Mathematics C2

Examiner's use only

Team Leader's use only

1

2

3

4

5

6

7

8

9

Past Paper

This resource was created and owned by Pearson Edexcel

Centre No.			Paper Reference			Surname	Initial(s)				
Candidate No.			6	6	6	4	/	0	1	Signature	

Paper Reference(s)

6664/01

Edexcel GCE

Core Mathematics C2 **Advanced Subsidiary**

Friday 5 June 2009 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination Mathematical Formulae (Orange or Green)

Items included with question papers

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions. Write your answers in the spaces provided in this question paper. When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 9 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited

advancing learning, changing lives

W850/R6664/57570 3/5/4

Total

Mathematics C2

Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Leave	1
blank	

$\int_{1}^{4} \left(2x + 3\sqrt{x}\right) dx.$	
J_1	(5)

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

June 2009 6664 Core Mathematics C2 Mark Scheme

Question Number	Scheme		Marks		
Q1	$\int \left(2x+3x^{\frac{1}{2}}\right) dx = \frac{2x^2}{2} + \frac{3x^{\frac{3}{2}}}{\frac{3}{2}}$ $\int \left(2x+3x^{\frac{1}{2}}\right) dx = \left[x^2+2x^{\frac{3}{2}}\right]_1^4 = 16+2\times8 - 1+2$				
	$\int_{1}^{4} \left(2x + 3x^{\frac{1}{2}}\right) dx = \left[x^{2} + 2x^{\frac{3}{2}}\right]_{1}^{4} = 16 + 2 \times 8 - 1 + 2$	M1			
	= 29 (29 + C scores A0)	A1	(5) [5]		
	1 st M1 for attempt to integrate x or $x^{\frac{1}{2}}$ or $x^{\frac{3}{2}}$.				
	$1^{\text{st}} A1$ for $\frac{2x^2}{2}$ or a simplified version.				
	$2^{\text{nd}} \text{ A1 for } \frac{2x^{\frac{3}{2}}}{8/2} \text{ or } \frac{3}{2} \sqrt{\frac{1}{2}}$ or a simplified version.				
	Ignore + C , if seen, but two correct terms and an <u>extra non-constant</u> term scores M1A1.	A0.			
	2 nd M1 for correct use of correct limits ('top' – 'bottom'). Must be used in a 'changed function', not just the original. (The changed function may have been found by differentiation).	y			
	Ignore 'poor notation' (e.g. missing integral signs) if the intention is clear.				
	No working: The answer 29 with no working scores M0A0A0M1A0 (1 mark).				

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(a) Find the first 3 terms, in ascending powers of x , of the binomial expan	sion of
$(2+kx)^7$	
where k is a constant. Give each term in its simplest form.	(4)
Given that the coefficient of x^2 is 6 times the coefficient of x ,	
(b) find the value of k .	
	(2)

Question Number	Scheme	Marks
Q2 (a)	The 7 or 21 can be in 'unsimplified' form.	M1
	$2 + kx^{7} = 2^{7} + 2^{6} \times 7 \times kx + 2^{5} \times {7 \choose 2} k^{2} x^{2}$	
	= 128; $+448kx$, $+672k^2x^2$ [or $672(kx)^2$] (If $672kx^2$ follows $672(kx)^2$, isw and allow A1)	B1; A1, A1 (4)
(b)	$6 \times 448k = 672k^2$	M1
	k = 4 (Ignore $k = 0$, if seen)	A1 (2) [6]
(a)	The terms can be 'listed' rather than added. Ignore any extra terms.	
	M1 for either the x term or the x^2 term. Requires correct binomial coefficient in any factor with the correct power of x, but the other part of the coefficient (perhaps including powers of 2 and/or k) may be wrong or missing. Allow binomial coefficients such as Allow binomial coefficients such as However, 448 x or similar is M0. B1, A1, A1 for the simplified versions seen above. Alternative: Note that a factor 2^7 can be taken out first: 2^7 x but the mark scheme still application in the simplified versions seen above. Ignoring subsequent working (isw): Isw if necessary after correct working: e.g. $128 - 48kx - 72k^2x^2 - M1$ B1 A1 A1 Allow binomial coefficient in any factor in the coefficient (perhaps including to the coefficient (perhaps including to the coefficient (perhaps including to the coefficient of the coefficient (perhaps including to the coefficient of the coefficient (perhaps including to the coeffici	g
(b)	M1 for equating their coefficient of x^2 to 6 times that of x to get an equation in k , or equating their coefficient of x to 6 times that of x^2 , to get an equation in k . Allow this M mark even if the equation is trivial, providing their coefficients from particle have been used, e.g. 6 48 k 572 k , but beware k 4 following from this, which is k 4. An equation in k alone is required for this M mark, so e.g. 6 48 k 572 k^2 4 or similar is M0 A0 (equation in coefficients only never seen), but e.g. 6 48 k 572 k^2 4 will get M1 A1 (as coefficients rather than terms have now been considered). The mistake 2 4 would give a maximum of 3 marks: M1B0A0A0, M1A1	is

