded. This mark quadratic formula correctly. 2 nd A1: is cao and needs all three factors on one	by inspection." $(2x^2 \pm ax \pm b)$ must be seen <i>in j</i> rly found from dividing $f(x)$ by $(x - 1)$. Eg. So and from applying a long division method in part e for factorising a quadratic). This is dependent of c can also be awarded if the candidate applies the	part (c) me (a). on the
	quadratic equation.) Note: Some candidates will go from $\{(x + 1)\}(2x^2 - 9x + 4)$ to $\{x = -1\}, x = \frac{1}{2}, 4$, and no factors. Award these responses M1A1M1A0. <u>Alternative:</u> 1 st M1: For finding either $f(4) = 0$ or $f(\frac{1}{2}) = 0$.		ll three
	1 st A1: A second correct factor of usually $(x - 4)$ factors found would imply the 1 st M1 mark. 2 nd dM1: For using two known factors to find the 2 nd A1 for correct answer of $(x + 1)(2x - 1)(x - 4)$) or $(2x - 1)$ found. Note that any one of the other third factor, usually $(2x \pm 1)$.	er correc
	Alternative: (for the first two marks) 1^{st} M1: Expands $(x + 1)(2x^2 + ax + b)$ {givingcoefficients to find values for a and b. 1^{st} A	$2x^{3} + (a + 2)x^{2} + (b + a)x + b$ } then compare 1: $a = -9, b = 4$	
	Not dealing with a factor of 2: $(x + 1)(x - \frac{1}{2})(x - 4)$ or $(x + 1)(x - \frac{1}{2})(2x - 8)$ scores M1A1M1A0.		A0.
	<u>Answer only, with one sign error:</u> eg. $(x + 1)($	(2x+1)(x-4) or $(x+1)(2x-1)(x+4)$ scores	

GCE Core Mathematics C2 (6664) June 2011

Paper	2011 www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematics
		Lb
2. (a) Find the first 3 terms, in ascending powers of x , of the binomial expansion	
	$(3+bx)^5$	
	where b is a non-zero constant. Give each term in its simplest form.	(4)
C	Given that, in this expansion, the coefficient of x^2 is twice the coefficient of	of <i>x</i> ,
(b) find the value of <i>b</i> .	(2)
		(2)

Question Number	Scheme		Ма	rks
2. (a)	$\left\{ (3+bx)^5 \right\} = (3)^5 + \frac{{}^5C_1}{(3)^4}(b\underline{x}) + \frac{{}^5C_2}{(3)^3}(b\underline{x})^2 + \dots $ = 243 + 405bx + 270b ² x ² + \dots (243 as a constant term seen. 405 bx ⁵ $C_1 \times \times x$) or (⁵ $C_2 \times \times x^2$) 270 b^2x^2 or 270(bx) ²	B1 B1 <u>M1</u> A1	[4]
(b)		Establishes an equation from heir coefficients. Condone 2 on the wrong side of the equation.	M1	
	So, $\left\{b = \frac{810}{270} \Rightarrow\right\} b = 3$	b = 3 (Ignore $b = 0$, if seen.)	A1	[2]
(a)	The terms can be "listed" rather than added. Ignore any extra 1 st B1: A constant term of 243 seen. Just writing (3) ⁵ is B0. 2 nd B1: Term must be simplified to $405bx$ for B1. The <i>x</i> is respectively. The <i>x</i> is B0. M1: For <u>either</u> the <i>x</i> term <u>or</u> the x^2 term. Requires <u>correct</u> bit <u>correct power of <i>x</i></u> , but the other part of the coefficient (perhawrong or missing. Allow binomial coefficients such as $\binom{5}{2}, \binom{5}{2}, \binom{5}{1}, \binom{5}{1}, \binom{5}{1}, \frac{5}{1}, \frac{5}{1}$ A1: For either $270b^2x^2$ or $270(bx)^2$. (If $270bx^2$ follows 2 Alternative: Note that a factor of 3 ⁵ can be taken out first: $3^5\left(1 + \frac{bx}{3}\right)^5$, Ignore subsequent working (isw): Isw if necessary after care, 243 + 405bx + $270b^2x^2 +$ leading to $9 + 15bx + 10b$ Also note that full marks could also be available in part (b), here. Special Case: Candidate writing down the first three terms if $(bx)^5 + {}^5C_4(3)^1(bx)^4 + {}^5C_3(3)^2(bx)^3 + = b^5x^5 + 15b^4x^4 + $	required for this mark. Note inomial coefficient in any form <u>v</u> aps including powers of 3 and/or C_2 , 5C_1 . $C_7O(bx)^2$, isw and allow A1.) but the mark scheme still applies orrect working: ${}^2x^2 +$ scores B1B1M1A1 isw. n <i>descending</i> powers of <i>x</i> usuall $90b^3x^3 +$	<i>b</i>) may	
(b)	So award SC: B0B0M1A0 for either $({}^{5}C_{4} \times \times x^{4})$ or $({}^{5}C_{3} \times \times x^{3})$ M1 for equating 2 times their coefficient of x to the coefficient of x^{2} to get an equation in b, <u>or</u> equating their coefficient of x to 2 times that of x^{2} , to get an equation in b. Allow this M mark even if the equation is trivial, providing their coefficients from part (a) have been used, eg: $2(405b) = 270b$, but beware $b = 3$ from this, which is A0. <u>An equation in b alone</u> is required: e.g. $2(405b)x = 270b^{2}x^{2} \Rightarrow b = 3$ or similar will be Special Case SC: M1A0 (as equation in coefficients only is not seen here). e.g. $2(405b)x = 270b^{2}x^{2} \Rightarrow 2(405b) = 270b^{2} \Rightarrow b = 3$ will get M1A1 (as coefficients rather than terms have now been considered). Note: Answer of 3 from no working scores M1A0. Note: The mistake $k\left(1 + \frac{bx}{3}\right)^{5}$, $k \neq 243$ would give a maximum of 3 marks: B0B0M1A0, M1A1 Note: For $270bx^{2}$ in part (a), followed by $2(405b) = 270b^{2} \Rightarrow b = 3$, in part (b), allow recovery M1A1		L	

ape	in this resource was created and owned by realson Edekter	
3.	Find, giving your answer to 3 significant figures where appropriate, the value of x for	
	which	
	(a) $5^x = 10$, (2)	
	(b) $\log_3(x-2) = -1$. (2)	
6		

