Past Paper

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics C2

Examiner's use only

Team Leader's use only

1

Leave

6664

Centre No.					Pape	r Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	4	/	0	1	Signature	

Paper Reference(s)

6664/01

Edexcel GCE

Core Mathematics C2 Advanced Subsidiary

Monday 14 January 2013 – Morning

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)Items included with question papers
Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer for each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 9 questions in this question paper. The total mark for this paper is 75.

There are 32 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy.

©2013 Pearson Education Ltd.

Printer's Log. No. P41487A

W850/R6664/57570 5/5/5/5/

Turn over

Total

PEARSON

Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Leave

$(2-5x)^6$	
Give each term in its simplest form.	
	(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

January 2013 6664 Core Mathematics C2 **Mark Scheme**

Question Number	Sch	neme	Marks		
1.	(2-	$(-5x)^6$			
	$(2^6 =) 64$	Award this when first seen (not $64x^0$)	B1		
	$+6 \times (2)^{5} (-5x) + \frac{6 \times 5}{2} (2)^{4} (-5x)^{2}$	Attempt binomial expansion with correct structure for at least one of these terms. E.g. a term of the form: $\binom{6}{p} \times \left(2\right)^{6-p} \left(-5x\right)^p \text{ with } p = 1 \text{ or } p = 2$ consistently. Condone sign errors. Condone missing brackets if later work implies correct structure and allow alternative forms for binomial coefficients e.g. $\binom{6}{1} \text{ or } \left(\frac{6}{1}\right)$ or even $\left(\frac{6}{1}\right)$	M1		
	-960 <i>x</i>	Do not allow $+-960x$	A1 (first)		
	$(+)6000x^2$	Allow this to come from $(5x)^2$	A1 (Second)		
	The terms do not have to form a sum i.e. separa	isw e.g. divides all terms by 2 they can be listed with commas or given on te lines.			
	Special Case - decreasing powers can score M1 with the conditions as above for the second and third terms.				
	$(2-5x)^6 = 64 + \binom{6}{1}(2^5 - 5x) + \binom{6}{2}(2^4 + (-5x)^2) \text{ scores B1 only as the}$ $\text{powers of 2 and (-5x) are being added not multiplied.}$ Fully correct answer with no working can score full marks. If either the second or third term is correct, the M1 can be implied and the A1 scored for that term.				
	term is correct, the NII can be migh	ned and the AT scored for that term.	(4		
Way 2	64(1±)	64 and $(1 \pm Award when first seen.$	B1		
	$\left(1 - \frac{5x}{2}\right)^6 = 1 - 6 \times \frac{5x}{2} + \frac{6 \times 5}{2} \left(-\frac{5x}{2}\right)^2$	Correct structure for at least one of the underlined terms. E.g. a term of the form: $\binom{6}{p} \times (kx)^p \text{ with } p = 1 \text{ or } p = 2$ consistently and $k \neq \pm 5$ Condone sign errors. Condoned missing brackets if later work implies correct structure but it must be an expansion of $(1-kx)^6 \text{ where } k \neq \pm 5$	M1		
	-960 <i>x</i>	Do not allow $+-960x$	A1		
	$(+)6000x^2$	Allow this to come from $\left(\frac{5x}{2}\right)^2$	A1		
			(4		

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6664

Leave

$f(x) = ax^3 + bx^2 - 4x - 3$, where a and b are constants.	
Given that $(x - 1)$ is a factor of $f(x)$,	
(a) show that $a + b = 7$	
	(2)
Given also that, when $f(x)$ is divided by $(x + 2)$, the remainder is 9,	
(b) find the value of a and the value of b , showing each step in your working.	(4)