■ Past Paper

This resource was created and owned by Pearson Edexcel

6664

	Leave
	blank
f(x) = (3x-2)(x-k)-8	

3. f(x) = (3x-2)(x-2)

where k is a constant.

(a) Write down the value of f(k).

(1)

When f(x) is divided by (x-2) the remainder is 4

(b) Find the value of k.

(2)

(c))]	Factori	se f	(x)	comp	lete	ly.
-----	-----	---------	------	-----	------	------	-----

(3)

watnematic	SUZ
edexce	6664

_	stion nber	Scheme	Mar	·ks
Q3	(a)	f(k) = -8	B1	(1)
	(b)	$f(2) = 4 \Rightarrow 4 = (6-2)(2-k)-8$	M1	
		So $k = -1$	A1	(2)
	(c)	$f(x) = 3x^2 - 2 + 3k x + 2k - 8$	M1	
		=(3x-5)(x+2)	M1A1	(3)
				[6]
	(c)	If the expression is expanded in this part, condone 'slips' for this M mark. Treat the omission of the here as a 'slip' and allow the M mark. Beware: Substituting x and equating to 0 (M0 A0) also gives k. Alternative; M1 for dividing by (x 2), to get 3x (function of k), with remainder as a function of and equating the remainder to 4. [Should be 3x 4 k), remainder k]. No working: k with no working scores M0 A0. 1st M1 for multiplying out and substituting their (constant) value of k (in either order). The multiplying-out may occur earlier. Condone, for example, sign slips, but if the 4 (from part (b)) is included in the expression, this is M0. The 2 nd M1 is still available. 2 nd M1 for an attempt to factorise their three term quadratic (3TQ).		
		A1 The correct answer, as a <u>product of factors</u> , is required. Allow 3 (x)		

Leave blank

4. (a) Complete the table below, giving values of $\sqrt{(2^x + 1)}$ to 3 decimal places.

x	0	0.5	1	1.5	2	2.5	3
$\sqrt{(2^x+1)}$	1.414	1.554	1.732	1.957			3

(2)

Figure 1

Figure 1 shows the region R which is bounded by the curve with equation $y = \sqrt{(2^x + 1)}$, the x-axis and the lines x = 0 and x = 3

(b) Use the trapezium rule, with all the values from your table, to find an approximation for the area of R.

(4)

(c) By reference to the curve in Figure 1 state, giving a reason, whether your approximation in part (b) is an overestimate or an underestimate for the area of *R*.

(2)

Question Number		Scheme	Ма	rks
Q4	(a)	$x = 2$ gives 2.236 (allow AWRT) Accept $\sqrt{5}$	B1	
		x = 2.5 gives 2.580 (allow AWRT) Accept 2.58	B1	(2)
	(b)	1.414 (1.554 (1.5	B1,[M	1A1ft]
		= 6.133 (AWRT 6.13, even following minor slips)	A1	(4)
	(c)	Overestimate	B1	
		'Since the trapezia lie <u>above the curve</u> ', or an equivalent explanation, or sketch of (one or more) trapezia above the curve on a diagram (or on the given diagram, in which case there should be reference to this). (Note that there must be some reference to a trapezium or trapezia in the explanation or diagram).	dB1	(2) [8]
	(b)	B1 for $\frac{1}{2}$ or equivalent.		
		For the M mark, the first bracket must contain the 'first and last' values, and the second bracket (which must be multiplied by 2) must have no additional values. If the only mistake is to omit one of the values from the second bracket, this can be considered as a slip and the M mark can be allowed. Bracketing mistake: i.e. 1414 1414 1812 1816 1816 1816 1816 1816 1816 1816		
		scores B1 M1 A0 A0 unless the final answer implies that the calculation has been done correctly (then full marks can be given).		
		Alternative: Separate trapezia may be used, and this can be marked equivalently.		
		$\frac{1}{4}(1.414554) - \frac{1}{4}(1.554732) \frac{1}{4}(2.580)$		
		1 st A1ft for correct expression, ft their 2.236 and their 2.580		
	(c)	1st B1 for 'overestimate', ignoring earlier mistakes and ignoring any reasons given. 2nd B1 is dependent upon the 1st B1 (overestimate).		