Question Number	Scheme	Marks	
3.	(a) $5^x = 10$ and (b) $\log_3(x-2) = -1$		
(a)	$x = \frac{\log 10}{\log 5}$ or $x = \log_5 10$	M1	
	$x \{= 1.430676558\} = 1.43 (3 \text{ sf})$ 1.43	A1 cao [2]	
(b)	$(x-2) = 3^{-1}$ $(x-2) = 3^{-1}$ or $\frac{1}{3}$	M1 oe	
	$x \left\{ = \frac{1}{3} + 2 \right\} = 2\frac{1}{3}$ $2\frac{1}{3}$ or $\frac{7}{3}$ or 2.3 or awrt 2.33	A1	
		[2] 4	
(a)	M1: for $x = \frac{\log 10}{\log 5}$ or $x = \log_5 10$. Also allow M1 for $x = \frac{1}{\log 5}$		
(b)	log 5 1.43 with no working (or any working) scores M1A1 (even if left as 5 ^{1.43}). Other answers which round to 1.4 with no working score M1A0. Trial & Improvement Method: M1: For a method of trial and improvement by trialing f (value between 1.4 and 1.43) = Value below 10 and f (value between 1.431 and 1.5) = Value over 10. A1 for 1.43 cao. Note: $x = \log_{10} 5$ by itself is M0; but $x = \log_{10} 5$ followed by $x = 1.430676558$ is M1. M1: Is for correctly eliminating log out of the equation. Eg 1: $\log_3(x - 2) = \log_3(\frac{1}{3}) \Rightarrow x - 2 = \frac{1}{3}$ only gets M1 when the logs are correctly removed. Eg 2: $\log_3(x - 2) = -\log_3(3) \Rightarrow \log_3(x - 2) + \log_3(3) = 0 \Rightarrow \log_3(3(x - 2)) = 0$ $\Rightarrow 3(x - 2) = 3^0$ only gets M1 when the logs are correctly removed, but $3(x - 2) = 0$ would score M0. Note: $\log_3(x - 2) = -1 \Rightarrow \log_3\left(\frac{x}{2}\right) = -1 \Rightarrow \frac{x}{2} = 3^{-1}$ would score M0 for incorrect use of logs.		
	$\frac{\log_{10}(x-2)}{\log_{10} 3} = -1 \implies \log_{10}(x-2) = -\log_{10} 3 \implies \log_{10}(x-2) + \log_{10} 3 = 0$		
	$\Rightarrow \log_{10} 3(x-2) = 0 \Rightarrow 3(x-2) = 10^{\circ}$. At this point M1 is scored. A correct answer in (b) without any working scores M1A1.		

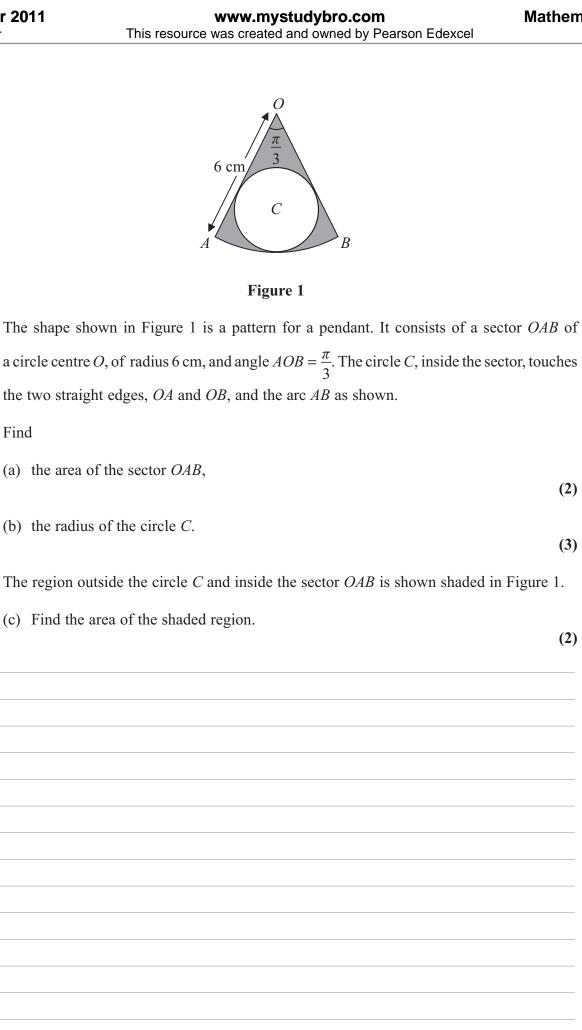
	Lb
The circle C has equation $x^2 + y^2 + 4x - 2y - 11 = 0$	
Find	
(a) the coordinates of the centre of C ,	
	(2)
(b) the radius of C ,	(2)
	(2)
(c) the coordinates of the points where C crosses the y-axis, giving your a simplified surds.	inswers as
	(4)