6664

Question Number	Cheme		Marks		
2.			1		
(a)	f(1) = a+b-4-3 = 0 or $a+b-7=0$	Attempt f(±1)	M1		
(u)	a+b=7*	Must be $f(1)$ and $= 0$ needs to be seen	A1		
			(2)		
(b)	$f(-2) = a(-2)^3 + b(-2)^2 - 4(-2) - 3 = 9$	Attempt $f(\pm 2)$ and uses $f(\pm 2) = 9$	M1		
	-8a + 4b + 8 - 3 = 9	Correct equation with exponents of (-2) removed	A1		
	(-8a + 4b = 4)				
	Solves the given equation from part (a)		3.51		
	and their equation in a and b from part		M1		
	(b) as far as $a =$ or $b =$ a = 2 and $b = 5$	Both correct	A1		
	Attempts at trial and improvement in (b)	1	711		
	values for a and b where $a + b = 7$ and substitute their values into the cubic				
	along with $x = \pm 2$ and sets = 9. For completion to $a = 2$ and $b = 5$ fully shown				
	to be correct allow 4/4. For incomplete or incorrect solutions allow the first				
	M1 only. If in doubt consult your team leader.				
			[6]		
	Long Divi	l sion	[0]		
	Long Divis $\left(ax^3 + bx^2 - 4x - 3\right) \div \left(x - 4x - 3\right)$	$(-1) \equiv ax^2 + px + a$			
(a)	where p and q are in terms of a or b or both				
	and sets their remainder = 0				
	NB Quotient = $ax^2 + (a+b)x + (a+b-4)$				
	a + b = 7 *				
			(2)		
	$\left(ax^3 + bx^2 - 4x - 3\right) \div \left(x + 3\right)$	$2) = ax^2 + px + q$			
	where p and q are in terms of a or b or both				
(b)	and sets their remainder = 9				
	NB Quotient = $ax^2 + (b-2a)x + (4a-4-2b)$				
	4b - 8a + 5 = 9				
	Follow scheme for	final 2 marks			

■ Past

Pape	2013	This resource was created and owned by Pearson Edexcel	
			Leav blan
3.	that	ompany predicts a yearly profit of £120 000 in the year 2013. The company the yearly profit will rise each year by 5%. The predicted yearly profit metric sequence with common ratio 1.05	
	(a)	Show that the predicted profit in the year 2016 is £138 915	(1)
	(b)	Find the first year in which the yearly predicted profit exceeds £200 000	(5)
	(c)	Find the total predicted profit for the years 2013 to 2023 inclusive, giving yo	
		to the nearest pound.	(3)

Question Number		Scheme	Marks	
3.				
(a)	$120000 \times (1.05)^3 = 138915 *$	Or 120000×1.05×1.05×1.05 = 138915 Or 120000, 126000, 132000, 138915	B1	
		Or $a = 120000$ and $a \times (1.05)^3 = 138915$		
				(1)
(b)	$120000 \times (1.05)^{n-1} > 200000$	Allow n or $n - 1$ and ">", "<", or "=" etc.	M1	
	$\log 1.05^{n-1} > \log \left(\frac{5}{3}\right)$	Takes logs correctly Allow n or $n-1$ and ">", "<", or "=" etc.	M1	
	$(n-1>)\frac{\log\left(\frac{5}{3}\right)}{\log 1.05} \text{ or equivalent}$ $\text{e.g } (n>)\frac{\log\left(\frac{7}{4}\right)}{\log 1.05}$	Allow n or $n - 1$ and ">", "<", or "=" etc. Allow $1.\dot{6}$ or awrt 1.67 for $5/3$.	A1	
	2024	M1: Identifies a calendar year using their value of n or $n - 1$	M1A1	
	2021	A1: 2024 only cso		
		h no working = no marks		
	See appendix for alternative ta	iking logs base 1.05 and mis-read as total profit		
	/ 11)			(5)
	$\frac{a(1-r^n)}{1-r} = \frac{120000(1-1.05^{11})}{1-1.05}$	M1: Correct sum formula with $n = 10$, 11 or 12		
(c)	1-r $1-1.05$	A1: Correct numerical expression with $n = 11$	M1 A1	
	1704814	Cao (Allow 1704814.00)	A1	
		,		(3)
				[9]
	Listing of	or trial/improvement in (b)		
		$U_{11} = 195 \ 467.36, U_{12} = 205 \ 240.72$		
	(all the	1 th or 12 th terms correctly using a common ratio of 1.05 e terms need not be listed)	M1	
	Forms the geometric progression correctly to reach a term > 200 000 (May be implied e.g. reaches 195 467.36 – Hence the next year)			
		wrt 195 500 and a "12 th " term of awrt 205 200	A1	
	Uses their numbe	r of terms to identify a calendar year	M1	
		2024	A1	
	If you are not sure how to awa	ard the marks please consult your Team Leader		(5)