st Paper	This resource was created and owned by Pearson Edexcel	

5.	The third term of a geometric sequence is 324 and the sixth term is 96	
	(a) Show that the common ratio of the sequence is $\frac{2}{3}$	
	(a) Show that the common ratio of the sequence is 3	(2)
		, ,
	(b) Find the first term of the sequence.	(2)
		(2)
	(c) Find the sum of the first 15 terms of the sequence.	
		(3)
	(d) Find the sum to infinity of the sequence.	
		(2)
		, ,

This resource was created and owned by Pearson Edexcel

Mathematics C2 COEXCE

Past Paper (Mark Scheme)

_	stion nber	Scheme	Marks		
Q5	(a)	$324r^3 = 96$ or $r^3 = \frac{96}{324}$ or $r^3 = \frac{8}{27}$	M1		
	41.)	$r = \frac{2}{3} \tag{*}$	A1cso (2)		
	(b)	$324r^3 = 96$ or $r^3 = \frac{96}{324}$ or $r^3 = \frac{8}{27}$ $r = \frac{2}{3}$ $a = \frac{2}{3}$	M1, A1 (2)		
	(c)	$S_{15} = \frac{729 \ 1 - \left[\frac{2}{3}\right]^{15}}{1 - \frac{2}{3}}, = 2182.00$ (AWRT 2180)	M1A1ft, (3)		
	(d)	$S_{\infty} = \frac{729}{1 - \frac{2}{3}}, \qquad = 2187$	M1, A1 (2) [9]		
	(a)	721 Scores Will).			
		The equation must involve multiplication/division rather than addition/subtraction. Al Do not penalise solutions with working in decimals, providing these are correctly			
		rounded or truncated to at least 2dp <u>and</u> the final answer 2/3 is seen. <u>Alternative</u> : (verification)			
		M1 Using $r^3 = \frac{8}{27}$ and multiplying 324 by this (or multiplying by $r = \frac{2}{3}$ three times).			
		A1 Obtaining 96 (cso). (A conclusion is not required).			
		324 6 (no real evidence of calculation) is not quite enough and scores M1 A	A 0.		
	(b)	M1 for the use of a correct formula or for 'working back' by dividing by $\frac{2}{3}$ (or by the	eir <i>r</i>) twice		
		from 324 (or 5 times from 96).	,		
		Exceptionally, allow M1 also for using ar^3 24 or ar^6 6 instead of ar^2 324 or for dividing by r three times from 324 (or 6 times from 96) but no other exceptions a			
	(c)	for use of sum to 15 terms formula with values of a and r. If the wrong power is used, e.g. 14, the M mark is scored only if the correct sum formula is stated.			
		1 st A1ft for a correct expression or correct ft their a with $r = \frac{1}{3}$.			
		2 nd A1 for awrt 2180, even following 'minor inaccuracies'.			
		Condone missing brackets round the $\frac{2}{3}$ for the marks in part (c).			
		Alternative:	- 2		
		M1 for adding 15 terms and 1^{st} A1ft for adding the 15 terms that ft from their a and	$r = \frac{1}{3}$.		

(d)

M1

for use of correct sum to infinity formula with their a. For this mark, if a value of r different from the given value is being used, M1 can still be allowed providing |r|

■ Past Paper

		Le bl
6.	The circle C has equation	
	$x^2 + y^2 - 6x + 4y = 12$	
	(a) Find the centre and the radius of <i>C</i> .	(5)
	The point $P(-1, 1)$ and the point $Q(7, -5)$ both lie on C .	
	(b) Show that PQ is a diameter of C .	(2)
	The point R lies on the positive y-axis and the angle $PRQ = 90^{\circ}$.	
	(c) Find the coordinates of R .	(4)

www.mvstudvbro.com

Mathematics C2

Julillier 2003	www.iiiystuuybio.coiii	Maniciliance CZ
Past Paper (Mark Scheme)	This resource was created and owned by Pearson Edexcel	edexcel ⁶⁶⁶⁴