Question Number	Scheme	Marks	
4.	$x^2 + y^2 + 4x - 2y - 11 = 0$		
(a)	$\left\{ \underline{(x+2)^2 - 4} + \underline{(y-1)^2 - 1} - 11 = 0 \right\} $ (±2, ±1), see notes.	M1	
	Centre is $(-2, 1)$. $(-2, 1)$.	A1 cao [2]	
(b)	$(x+2)^{2} + (y-1)^{2} = 11 + 1 + 4 \qquad \qquad r = \sqrt{11 \pm "1" \pm "4"}$	M1	
	So $r = \sqrt{11 + 1 + 4} \implies r = 4$ 4 or $\sqrt{16}$ (Award A0 for ± 4).	A1 [2]	
(c)	Putting $x = 0$ in C or their C. When $x = 0$, $y^2 - 2y - 11 = 0$	M1	
	$y = \frac{2 \pm \sqrt{(-2)^2 - 4(1)(-11)}}{2(1)} \left\{ = \frac{2 \pm \sqrt{48}}{2} \right\}$ $y^2 - 2y - 11 = 0 \text{ or } (y - 1)^2 = 12, \text{ etc}$ Attempt to use formula or a method of completing the square in order to find $y = \dots$	A1 aef M1	
	So, $y = 1 \pm 2\sqrt{3}$ $1 \pm 2\sqrt{3}$	A1 cao cso	
		[4] 8	
	Note: Please mark parts (a) and (b) together. Answers only in (a) and/or (b) get full mar		
(a)	Note in part (a) the marks are now M1A1 and not B1B1 as on ePEN. M1: for $(\pm 2, \pm 1)$. Otherwise, M1 for an attempt to complete the square eg. $(x \pm 2)^2 \pm \alpha$, α	≠0 or	
	$(\underline{y \pm 1})^2 \pm \beta$, $\beta \neq 0$. M1A1: Correct answer of (-2, 1) stated from any working gets M1A1		
(b)	$\frac{(5-1)^{2}-p^{2}}{M1}$, $p \neq 0^{1}$, $mnn = 0^{1}$ concert answer of $(-2, 1)$ stated from any working gets mining $M1$ mining min		
	will usually achieve $\sqrt{16}$, $\sqrt{6}$, $\sqrt{8}$ or $\sqrt{14}$ and not 16, 6, 8 or 14.	iou canuluates	
	Note: $(x+2)^2 + (y-1)^2 = -11 - 5 = -16 \implies r = \sqrt{16} = 4$ should be awarded M0A0.		
	<u>Alternative:</u> M1 in part (a): For comparing with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write down	centre	
	$(-g, -f)$ directly. Condone sign errors for this M mark. M1 in part (b): For using $r = \sqrt{g^2}$		
	Condone sign errors for this method mark.	0	
	$(x+2)^2 + (y-1)^2 = 16 \implies r = 8$ scores M0A0, but $r = \sqrt{16} = 8$ scores M1A1 isw.		
(c)	1 st M1: Putting $x = 0$ in either $x^2 + y^2 + 4x - 2y - 11 = 0$ or their circle equation usually give part (b). 1 st A1 for a correct equation in y in any form which can be implied by later working		
	2^{nd} M1: See rules for using the formula. Or completing the square on a 3TQ to give $y = a \pm \sqrt{1-1}$		
	\sqrt{b} is a surd, $b \neq$ their 11 and $b > 0$. This mark should not be given for an attempt to factorise		
	2 nd A1: Need exact pair in simplified surd form of $\{y = \} 1 \pm 2\sqrt{3}$. This mark is also cso.		
	Do not need to see $(0, 1 + 2\sqrt{3})$ and $(0, 1 - 2\sqrt{3})$. Allow 2^{nd} A1 for bod $(1 + 2\sqrt{3}, 0)$ and $(1 - 2\sqrt{3})$.	$(-2\sqrt{3}, 0).$	
	Any incorrect working in (c) gets penalised the final accuracy mark. So, beware: incorrect $(x-2)^2 + (y-1)^2 = 16$ leading to $y^2 - 2y - 11 = 0$ and then $y = 1 \pm 2\sqrt{3}$ scores M1A1M1A0.		
	Special Case for setting $y = 0$: Award SC: M0A0M1A0 for an attempt at applying the formu	la	
	Award SC: M0A0M1A0 for completing the square to their equation in x which will usually		
	$x = \frac{-4 \pm \sqrt{(-4)^2 - 4(1)(-11)}}{2(1)} \left\{ = \frac{-4 \pm \sqrt{60}}{2} = -2 \pm \sqrt{15} \right\}$ square to their equation in x which will usually be $x^2 + 4x - 11 = 0$ to give $a \pm \sqrt{b}$, where \sqrt{b} is a surd, $b \neq$ their 11 and $b > 0$.		
	Special Case: For a candidate not using \pm but achieving one of the correct answers then awar SC: M1A1 M1A0 for one of either $y = 1 + 2\sqrt{3}$ or $y = 1 - 2\sqrt{3}$ or $y = 1 + \sqrt{12}$ or $y = 1 - \sqrt{3}$		
	$\int SC. \text{ with twith 0 for one of equal } y - 1 + 2y S \text{ or } y - 1 - 2y S \text{ or } y = 1 + y 12 \text{ or } y = 1 - y$	12.	

Find

Mathematics C2

(2)


(3)

(2)

6664 Leave

blank

Questior Number	Scheme	Marks	
5.	$\frac{1}{2}r^{2}\theta = \frac{1}{2}(6)^{2}\left(\frac{\pi}{3}\right) = 6\pi \text{ or } 18.85 \text{ or awrt } 18.8 \text{ (cm)}^{2}$ Using $\frac{1}{2}r^{2}\theta$ (See notes)	M1	
(a)	$2 \qquad 2^{(1)} (3) \qquad 6\pi \text{ or } 18.85 \text{ or a wrt } 18.8$	A1	
		[2]	
(b)	$\sin\left(\frac{\pi}{6}\right) = \frac{r}{6-r}$ $\sin\left(\frac{\pi}{6}\right) \text{ or } \sin 30^\circ = \frac{r}{6-r}$	M1	
	$\frac{1}{2} = \frac{r}{6-r}$ Replaces sin by numeric value	dM1	
	$\begin{array}{c} 2 & 0 \\ 6 - r = 2r \Longrightarrow r = 2 \end{array} \qquad \qquad r = 2 \end{array}$	A1 cso [3]	
(c)	Area = $6\pi - \pi(2)^2 = 2\pi$ or awrt 6.3 (cm) ² their area of sector $-\pi r^2$	M1	
(0)	2π or awrt 6.3	A1 cao [2]	
		7	
(a)	M1: Needs θ in radians for this formula. Candidate could convert to degrees and use the degrees formula.		
	A1: Does not need units. Answer should be either 6π or 18.85 or awrt 18.8		
	Correct answer with no working is M1A1.		
(1)	This M1A1 can only be awarded in part (a).		
(b)	M1: Also allow $\cos\left(\frac{\pi}{3}\right)$ or $\cos 60^\circ = \frac{r}{6-r}$.		
	1 st M1: Needs correct trigonometry method. Candidates could state $\sin\left(\frac{\pi}{6}\right) = \frac{r}{x}$ and $x + r = \frac{1}{2}$	= 6 or	
	equivalent in their working to gain this method mark.		
	dM1: Replaces sin by numerical value. $0.009 = \frac{r}{6-r}$ from working "incorrectly" in degree	ees is fine	
	here for dM1.		
	A1: For $r = 2$ from correct solution only. Alternative: 1^{st} M1 for $L = \sin 20$ or $L = \cos 60$, 2^{nd} M1 for $OC = 2\pi$ and then A1 for $\pi = 2^{\text{nd}}$	2	
	<u>Alternative:</u> 1 st M1 for $\frac{r}{OC} = \sin 30$ or $\frac{r}{OC} = \cos 60$. 2 nd M1 for $OC = 2r$ and then A1 for $r =$ Note seeing $OC = 2r$ is M1M1.	- 2.	
	Special Case: If a candidate states an answer of $r = 2$ (must be in part (b)) as a guess or from	n an	
	incorrect method then award SC: M0M0B1. Such a candidate could then go on to score M1A		
(c)	(c). M1: For "their area of sector – their area of circle", where $r > 0$ is ft from their answer to part (b).		
(•)	Allow the method mark if "their area of sector" < "their area of circle". The candidate must show		
	somewhere in their working that they are subtracting the correct way round, even if their answer is		
	negative. Some candidates in part (c) will either use their value of <i>r</i> from part (b) or even introduce a value of <i>r</i>		
	in part (c). You can apply the scheme to award either M0A0 or M1A0 or M1A1 to these cand		
	Note: Candidates can get M1 by writing "their part (a) answer $-\pi r^2$ ", where the radius of the		
	not substituted.		
	A1: $cao - accept exact answer or awrt 6.3$		
	Correct answer only with no working in (c) gets M1A1 Beware: The answer in (c) is the same as the arc length of the pendant		