www.mystudybro.com

Solve, for $0 \le x < 180^\circ$, $\cos(3x-10^\circ) = -0.4$ giving your answers to 1 decimal place. You should show each step in your working. (7)	Pape	This resource was created and owned by Pearson Edexcel	
Solve, for $0 \le x < 180^\circ$, $\cos(3x - 10^\circ) = -0.4$ giving your answers to 1 decimal place. You should show each step in your working.			
$\cos(3x-10^\circ) = -0.4$ giving your answers to 1 decimal place. You should show each step in your working.	4.	Solve for $0 < r < 180^\circ$	b
giving your answers to 1 decimal place. You should show each step in your working.	7.	Solve, for $0 \leqslant x < 180$,	
		$\cos(3x-10^{\circ}) = -0.4$	
		giving your answers to 1 decimal place. You should show each step in your working.	

Question Number	Scheme				
4.					
	$\cos^{-1}(-0.4) = 113.58 \ (\alpha)$	Awrt 114	B1		
	10	Uses their α to find x .			
	$3x - 10 = \alpha \Rightarrow x = \frac{\alpha + 10}{3}$	Allow $x = \frac{\alpha \pm 10}{3} \mathbf{not} \frac{\alpha}{3} \pm 10$	M1		
	Note: If $x = \frac{\alpha \pm 10}{3}$ is not clearly applied fro	m their first angle it may be recovered if			
	applied to their second or third angle.				
	x = 41.2	Awrt	A1		
	$(3x-10=)360-\alpha (246.4)$	$360 - \alpha$ (can be implied by 246.4)	M1		
	x = 85.5	Awrt	A1		
	$(3x-10=)360+\alpha (=473.57)$	$360 + \alpha$ (Can be implied by 473.57)	M1		
	x = 161.2	Awrt	A1		
	Note 1: Do not penalise incorrect accuracy more than once and penalise it the first time it occurs. E.g if answers are only given to the nearest integer (41, 85, 161) only the first A mark that would otherwise be scored is lost.				
	 Note 2: Ignore any answers outside the range. For extra answers in range in an otherwise fully correct solution lose final A1 Note 3: Lack of working means that it is sometimes not clear where their intermediate angles are coming from. In these cases, if the final answers are incorrect score M0. Note 4: Candidates are unlikely to be working in radians deliberately but may have their calculator in radian mode (gives α = 1.98). In such cases the main scheme should be applied and the method marks are available. If you suspect that the candidate is working in radians correctly then please use the review mechanism and/or consult your team leader. 				
Way 2	$\cos^{-1}(0.4) = 66.42 \ (\alpha)$				
•	180 – 66.42 = 113.58	Awrt 114	B1		
	$3x - 10 = 113.58 \Rightarrow x = \frac{113.58 + 10}{3}$	Uses their 113.58 to find x	M1		
	x = 41.2	Awrt	A1		
	$3x-10=180+\alpha$ (246.4)	$180 + \alpha$	M1		
	to give $x = 85.5$		A1		
	$3x-10=540-\alpha$ (473.57)	540 - α	M1		
	to give $x = 161.2$		A1		
	Special case - takes 0.4 as -0.4				
	$\cos^{-1}(0.4) = 66.42 \ (\alpha)$		В0		
	$3x - 10 = 66.4 \Rightarrow x = \frac{66.4 \pm 10}{3}$		M1		
	x = 41.2		A0		
	$3x-10=360-\alpha$ (293.6)		M1		
	x = 101.2		A0		
	$3x-10=360+\alpha$ (426.4)		M1		
	x = 145.5		A0		
	$ \lambda - 14J.J $		110		

6664

Leave blank

5. The circle *C* has equation

$$x^2 + y^2 - 20x - 24y + 195 = 0$$

The centre of C is at the point M.

- (a) Find
 - (i) the coordinates of the point M,
 - (ii) the radius of the circle C.

(5)

N is the point with coordinates (25, 32).