Question Number	YOUNG	Ma	ırks
Q6 (a	$x-3^2-9+y+2^2-4=12$ Centre is $(3,-2)$	M1 A1	, A1
	$x-3^2 + y+2^2 = 12 + "9" + "4"$ $r = \sqrt{12 + "9" + "4"} = 5 \text{ (or } \sqrt{25} \text{)}$	M1 A1	(5)
(b	$PQ = \sqrt{(7-1)^2 + (-5-1)^2}$ or $\sqrt{8^2 + 6^2}$	M1	
	= $10 = 2 \times \text{radius}$, : diam. (N.B. For A1, need a comment or conclusion)	A1	(2)
	[ALT: midpt. of PQ $\frac{7}{2}$, $\frac{1}{2}$: M1, $= (3, -2) = \text{centre: A1}$]		
	[ALT: eqn. of PQ $3x$ y		
	[ALT: find two grads, e.g. PQ and P to centre: M1, equal \therefore diameter: A1] [ALT: show that point $S(\square, \square)$ or $(7, 1)$ lies on circle: M1		
(с	because $\angle PSQ = 90^\circ$, semicircle : diameter: A1] R must lie on the circle (angle in a semicircle theorem) often implied by a diagram with R on the circle or by subsequent working)	B1	
	$x = 0 \Longrightarrow y^2 + 4y - 12 = 0$	M1	
	$(y-2)(y+6) = 0$ $y \blacksquare \dots$ (M is dependent on previous M)	dM1 A1	(4)
	y = -6 or 2 (Ignore $y = -6$ if seen, and 'coordinates' are not required))	AI	(4) [11]
(a) 1^{st} M1 for attempt to complete square. Allow $(x \otimes y)^2 \otimes z$, or $(y \otimes y)^2 \otimes z$, $k \otimes z$. 1^{st} A1 x-coordinate 3, 2^{nd} A1 y-coordinate -2		I	
	2^{nd} M1 for a full method leading to $r =$, with their 9 and their 4, 3^{rd} A1 5 or $\sqrt{2}$	- 5	
	The 1^{st} M can be <u>implied</u> by (\blacksquare , \blacksquare) but a full method must be seen for the 2^{nd} M.		
	Where the 'diameter' in part (b) has <u>clearly</u> been used to answer part (a), no marks in (a but in this case the M1 (<u>not</u> the A1) for part (b) can be given for work seen in (a). Alternative	1),	
	1 st M1 for comparing with $x^2 - y^2 - 2gx - 2fy$ to write down centre ($x^2 - y^2 - 2fy - 2fy$) to write down centre ($x^2 - y^2 - 2fy - 2fy$	ı	
	2^{nd} M1 for using $r = \sqrt{g^2 + f^2} = c$. Condone sign errors for this M mark.		
(с	2 nd M1 (dep.) for attempt to solve a 3TQ leading to <u>at least one</u> solution for y. <u>Alternative 1</u> : (Requires the B mark as in the main scheme) 1 st M for using (3, 4, 5) triangle with vertices (3, 12), (0, 12), (0, y) to get a linear or		
	quadratic equation in y (e.g. $3^2 - y - 2^2$). $2^{\text{nd}} \text{ M (dep.)}$ as in main scheme, but may be scored by simply solving a linear equation Alternative 2: (Not requiring realisation that R is on the circle)	n.	
	B1 for attempt at m_{PR} m_{QR} m_{PQ} , (NOT m_{PQ}) or for attempt at Pythag. in triangle	PQR.	
	1^{st} M1 for setting $x = 0$, i.e. $(0, y)$, and proceeding to get a 3TQ in y. Then main scheme Alternative 2 by 'verification':		
	B1 for attempt at m_{PR} m_{QR} , (NOT m_{PQ}) or for attempt at Pythag. in triangle	PQR.	
	1 st M1 for trying (0, 2). 2 nd M1 (dep.) for performing all required calculations.		
	A1 for fully correct working and conclusion.		
<u> </u>			

Mathematics C2

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

$(1 + \tan \theta)(5\sin \theta - 2) = 0.$	(4)
	(4)

Summer 2009	www.mystudybro.com	matnematics C2
Past Paper	This resource was created and owned by Pearson Edexcel	6664