Mathematics C2

The second and third terms of a geometric series are 192 and 144 respective	ely.
For this series, find	
(a) the common ratio,	
	(2)
(b) the first term,	(2)
(c) the sum to infinity,	
	(2)
(d) the smallest value of n for which the sum of the first n terms of the s 1000.	
	(4)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

Question Number	Scheme	Marks	
6.	$\{ ar = 192 \text{ and } ar^2 = 144 \}$		
(a)			
	$r = \frac{144}{192}$ Attempt to eliminate <i>a</i> . (See notes.)	M1	
	$r = \frac{3}{4}$ or 0.75 $\frac{3}{4}$ or 0.75	A1	
(b)	a(0.75) = 192	[2] M1	
	$a\left\{=\frac{192}{0.75}\right\}=256$ 256	A1	
		[2]	
(c)	$S_{\infty} = \frac{256}{1-0.75}$ Applies $\frac{a}{1-r}$ correctly using both their <i>a</i> and their $ r < 1$.	M1	
	So, $\{S_{\infty} =\} 1024$ 1024	A1 cao [2]	
(d)	$256(1-(0.75)^n)$ Applies S_n with their <i>a</i> and <i>r</i> and "uses" 1000		
	$\frac{256(1-(0.75)^n)}{1-0.75} > 1000$ at any point in their working. (Allow with = or <).	M1	
	$(0.75)^n < 1 - \frac{1000(0.25)}{256} \left\{ = \frac{6}{256} \right\}$ Attempt to isolate $+(r)^n$ from S_n formula. (Allow with = or >).	M1	
	$n\log(0.75) < \log\left(\frac{6}{256}\right)$ Uses the power law of logarithms correctly. (Allow with = or >). (See notes.)	M1	
	$n > \frac{\log(\frac{6}{256})}{\log(0.75)} = 13.0471042 \Rightarrow n = 14$ See notes and $n = 14$	A1 cso	
		[4] 10	
(a)	M1: for eliminating <i>a</i> by eg. $192r = 144$ or by either dividing $ar^2 = 144$ by $ar = 192$ or dividing	viding	
	$ar = 192$ by $ar^2 = 144$, to achieve an equation in r or $\frac{1}{r}$ Note that $r^2 - r = \frac{144}{192}$ is M0.		
	Note also that any of $r = \frac{144}{192}$ or $r = \frac{192}{144} \left\{ = \frac{4}{3} \right\}$ or $\frac{1}{r} = \frac{192}{144}$ or $\frac{1}{r} = \frac{144}{192}$ are fine for the average of the second	vard of	
	M1. Note: A candidate just writing $r = \frac{144}{192}$ with no reference to <i>a</i> can also get the method	mark.	
	Note: $ar^2 = 192$ and $ar^3 = 144$ leading to $r = \frac{3}{4}$ scores M1A1. This is because <i>r</i> is the ratio between any two consecutive terms. These candidates, however, will usually be penalised in part (b).		
(b)	M1 for inserting their r into either of the correct equations of either $ar = 192$ or $\{a =\} \frac{192}{r}$ or		
	$ar^2 = 144$ or $\{a =\} \frac{144}{r^2}$. No slips allowed here for M1.		
	M1: can also be awarded for writing down $144 = a \left(\frac{192}{a}\right)^2$		
	A1 for $a = 256$ only. Note 256 from any working scores M1A1.		
Note: Some candidates incorrectly confuse notation to give $r = \frac{4}{3}$ or 1.33 in part (a) (g			
	M1A0). In part (b), they recover to write $a = 192 \times \frac{4}{3}$ for M1 and then 256 for A1.		

Question			
Question Number	Scheme	Marks	
(c)	M1: for applying $\frac{a}{1-r}$ correctly (no slips allowed!) using both their <i>a</i> and their <i>r</i> , where $ r < 1$.		
(d)	A1: for 1024, cao. In parts (a) or (b) or (c), the correct answer with no working scores full marks. 1^{st} M1: For applying S_n with their <i>a</i> and either "the letter <i>r</i> " or their <i>r</i> and "uses" 1000.		
	2 nd M1: For isolating $+(r)^n$ and not $(ar)^n$, (eg. $(192)^n$) as the subject of an equation or i	inequality.	
	$+(r)^n$ must be derived from the S _n formula.		
	3 rd M1: For applying the power law to $\lambda^k = \mu$ to give $k \log \lambda = \log \mu$ oe. where $\lambda, \mu > \lambda$	0.	
	or 3 rd M1: For solving $\lambda^k = \mu$ to give $k = \log_{\lambda} \mu$, where $\lambda, \mu > 0$.		
	A1: cso If a candidate uses inequalities, a fully correct method with inequalities is require So, an <u>incorrect</u> inequality statement at any stage in a candidate's working for this part los		
	mark. Note: Some candidates do not realise that the direction of the inequality is reversed in the final line of their solution.		
	Or A1: cso Note a candidate can achieve full marks here if they do not use inequalities. So, if a candidate uses equations rather than inequalities in their working then they need to state in the final line of their working that $n = 13.04$ (truncated) or $n = awrt 13.05 \Rightarrow n = 14$ for A1.		
	n = 14 from no working gets SC: M0M0M1A1.		
	A method of $T_n > 1000 \Rightarrow 256(0.75)^{n-1} > 1000$ can score M0M0M1A0 for a correct appl	lication of	
	the power law of logarithms.		
	Trial & Improvement Method:		
	For $a = 256$ and $r = 0.75$, apply the following scheme:	N/1	
	$S_{13} = \frac{256(1 - (0.75)^{13})}{1 - 0.75} = 999.6725616$ Attempt to find either S_{13} or S_{14} . EITHER (1) S_{13} = awrt 999.7 or truncated	M1	
	$\begin{array}{l} \text{EITTER (1)}_{13} = \text{awrt 399.7 of utilicated} \\ \text{999 OR (2) } S_{14} = \text{awrt 1005.8 or} \end{array}$	M1	
	$4999 \text{ OK } (2) \text{S}_{14} = \text{ a wit 1005.8 of truncated 1005.}$	1411	
	$S_{14} = \frac{256(1 - (0.75)^{14})}{1 - 0.75} = 1005.754421$ Attempt to find both S_{13} and S_{14} .	M1	
	$S_{14} = \frac{1}{1 - 0.75}$ = 1005.754421 BOTH (1)S ₁₃ = awrt 999.7 or truncated		
	999 AND (2) $S_{14} = awrt 1005.8$ or	A1	
	So, $n = 14$. truncated 1005 AND $n = 14$.		