(b) Find the length of the line MN.

(2)

The tangent to C at a point P on the circle passes through point N.

(c) Find the length of the line NP.

(2)

Question Number	Sche	me	Marks	_
5.				_
(a)	Parts (i) and (ii) are likely to be sol	ved together so mark as one part		
(i)	The centre is at (10, 12)	B1: $x = 10$ B1: $y = 12$	B1 B1	
(ii)	Uses $(x-10)^2 + (y-12)^2 =$		M1	
	Completes the square for both $(x \pm "10")^2 \pm a$ and $(y \pm "12")^2$	$a^2 \pm b$ and $+195 = 0, (a, b \neq 0)$		
	Allow slips in obtaining their			
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for <i>r</i> including the square root and can implied by a correct value for <i>r</i>	A1	
	r=7	Not $r = \pm 7$ unless $- 7$ is rejected	A1	
			(5)
	Compares the given equation with $x^2 + y^2 + 2gx + 2fy + c = 0$ to write	B1: $x = 10$	B1B1	
(a) Way 2	down centre $(-g, -f)$ i.e. $(10, 12)$	B1: $y = 12$		
way 2	Uses $r = \sqrt{(\pm "10")^2 + (\pm "12")^2 - c}$		M1	
	$r = \sqrt{10^2 + 12^2 - 195}$	A correct numerical expression for <i>r</i>	A1	
	r = 7		A1	
			(5	5)
	Note that although the marks for the come from correct work. E.g. $(x+10)$ (10, 12) scores B0 B0 but could score special case. Similarly $(x+10)^2$, $(y-10)^2$, $(y+12)^2$ givin but both could score M1A1ftA1ft for	2, $(y+12)^2$ giving a centre of the M1A1ftA1ft for the radius as a $(-12)^2$ giving a centre of (-10, 12) and a centre of (10, -12) scores B1 B0		
(b)	$MN = \sqrt{(25 - "10")^2 + (32 - "12")^2}$	Correct use of Pythagoras	M1	
	$MN\left(=\sqrt{625}\right)=25$		A1	
)		(2	<u>-</u> 2)
(c)	$NP = \sqrt{("25"^2 - "7"^2)}$	$NP = \sqrt{(MN^2 - r^2)}$	M1	<i>'</i>
	$NP = \sqrt{(25^2 + 7^2)}$ is I	M0 (Quite common)		
	$NP\left(=\sqrt{576}\right)=24$		A1	
			(2	2)
(c) Way 2	$\cos(NMP) = \frac{7}{"25"} \Rightarrow NP = "25" \sin(NR)$	MP) Correct strategy for finding NP	M1	
	NP = 24		A1	_
			(2	()

www.mystudybro.com

■ Past Paper

This resource was created and owned by Pearson Edexcel

6664 Leave

blank

6.	Given	that
О.	Given	ınaı

$$2\log_2(x+15) - \log_2 x = 6$$

(a) Show that

$$x^2 - 34x + 225 = 0$$

(5)

(b) Hence, or otherwise, solve the equation

$$2\log_2(x+15) - \log_2 x = 6$$

(2)