$4\sin x = 3\tan x.$	(6)
	(*)

Questio Numbe	SCHEME	Marks	
Q7 (B1, B1ft B1, B1ft (4)	
(i	$\sin \theta = \frac{2}{5} \Rightarrow \theta = 23.6, 156.4$ $4\sin x = \frac{3\sin x}{\cos x}$ (AWRT: 24, 156)		
	$4\sin x \cos x = 3\sin x \implies \sin x (4\cos x - 3) = 0$ Other possibilities (after squaring): $\sin^2 x (16\sin^2 x)$, $\sin^2 x (16\cos^2 x)$) ($\cos^2 x$)	M1	
	$x = 0$, $180 \underline{\text{seen}}$	B1, B1	
	x = 41.4, 318.6 (AWRT: 41, 319)	B1, B1ft (6)	
() et	[10]	
(i·	2^{nd} B1 for 135 seen, or ft (180 + α) if α is negative, or (α – 180) if α is positive. If tank is obtained from wrong working, 2^{nd} B1ft is still available. 3^{rd} B1 for awrt 24 (β , where β 0) 4^{th} B1 for awrt 156, or ft (180 – β) if β is positive, or – (180 + β) if β is negative. If sin β 1 is obtained from wrong working, β 2 is available.	nalised as in	
	For both parts of the question:		
	Extra solutions outside required range: Ignore		
	Extra solutions inside required range: For each <u>pair</u> of B marks, the 2 nd B mark is lost if there are two correct values and one or more extra solution(s), e.g. tan 45, 45,135 is B1 B0 Answers in radians: Loses a maximum of 2 B marks in the whole question (to be deducted at the first and second occurrence).		

■ Past Paper

This resource was created and owned by Pearson Edexcel

6664 Leave

blank

8. (a) Find the value of y such that

$$\log_2 y = -3$$

(2)

(b) Find the values of x such that

$$\frac{\log_2 32 + \log_2 16}{\log_2 x} = \log_2 x$$

(5)

cel

Mathematics C2 edexcel 6664

Past Paper (Mark Scheme)	This resource was	created and owned	by Pearson	Edexc
--------------------------	-------------------	-------------------	------------	-------

Nun	ition iber	Scheme	Mar	rks		
Q8	(a)	$\log_2 y = -3 \Rightarrow y = 2^{-3}$	M1			
		$y = \frac{1}{8}$ or 0.125	A1	(2)		
	(b)	$32 \square^{5} \text{or} 16 \square^{2} \text{or} 512 \square^{9}$	M1			
		[or $\log_2 32 = 5\log_2 2$ or $\log_2 16 = 4\log_2 2$ or $\log_2 512$ $\log_2 2$]				
		[or $\log_2 32$ $\log_{10} 32$ or $\log_2 16$ $\log_{10} 16$ or $\log_2 512$ $\log_{10} 512$]				
		$\log_2 32 + \log_2 16 = 9$	A1			
		$(\log x)^2$. or $(\log x)(\log x)$. (May not be seen explicitly, so M1 may be implied by later work, and the base may be 10 rather than 2)	M1			
		$\log_2 x = 3 \Rightarrow x = 2^3 = 8$	A1			
		$\log_2 x = -3 \Rightarrow x = 2^{-3} = \frac{1}{8}$	A1ft	(5) [7]		
		A1 for the <u>exact</u> answer, e.g. $\log_{10} y$	A0.			
	(b)	Correct answer with no working scores both marks. Allow both marks for implicit statements such as $\log_2 0.125$				
		5, 4 or 9 respectively).				
		1^{st} A1 for 9 (exact). 2^{nd} M1 for getting $\log_2 x$ = constant. The constant can be a log or a sum of logs.				
If written as $\log_2 x^2$ instead of $\log_2 x$, allow the M mark <u>only</u> if subsequ						
		work implies correct interpretation. 2 nd A1 for 8 (exact). Change of base methods leading to a non-exact answer score A0				
		3^{rd} A1ft for an answer of $\frac{1}{\text{their }8}$. An ft answer may be non-exact.				
		Possible mistakes:				
		$\log_2 \mathbb{R}^9 \log_2 \mathbb{R}^2 \log^2 \mathbb{R}^2$. scores M1A1(implied by 9)M0A0A0 $\log_2 512 \log_2 x \log_2 x$ 12 12 2. scores M0A0(9 never seen)M1A0A0				
		$\log_2 512 \log_2 x \log_2 x$ $\log_2 x \log_2 x$ $\log_2 x \log_2 x \log_2 x$ $\log_2 x \log_2 x \log_2 x \log_2 x$.U			
		$\log_2 512 \log_2 x \log_2 x$ $\log_2 x \log_2 x \log_2 x$ scores M0A0(9 never seen)M1A0A $\log_2 48 \log_2 x \log_2 x$ $\log_2 x \log_2 x$ $\log_2 x \log_2 x$ $\log_2 x \log_2 x$ $\log_2 x \log_2 x$				

6664 Leave blank

9.