7. (a) Solve for $0 \le x < 360^\circ$, giving your answers in degrees to 1 decimal place, $3 \sin(x+45^\circ) = 2$ (4) Leave bank (b) Find, for $0 \le x < 2\pi$, all the solutions of $2 \sin^3 x + 2 = 7 \cos x$ (a) giving your answers in radians. You must show clearly how you obtained your answers. (b)	Summer Past Paper	20 [°]	11 www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematio	cs C2 6664
3 sin (x+45°) = 2 (4) (b) Find, for 0 ≤ x < 2π, all the solutions of 2 sin ² x + 2 = 7 cos x giving your answers in radians. You must show clearly how you obtained your answers. (6) (1) (2) (3) (4) (4) (5) (5) (4) (5) (5) (6) (6) (6) (7) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7					Leave
(4) (b) Find, for 0 ≤ x < 2π, all the solutions of 2 sin ² x + 2 = 7 cos x giving your answers in radians. You must show clearly how you obtained your answers. (6)	7. ((a)	Solve for $0 \le x < 360^\circ$, giving your answers in degrees to 1 decimal place,		
(b) Find, for 0≤x <2π, all the solutions of 2sin ² x+2=7 cos x giving your answers in radians. You must show clearly how you obtained your answers. (6)			$3\sin(x+45^\circ)=2$	(4)	
2sin² x+2=7 cos x giving your answers in radians. You must show clearly how you obtained your answers. (6)		(h)	Find for $0 < r < 2\pi$ all the solutions of		
giving your answers in radians. You must show clearly how you obtained your answers. (6)		(0)			
You must show clearly how you obtained your answers. (6)					
			You must show clearly now you obtained your answers.	(6)	
	20				

Question	Scheme	Marks	
Number	Note: A similar scheme would apply for T&I for candidates using their <i>a</i> and their <i>r</i> . So,		
	1^{st} M1: For attempting to find one of the correct S _n 's either side (but next to) 1000.		
	2^{nd} M1: For one of these S _n 's correct for their <i>a</i> and their <i>r</i> . (You may need to get your ca	lculators	
	out!) 3^{rd} M1: For attempting to find both of the correct S_n 's either side (but next to) 1000.		
	A1: Cannot be gained for wrong <i>a</i> and/or <i>r</i> .		
	Trial & Improvement Cumulative Approach:		
	A similar scheme to T&I will be applied here: 1^{st} M1: For getting as far as the cumulative sum of 13 terms. 2^{nd} M1: (1)S ₁₃ = awrt 999.7	or	
	truncated 999. 3^{rd} M1: For getting as far as the cumulative sum to 14 terms. Also at this s		
	$S_{13} < 1000 \text{ and } S_{14} > 1000.$ A1: BOTH (1) $S_{13} = awrt 999.7$ or truncated 999 AND (2)		
	$S_{14} = a wrt 1005.8 \text{ or truncated } 1005 \text{ AND } n = 14.$		
	<u>Trial & Improvement Method:</u> for $(0.75)^n < \frac{6}{256} = 0.0234375$		
	3^{rd} M1: For evidence of examining both $n = 13$ and $n = 14$.		
	Eg: $(0.75)^{13} \{= 0.023757\}$ and $(0.75)^{14} \{= 0.0178179\}$		
	A1: $n = 14$		
	Any misreads, $S_n > 10000$ etc, please escalate up to your Team Leader.		
7.	(a) $3\sin(x+45^\circ) = 2$; $0 \le x < 360^\circ$ (b) $2\sin^2 x + 2 = 7\cos x$; $0 \le x < 2\pi$		
	(2)		
(a)	$\sin(x+45^{\circ}) = \frac{2}{3}$, so $(x+45^{\circ}) = 41.8103$ $(\alpha = 41.8103)$ $\sin^{-1}\left(\frac{2}{3}\right)$ or awrt 41.8	M1	
	or awrt 0.73°		
	So, $x + 45^{\circ} = \{138.1897, 401.8103\}$ $x + 45^{\circ} = \text{either "180 - their } \alpha \text{"or}$	M1	
	$360 + \text{their } \alpha^{-1}$ (α could be in radians).		
	and $x = \{93.1897, 356.8103\}$ Either awrt 93.2° or awrt 356.8°	A1	
	Both awrt 93.2° and awrt 356.8°	A1	
		[4]	
(b)	$2(1 - \cos^2 x) + 2 = 7\cos x$ Applies $\sin^2 x = 1 - \cos^2 x$	M1	
	$2\cos^{2} x + 7\cos x - 4 = 0$ Correct 3 term, $2\cos^{2} x + 7\cos x - 4 \{=0\}$	A1 oe	
	$(2\cos x - 1)(\cos x + 4) \{= 0\}$, $\cos x = \dots$ Valid attempt at solving and $\cos x = \dots$	M1	
	$\cos x = \frac{1}{2}$, $\{\cos x = -4\}$ $\cos x = \frac{1}{2}$ (See notes.)	A1 cso	
	$\left(\beta = \frac{\pi}{3}\right)$		
	$x = \frac{\pi}{3}$ or 1.04719 ^c Either $\frac{\pi}{3}$ or awrt 1.05 ^c	B1	
	$x = \frac{5\pi}{3}$ or 5.23598° Either $\frac{5\pi}{3}$ or awrt 5.24° or 2π – their β (See notes.)	B1 ft	
		[6] 10	

Question Number	Scheme	Marks	
(a)	(a) $1^{\text{st}} \text{ M1: can also be implied for } x = \text{awrt} - 3.2$ $2^{\text{nd}} \text{ M1: for } x + 45^{\circ} = \text{either "180 - their } \alpha$ " or "360° + their α ". This can be implied by later working. The candidate's α could also be in radians.		
	Note that this mark is not for $x =$ either "180 – their α " or "360° + their α ".		
	Note: Imply the first two method marks or award M1M1A1 for either awrt 93.2° or awrt 35	56.8° .	
	<u>Note</u> : Candidates who apply the following incorrect working of $3\sin(x + 45^\circ) = 2$		
	\Rightarrow 3(sin x + sin 45) = 2, etc will usually score M0M0A0A0.		
	If there are any EXTRA solutions inside the range $0 \le x < 360$ and the candidate would othe	rwise	
	score FULL MARKS then withhold the final aA2 mark (the final mark in this part of the que Also ignore EXTRA solutions outside the range $0 \le x < 360$.		
	Working in Radians: Note the answers in radians are $x = awrt 1.6$, awrt 6.2		
	If a candidate works in radians then mark part (a) as above awarding the A marks in the same If the candidate would then score FULL MARKS then withhold the final aA2 mark (the final this part of the question.)	•	
	No working: Award M1M1A1A0 for one of awrt 93.2° or awrt 356.8° seen without any w	orking.	
Award M1M1A1A1 for both awrt 93.2° and awrt 356.8° seen without any working.			
	Allow benefit of the doubt (FULL MARKS) for final answer of		
	$\sin x \{ \text{and not } x \} = \{ \text{awrt } 93.2, \text{ awrt } 356.8 \}$		