Question Number	Scheme				
6. (a)	$2\log(x+15) = \log(x+15)^2$		B1		
	$\log(x+15)^2 - \log x = \log \frac{(x+15)^2}{x}$	Correct use of $\log a - \log b = \log \frac{a}{b}$	M1		
	$2\log(x+15) - \log x = 6$	$\Rightarrow \log\left(\frac{\left(x+15\right)^2}{x}\right) = 6$			
	with no incorrect work so	cores B1M1together			
	$2\log_2(x+15) - \log_2 x = 2\log_2 \frac{(x+15)}{x} \text{ is M0}$				
	$2^6 = 64 \text{ or } \log_2 64 = 6$ 64 used in the correct context				
	$\log_2 \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$	Removes logs correctly	M1		
	$2\log(x+15) - \log x = 6 \Rightarrow \log(x+15)^2 - \log x = 6 \Rightarrow \frac{(x+15)^2}{x} = 64$				
	Is acceptable for				
	This method mark should only be awarded way. Some examples are below,	for the removal of logs in an appropriate			
	$\frac{\log(x+15)^2}{\log x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 6\mathbf{M0}$	$\log \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 6\mathbf{M0}$			
	$\log \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = \log_2 6 \mathbf{M0}$				
	$\log \frac{(x+15)^2}{x} = 6 \Rightarrow \frac{(x+15)^2}{x} = 6^2 \mathbf{M0}$ le	$\log \left(\frac{(x+15)}{x} \right)^2 = 6 \Rightarrow \left(\frac{(x+15)}{x} \right)^2 = 64 \mathbf{M1}$			
	$\Rightarrow x^2 + 30x + 225 = 64x$	Must see expansion of $(x+15)^2$ to			
	$or x + 30 + 225 x^{-1} = 64$	score the final mark.			
	$\therefore x^2 - 34x + 225 = 0 *$	Correct completion to printed answer with no errors but allow recovery from 'invisible' brackets e.g. $x+15^2 \rightarrow x^2+30x+225$	A1		
			(5)		
(b)	$(x-25)(x-9) = 0 \Rightarrow x = 25 \text{ or } x = 9$	M1: Correct attempt to solve the given quadratic as far as $x =$ It must be an attempt at solving the given quadratic but allow mis-copy e.g. 255 for 225 A1: Both 25 and 9	M1 A1		
		1 111. 20th 22 that 2	(2)		
			[7]		
	See appendix for some alternative c	orrect and incorrect methods for (a)			

6664 Leave

blank

7.

Figure 1

The triangle XYZ in Figure 1 has XY = 6 cm, YZ = 9 cm, ZX = 4 cm and angle $ZXY = \alpha$. The point W lies on the line XY.

The circular arc ZW, in Figure 1 is a major arc of the circle with centre X and radius 4 cm.

(a) Show that, to 3 significant figures, $\alpha = 2.22$ radians.

(2)

(b) Find the area, in cm^2 , of the major sector XZWX.

(3)

The region enclosed by the major arc ZW of the circle and the lines WY and YZ is shown shaded in Figure 1.

Calculate

(c) the area of this shaded region,

(3)

(d) the perimeter ZWYZ of this shaded region.

(4)

Question Number	Scheme				
7.					
(a)	$9^2 = 4^2 + 6^2 - 2 \times 4 \times 6 \cos \alpha \Rightarrow \cos \alpha =$	Correct use of cosine rule leading to a value for cos α	M1		
	$\cos \alpha = \frac{4^2 + 6^2 - 9^2}{2 \times 4 \times 6} \left(= -\frac{29}{48} = -0.604 \right)$				
	$\alpha = 2.22$ *	Cso (2.22 must be seen here)	A1		
	(NB $\alpha = 2.219516005$)	C50 (2.22 must be seen nere)	(2)		
(a) Way 2	$XY^2 = 4^2 + 6^2 - 2 \times 4 \times 6\cos 2.22 \Rightarrow XY^2$	Correct use of cosine rule leading to a value for XY^2	M1		
	$XY^2 = 81.01$				
	XY = 9.00		A1		
			(2)		
(b)	$2\pi - 2.22 (= 4.06366)$	$2\pi - 2.22$ or awrt 4.06 or $2\pi - 2.2$ or awrt 4.08 (May be implied)	B1		
	$\frac{1}{2} \times 4^2 \times "4.06"$	Correct method for major sector area. Allow $\pi - 2.22$ for the major sector angle.	M1		
	32.5	Awrt 32.5	A1 (3)		
	Finding the minor sector area here (17.8) is 0/3				
(b) Way2	Circle – Minor sector				
	$\pi \times 4^2$	Correct expression for circle area	B1		
	$\pi \times 4^{2}$ $\pi \times 4^{2} - \frac{1}{2} \times 4^{2} \times 2.22 = 32.5$	Correct method for circle - minor sector area	M1		
	= 32.5	Awrt 32.5	A1		
			(3)		
(c)	Area of triangle = $\frac{1}{2} \times 4 \times 6 \times \sin 2.22 (= 9.56)$	Correct expression for the area of triangle XYZ (allow 2.2 or awrt 2.22)	B1		
	So area required = "9.56" + "32.5"	Their Triangle XYZ (Not triangle ZXW) + (part (b) answer or correct attempt at major sector)	M1		
	$= 42.1 \text{ cm}^2 \text{ or } 42.0 \text{ cm}^2$	Awrt 42.1 or 42.0 (Or just 42)	A1		
	Note: The minor sector area (17.76) + the triangle answer to (d) – beware!				
(d)	Arc length = 4×4.06 (= 16.24) Or $8\pi - 4 \times 2.22$	M1: $4 \times their(2\pi - 2.22)$ Or circumference – minor arc A1: Correct ft expression	M1A1ft		
	Perimeter = $ZY + WY +$ Arc Length	9 + 2 + Any Arc	M1		
	Perimeter = 27.2 or 27.3	Awrt 27.2 or awrt 27.3	A1		
	Note the order of marks on Epen is M1M1A1A1 – the M's and A's must correspond so that the second mark on Epen is the second M1 on the scheme				
	correspond so that the second mark on Epch is the second wir on the scheme				
	(Generally do not apply isw in this question and mark their final answer unless a correct answer is subsequently rounded incorrectly)				
	In this question we will need to be careful with label be marked as labelled by the candidate.				