Figure 2

Figure 2 shows a closed box used by a shop for packing pieces of cake. The box is a right prism of height h cm. The cross section is a sector of a circle. The sector has radius r cm and angle 1 radian.

The volume of the box is 300 cm³.

(a) Show that the surface area of the box, $S \text{ cm}^2$, is given by

$$S = r^2 + \frac{1800}{r}$$

(5)

(b) Use calculus to find the value of r for which S is stationary.

(4)

(c) Prove that this value of r gives a minimum value of S.

(2)

(d) Find, to the nearest cm^2 , this minimum value of S.

(2)

This resource was created and owned by Pearson Edexcel

Past Paper (Mark Scheme)

Questio Numbe	Cheme	Marks		
Q9 (a		B1		
	(Sector area =) $\frac{1}{2}r^2$ r^2 Can be awarded by implication from later	B1		
	work, e.g. the correct volume formula. (Requires use of $\theta = 1$).			
	Surface area = 2 sectors + 2 rectangles + curved face $(= r^2 + 3rh)$ (See notes below for what is allowed here)	M1		
	$Volume = 300 = \frac{1}{2}r^2h$	B1		
	Sub for h: $S = r^2 + 3 \times \frac{600}{r} = r^2 + \frac{1800}{r}$ (*)	A1cso (5)		
(t	Sub for h : $S = r^2 + 3 \times \frac{600}{r} = r^2 + \frac{1800}{r}$ (*) $\frac{dS}{dr} = 2r - \frac{1800}{r^2} \text{ or } 2r - 800r \text{ or } 2r - 800r 800r $	M1A1		
	$\frac{dS}{dr}$, $r = \sqrt[3]{900}$, or AWRT 9.7 (NOT). 7 or	M1, A1 (4)		
	$\frac{d^2S}{dr^2}$ and consider sign, $\frac{d^2S}{dr^2} = 2 + \frac{3600}{r^3} > 0$ so point is a minimum	M1, A1ft (2)		
(0	$S_{\min} = 9.65^{2} + \frac{1800}{9.65}$			
	(Using their value of r , however found, in the given S formula)	M1		
	= 279.65 (AWRT: 280) (Dependent on full marks in part (b))	A1 (2) [13]		
(6	_ 1	or wrong and		
(1	may have extra term(s), but must have an r^2 (or r^2) term and an rh (or rh) term.			
(t	In parts (b), (c) and (d), ignore labelling of parts			
	1^{st} M1 for attempt at differentiation (one term is sufficient) $r^n = r^n$ 2^{nd} M1 for setting their derivative (a 'changed function') = 0 and solving as f as $r^3 = 1$.			
	(depending upon their 'changed function', this could be $r \blacksquare$. or $r^2 \blacksquare$., etc., but the algebra <u>must deal with a negative power</u> of r and should be sound apart from			
,	possible sign errors, so that r^n . is consistent with their derivative).			
(0	M1 for attempting second derivative (one term is sufficient) r^n , and considering its sign. Substitution of a value of r is not required. (Equating it to zero is M0).			
	A1ft for a correct second derivative (or correct ft from their first derivative) and a valid reason			
	(e.g. > 0), <u>and</u> conclusion. The actual <u>value</u> of the second derivative, if found, can be ignored. To score this mark as ft, their second derivative must indicate a minimum.			
	Alternative:			
	M1: Find <u>value</u> of $\frac{dS}{dr}$ on each side of their value of r and consider sign.			
	A1ft: Indicate sign change of negative to positive for $\frac{dS}{dr}$, and conclude minimum.			
	Alternative: M1: Find value of <i>S</i> on each side of their value of <i>r</i> and compare with their 279.65.			
	A1ft: Indicate that both values are more than 279.65, and conclude minimum.			