Question Number	Scheme	Marks
(b)	1 st M1: for a correct method to use $\sin^2 x = 1 - \cos^2 x$ on the given equation.	
	Give bod if the candidate omits the bracket when substituting for $\sin^2 x$, but	
	$2 - \cos^2 x + 2 = 7\cos x$, without supporting working, (eg. seeing " $\sin^2 x = 1 - \cos^2 x$ ") wou	ld score
	1 st M0.	
	Note that applying $\sin^2 x = \cos^2 x - 1$, scores M0.	
	1 st A1: for obtaining either $2\cos^2 x + 7\cos x - 4$ or $-2\cos^2 x - 7\cos x + 4$.	
	1 st A1: can also awarded for a correct three term equation eg. $2\cos^2 x + 7\cos x = 4$ or	
	$2\cos^2 x = 4 - 7\cos x \text{ etc.}$	
	2^{nd} M1: for a valid attempt at factorisation of a quadratic (either 2TQ or 3TQ) in cos, can use variable here, <i>c</i> , <i>y</i> , <i>x</i> or cos <i>x</i> , and an attempt to find at least one of the solutions. See introd the Mark Scheme. <i>Alternatively</i> , using a correct formula for solving the quadratic. Either th formula must be stated correctly or the correct form must be implied by the substitution.	luction to
	2^{nd} A1: for cos $x = \frac{1}{2}$, BY A CORRECT SOLUTION ONLY UP TO THIS POINT. Ignore	extra
	answer of $\cos x = -4$, but penalise if candidate states an incorrect result e.g. $\cos x = 4$. If the used a substitution, a correct value of their <i>c</i> or their <i>y</i> or their <i>x</i> .	y have
	Note: 2^{nd} A1 for $\cos x = \frac{1}{2}$ can be implied by later working.	
	1 st B1: for either $\frac{\pi}{3}$ or awrt 1.05 ^c	
	2^{nd} B1: for either $\frac{5\pi}{3}$ or awrt 5.24° or can be ft from 2π – their β or 360° – their β where	•
	$\beta = \cos^{-1}(k)$, such that $0 < k < 1$ or $-1 < k < 0$, but $k \neq 0$, $k \neq 1$ or $k \neq -1$.	
	If there are any EXTRA solutions inside the range $0 \le x < 2\pi$ and the candidate would othe score FULL MARKS then withhold the final bB2 mark (the final mark in this part of the que	
	Also ignore EXTRA solutions outside the range $0 \le x < 2\pi$.	Scion).
	Working in Degrees: Note the answers in degrees are $x = 60, 300$	
	If a candidate works in degrees then mark part (b) as above awarding the B marks in the sam If the candidate would then score FULL MARKS then withhold the final bB2 mark (the fina this part of the question.) Answers from no working:	
	$x = \frac{\pi}{3}$ and $x = \frac{5\pi}{3}$ scores M0A0M0A0B1B1,	
	x = 60 and $x = 300$ scores M0A0M0A0B1B0,	
	$x = \frac{\pi}{3}$ ONLY or $x = 60$ ONLY scores M0A0M0A0B1B0,	
	$x = \frac{5\pi}{3}$ ONLY or $x = 120$ ONLY scores M0A0M0A0B0B1.	
	No working: You cannot apply the ft in the B1ft if the answers are given with NO working.	
	Eg: $x = \frac{\pi}{5}$ and $x = \frac{9\pi}{3}$ FROM NO WORKING scores M0A0M0A0B0B0.	
	For candidates using trial & improvement, please forward these to your Team Leader.	

Mathematics C2

Leave

blank

8.

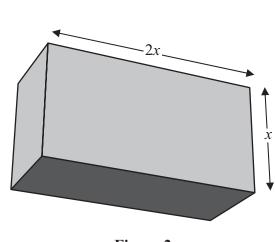


Figure 2

A cuboid has a rectangular cross-section where the length of the rectangle is equal to twice its width, x cm, as shown in Figure 2.

The volume of the cuboid is 81 cubic centimetres.

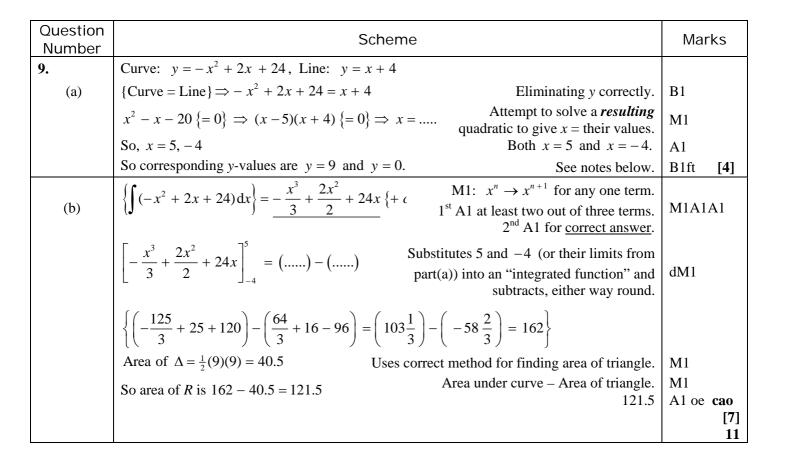
(a) Show that the total length, L cm, of the twelve edges of the cuboid is given by

$$L = 12x + \frac{162}{x^2}$$
(3)

(b) Use calculus to find the minimum value of *L*.