■ Past Paper

This resource was created and owned by Pearson Edexcel

6664

Leave blank

- 8. The curve C has equation $y = 6 3x \frac{4}{x^3}$, $x \ne 0$
 - (a) Use calculus to show that the curve has a turning point P when $x = \sqrt{2}$

(4)

(b) Find the x-coordinate of the other turning point Q on the curve.

(1)

(c) Find $\frac{d^2y}{dx^2}$.

(1)

(d) Hence or otherwise, state with justification, the nature of each of these turning points P and Q.

(3)

Question Number	Scheme				
8.	$y = 6 - 3x - \frac{4}{x^3}$ $M1: x^n \to x^{n-1}$				
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -3 + \frac{12}{x^4}or - 3 + 12x^{-4}$	M1: $x^n \to x^{n-1}$ $(x^1 \to x^0 \text{ or } x^{-3} \to x^4 \text{ or } 6 \to 0)$ A1: Correct derivative	M1 A1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow -3 + \frac{12}{x^4} = 0 \Rightarrow x = \dots \text{or}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = -3 + \frac{12}{\sqrt{2}^4}$	y' = 0 and attempt to solve for $xMay be implied by \frac{dy}{dx} = -3 + \frac{12}{x^4} = 0 \Rightarrow \frac{12}{x^4} = 3 \Rightarrow x = \dots \text{ or} Substitutes x = \sqrt{2} into their y'$	M1		
	So $x^4 = 4$ and $x = \sqrt{2}$ or $\frac{dy}{dx} = -3 + \frac{12}{\left(\sqrt{2}\right)^4} \text{ or } -3 + 12\left(\sqrt{2}\right)^{-4} = 0$	Correct completion to printed answer with no errors by solving their $y' = 0$ or substituting $x = \sqrt{2}$ into their y'	A1		
	For solving, allow e.g. $x^{-4} = \frac{1}{4} \Rightarrow x = \left(\frac{1}{4}\right)^{-\frac{1}{4}} = \sqrt{2}$				
	The minimum for verification is as in the scheme which could be implied by $-3 + 3 = 0$ Do not allow $x^4 = 4 \Rightarrow x = 1.41 = \sqrt{2}$ for the final A1			(4)	
(b)	$x = -\sqrt{2}$	Awrt -1.41	B1	(+)	
(0)	$X \equiv -\sqrt{2}$	Awit -1.41	Di	(1)	
(c)	$\frac{d^2 y}{dx^2} = \frac{-48}{x^5} \text{ or } -48x^{-5}$	Follow through their first derivative from part (a)	B1ft	(1)	
(d)	An appreciation that either $y'' > 0 \Rightarrow$ a minimum or $y'' < 0 \Rightarrow$ a maximum	A generous mark that is independent of any previous work	B1	(1)	
	Maximum at P as $y'' < 0$ Cso				
	Need a fully correct solution for this mark. y'' need not be evaluated but must be correct and there must be reference to P or to $\sqrt{2}$ and negative or < 0 and maximum. There must be no incorrect or contradictory statements (NB allow y'' = awrt-8 or -9)				
	Minimum at Q as $y'' > 0$ Cso				
	Need a fully correct solution for this mark. y'' need not be evaluated but must be correct and part (b) must be correct and there must be reference to P or to $-\sqrt{2}$ and positive or > 0 and minimum. There must be no incorrect or contradictory statements (NB allow y'' = awrt 8 or 9)				
				(3)	
				[9]	
	Other methods for identifying the nature of the turning points are acceptable. The first B1 is for finding values of y or dy/dx either side of $\sqrt{2}$ or their x at Q and the second and third B1's for fully correct solutions to identify the maximum/minimum.				