(6)

(c) Justify, by further differentiation, that the value of L that you have found is a minimum. (2)


www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question Number	Scheme		Marks
8. (a)	$\{V=\} 2x^2y=81$	$2x^2y = 81$	B1 oe
	$\left\{L = 2(2x + x + 2x + x) + 4y \Longrightarrow L = 12x + 4y\right\}$		
	$y = \frac{81}{2x^2} \implies L = 12x + 4\left(\frac{81}{2x^2}\right)$	Making <i>y</i> the subject of their expression and substitute this into the correct <i>L</i> formula.	M1
	So, $L = 12x + \frac{162}{x^2}$ AG	Correct solution only. AG.	A1 cso [3]
(b)	$\frac{dL}{dr} = 12 - \frac{324}{r^3} \left\{ = 12 - 324r^{-3} \right\}$	Either $12x \rightarrow 12$ or $\frac{162}{r^2} \rightarrow \frac{\pm \lambda}{r^3}$	M1
(0)		fferentiation (need not be simplified).	A1 aef
	$\left\{\frac{dL}{dx} = \right\} 12 - \frac{324}{x^3} = 0 \implies x^3 = \frac{324}{12}; = 27 \implies x = 3$	$L' = 0$ and "their $x^3 = \pm$ value" or "their $x^{-3} = \pm$ value"	M1;
	$(\mathbf{d}\mathbf{x}) = \mathbf{x} = 12$	$x = \sqrt[3]{27}$ or $x = 3$	A1 cso
	$\{x = 3,\}$ $L = 12(3) + \frac{162}{3^2} = 54$ (cm)	Substitute candidate's value of $x \ne 0$ into a formula for <i>L</i> .	ddM1
	5	54	A1 cao [6]
	$d^2 I = 0.72$	Correct ft L" and considering sign.	M1
(c)	{For $x = 3$ }, $\frac{d^2 L}{dx^2} = \frac{972}{x^4} > 0 \implies \text{Minimum}$	$\frac{972}{x^4}$ and >0 and conclusion.	A1 [2]
	$\mathbf{P1} = \mathbf{P1} + \mathbf{P2} + P2$	$\mathbf{u}^{1}(\mathbf{r},\mathbf{d}) = \mathbf{N}_{\mathbf{r},\mathbf{r}} \mathbf{d}_{\mathbf{r},\mathbf{r}} \mathbf{d}_{\mathbf{r},\mathbf{r}}$	11
(a) (b)	B1: For any correct form of $2x^2y = 81$. (may be unsimplified). Note that $2x^3 = 81$ is B0. Otherwise, candidates can use any symbol or letter in place of y. M1: Making y the subject of their formula and substituting this into a correct expression for L. A1: Correct solution only. Note that the answer is given. Note you can mark parts (b) and (c) together.		
	2^{nd} M1: Setting their $\frac{dL}{dt} = 0$ and "candidate's ft <i>correct</i> power of $x = a$ value". The power of x must		
	be consistent with their differentiation. If inequalities are used this mark cannot be gained until candidate states value of x or L from their x without inequalities. $L' = 0$ can be implied by $12 = \frac{324}{x^3}$.		
	2^{nd} A1: $x^3 = 27 \implies x = \pm 3$ scores A0.		
	2 nd A1: can be given for no value of x given but follow $L = 54$. 3 rd M1: Note that this method mark is dependent upon		
(c)	M1: for attempting correct ft second derivative and <u>cor</u>	nsidering its sign.	awarded.
	A1: Correct second derivative of $\frac{972}{x^4}$ (need not be sin	nplified) and a valid reason (e.g. > 0),	<u>and</u>
	conclusion. Need to conclude minimum (allow x and not L is a minimum) or indicate by a transmission a minimum. The actual value of the second derivative, if found, can be ignored, although su their L and not x into L'' is A0. Note: 2 marks can be scored from a wrong value of x, no value of their x into L''. Gradient test or testing values either side of their x scores M0A0 in part (c).		
	Throughout this question allow confused notation such as $\frac{dy}{dx}$ for $\frac{dL}{dx}$.		

Past Paper	This resource was created and owned by Pearson Edexcel	6664
		Leave blank
9.		
	$y = -x^2 + 2x + 24$	
	R	
	$B \qquad y = x + 4$	
	A	
	O	
	Figure 3	
	The straight line with equation $y = x+4$ cuts the curve with equation $y = -x^2 + 2x + 24$ at the points <i>A</i> and <i>B</i> , as shown in Figure 3.	
	(a) Use algebra to find the coordinates of the points <i>A</i> and <i>B</i> .	
	(4)	
	The finite region R is bounded by the straight line and the curve and is shown shaded in Figure 3.	
	(b) Use calculus to find the exact area of R .	
	(7)	
28		
	P 3 8 1 5 8 A 0 2 8 3 2	

Mathematics C2

Question Number	Scheme	Marks	
(a)	1 st B1: For correctly eliminating either x or y. Candidates will usually write $-x^2 + 2x + 24 = x + 4$.		
	This mark can be implied by the resulting quadratic.		
	M1: For solving their quadratic (which must be different to $-x^2 + 2x + 24$) to give $x =$	See	
	introduction for Method mark for solving a 3TQ. It must result from some attempt to elimina the variables. A1: For both $x = 5$ and $x = -4$.	ate one of	
	2^{nd} B1ft: For correctly substituting their values of x in equation of line or parabola to give bo y-values. (You may have to get your calculators out if they substitute their x into $y = -x^2 + y^2$		
	<u>Note</u>: For $x = 5, -4 \Rightarrow y = 9$ and $y = 0 \Rightarrow eg. (-4, 9)$ and $(5, 0)$, award B1 isw.		
	If the candidate gives additional answers to $(-4, 0)$ and $(5, 9)$, then withhold the final B1 matrix	ark.	
	Special Case : Award SC: B0M0A0B1 for $\{A\}(-4, 0)$. You may see this point marked on the second se	the diagram.	
	<u>Note:</u> SC: B0M0A0B1 for solving $0 = -x^2 + 2x + 24$ to give $\{A\}(-4, 0)$ and/or (6, 10).		
	Note: Do not give marks for working in part (b) which would be creditable in part (a).		
(b)	1 st M1 for an attempt to integrate meaning that $x^n \rightarrow x^{n+1}$ for at least one of the terms.		
	Note that $24 \rightarrow 24x$ is sufficient for M1.		
	1^{st} A1 at least two out of three terms correctly integrated.		
	2^{nd} A1 for correct integration only and no follow through. Ignore the use of a '+ c'. 2^{nd} M1: Note that this method mark is dependent upon the award of the first M1 mark in part	+ (b)	
	Substitutes 5 and -4 (and not 4 if the candidate has stated $x = -4$ in part (a).) (or the limits		
	candidate has found from part(a)) into an "integrated function" and subtracts, either way rour one slip!		
	3 rd M1: Area of triangle = $\frac{1}{2}$ (their x_2 – their x_1)(their y_2) or Area of triangle = $\int_{x_1}^{x_2} x + 4 \{ dx \}$	¢}.	
	Where $x_1 = \text{their} - 4$, $x_2 = \text{their 5}$ and $y_2 = \text{their y usually found in part (a)}$.		
	4^{th} M1: Area under curve – Area under triangle, where both Area under curve > 0		
and Area under triangle > 0 and Area under curve > Area under triangle. 2^{rd} A 1 101 5 $-$ 243			
	3^{rd} A1: 121.5 or $\frac{243}{2}$ oe cao.		

Question Number	Scheme	Marks	
Aliter	Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$ 3^{rd} M1: Uses integral of $(x + 4)$ with correct ft limits.		
9.(b) Way 2	Area of $\mathbf{K} = \int_{-4}^{-4} (-x^2 + 2x^2 + 24) - (x^2 + 4) dx$ 4 th M1: Uses "curve" – "line" function with correct ft limits.		
	$= -\frac{x^3}{3} + \frac{x^2}{2} + 20x \{+c\}$ M: $x^n \to x^{n+1}$ for any one term. A1 at least two out of three terms Correct answer (Ignore + c).	M1 A1ft A1	
	$\left[-\frac{x^3}{3} + \frac{x^2}{2} + 20x\right]^5 = (\dots) - (\dots)$ Substitutes 5 and -4 (or <i>their limits</i> from part(a)) into an "integrated function" and	dM1	
	$\left\{ \left(-\frac{125}{3} + \frac{25}{2} + 100 \right) - \left(\frac{64}{3} + 8 - 80 \right) = \left(70\frac{5}{6} \right) - \left(-50\frac{2}{3} \right) \right\}$ subtracts, either way round.		
	See above working to decide to award 3 rd M1 mark here: See above working to decide to award 4 th M1 mark here:	M1 M1	
	So area of R is = 121.5 121.5	A1 oe cao [7] 11	
(b)	1 st M1 for an attempt to integrate meaning that $x^n \rightarrow x^{n+1}$ for at least one of the terms.		
	Note that $20 \rightarrow 20x$ is sufficient for M1.		
	1^{st} A1 at least two out of three terms correctly ft. Note this accuracy mark is ft in Way 2. 2^{nd} A1 for correct integration only and no follow through. Ignore the use of a '+ c'.		
	Allow 2^{nd} A1 also for $-\frac{x^3}{3} + \frac{2x^2}{2} + 24x - \left(\frac{x^2}{2} + 4x\right)$. Note that $\frac{2x^2}{2} - \frac{x^2}{2}$ or $24x - 4x$	only counts	
	as one integrated term for the 1 st A1 mark. Do not allow any extra terms for the 2 nd A1 mark 2 nd M1: Note that this method mark is dependent upon the award of the first M1 mark in pa Substitutes 5 and -4 (and not 4 if the candidate has stated $x = -4$ in part (a).) (or the limit	rt (b).	
	candidate has found from part(a)) into an "integrated function" and subtracts, either way rou one slip! 3^{rd} M1: Uses the integral of $(x + 4)$ with correct ft limits of their x_1 and their x_2 (usually for		
	(a) {where $(x_1, y_1) = (-4, 0)$ and $(x_2, y_2) = (5, 9)$. } This mark is usually found in the first	-	
	candidate's working in part (b). 4 th M1: Uses "curve" – "line" function with correct ft (usually found in part (a)) limits. Sub be correct way round. This mark is usually found in the first line of the candidate's working	traction must	
	Allow $\int_{-4}^{5} (-x^2 + 2x + 24) - x + 4 \{ dx \}$ for this method mark.		
	3 rd A1: 121.5 oe cao. Note: SPECIAL CASE for this alternative method		
	Area of $R = \int_{-4}^{5} (x^2 - x - 20) dx = \left[\frac{x^3}{3} - \frac{x^2}{2} - 20x\right]_{-4}^{5} = \left(\frac{125}{3} - \frac{25}{2} - 100\right) - \left(-\frac{64}{3} - 8 - \frac{125}{3} - \frac{125}{2} - 100\right) - \left(-\frac{64}{3} - 8 - \frac{125}{3} - \frac{125}{3}$		
	The working so far would score SPEICAL CASE M1A1A1M1M1M0A0.		
	The candidate may then go on to state that $=\left(-70\frac{5}{6}\right) - \left(50\frac{2}{3}\right) = -\frac{243}{2}$		
	If the candidate then multiplies their answer by -1 then they would gain the 4 th M1 and 121. the final A1 mark.	5 would gain	

Question Number	Scheme	Marks
Aliter	Curve: $y = -x^2 + 2x + 24$, Line: $y = x + 4$	
9. (a) Way 2	{Curve = Line} $\Rightarrow y = -(y-4)^2 + 2(y-4) + 24$ Eliminating <i>x</i> correctly. Attempt to solve a resulting	B1
Way 2	$y^2 - 9y \{=0\} \Rightarrow y(y-9) \{=0\} \Rightarrow y =$ Attempt to solve a resulting quadratic to give $y =$ their values.	M1
	So, $y = 0, 9$ Both $y = 0$ and $y = 9$.	A1
	So corresponding <i>y</i> -values are $x = -4$ and $x = 5$. See notes below.	B1ft [4]
	2^{nd} B1ft: For correctly substituting their values of y in equation of line or parabola to give bo x-values.	
9. (b)	Alternative Methods for obtaining the M1 mark for use of limits:	
	There are two alternative methods can candidates can apply for finding "162".	
	Alternative 1:	
	$\int_{-4}^{0} (-x^2 + 2x + 24) dx + \int_{0}^{5} (-x^2 + 2x + 24) dx$	
	$= \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-4}^{0} + \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{0}^{5}$	
	$= (0) - \left(\frac{64}{3} + 16 - 96\right) + \left(-\frac{125}{3} + 25 + 120\right) - (0)$	
	$=\left(103\frac{1}{3}\right) - \left(-58\frac{2}{3}\right) = 162$	
	Alternative 2:	
	$\int_{-4}^{6} (-x^2 + 2x + 24) dx - \int_{5}^{6} (-x^2 + 2x + 24) dx$	
	$= \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-4}^{-6} - \left[-\frac{x^3}{3} + \frac{2x^2}{2} + 24x \right]_{-5}^{-6}$	
	$= \left\{ \left(-\frac{216}{3} + 36 + 144 \right) - \left(\frac{64}{3} + 16 - 96 \right) \right\} - \left\{ \left(-\frac{216}{3} + 36 + 144 \right) - \left(-\frac{125}{3} + \frac{125}{3} $	25+120
	$= \left\{ \left(108\right) - \left(-58\frac{2}{3}\right) \right\} - \left\{ \left(108\right) - \left(103\frac{1}{3}\right) \right\}$	
	$=\left(166\frac{2}{3}\right) - \left(4\frac{2}{3}\right) = 162$	