Leave blank

Figure 2

The finite region R, as shown in Figure 2, is bounded by the x-axis and the curve with equation

$$y = 27 - 2x - 9\sqrt{x - \frac{16}{x^2}}, \qquad x > 0$$

The curve crosses the x-axis at the points (1, 0) and (4, 0).

(a) Complete the table below, by giving your values of y to 3 decimal places.

х	1	1.5	2	2.5	3	3.5	4
y	0	5.866		5.210		1.856	0

(2)

(b) Use the trapezium rule with all the values in the completed table to find an approximate value for the area of R, giving your answer to 2 decimal places.

(4)

(c) Use integration to find the exact value for the area of R.

(6)

	T			T		
Question Number	Sche	Marks				
9.	y = 27 - 2x					
(a)	6.272 , 3.634	B1, B1				
	Special case 6.27 and 3.63 scores B1B0					
				(2)		
(b)	$\frac{1}{2} \times \frac{1}{2}$ or $\frac{1}{4}$			B1		
	$$ $\{(0+0)+2(5.866+"6.272"+5.210+"3.634"+1.856)\}$ Need {} or implied later for A1ft					
	(0+0) may be implied if omitted and f	follow through their	f(2) and $f(3)$ in an			
	otherwise correct expression and allow	•	copied term in the			
	2() bracket for t					
	$\frac{1}{2} \times 0.5(0+0) + 2(5.866 + "6.272" + 5.210 + "3.634" + 1.856)$					
	Unless followed by an answer that imp B1M1A0A0 (Usually implic					
	$\frac{1}{2} \times 0.5 \left\{ (0+0) + 2 \left(5.866 + "6.272" + 5.210 + "3.634" + 1.856 \right) \right\}$					
	$=\frac{1}{4} \times 45.676$					
	= 11.42	cao		A1		
	Separate trapezia may be used : B1 for 0.25, M1 for $\frac{1}{2}h(a+b)$ used 5 or 6					
	times (and A1ft all correct)					
	NB $\frac{1}{2} \times 0.5 \{ (0+0) + 2(0+5.866 + "6.272" + 5.210 + "3.634" + 1.856 + 0) \}$					
	Scores B1M0A0A0					
	Correct answer with no working scores 0/4					
		.1		(4)		
			M1: $x^n \to x^{n+1}$ on any term			
	$\int y dx = 27x - x^2 - 6x^{\frac{3}{2}} + 16x^{-1} \left(+c \right)$	A1: $27x - x^2$		M1A1A1A1		
	$\int y dx = 27x - x - 6x + 16x + (+c)$	A1: $-6x^{\frac{3}{2}}$		WIAIAIAI		
		A1: $+16x^{-1}$				
(c)	Accept any correct and possibly unsimple in this order on Epen					
	Attempt to subtract either way					
	$\left(27(4)-(4)^2-6(4)^{\frac{4}{2}}+16(4)^{-1}\right)$	round using the limits 4 and 1.				
	$ \begin{vmatrix} (27(4) - (4)^{2} - 6(4)^{\frac{3}{2}} + 16(4)^{-1}) \\ -(27(1) - (1)^{2} - 6(1)^{\frac{3}{2}} + 16(1)^{-1}) \end{vmatrix} $	Dependent on the place implied by 48 –		dM1		
	$-(27(1)-(1)^2-6(1)^{\frac{1}{2}}+16(1)^{-1})$	need to check both				
	, ,					
	= (48					
	12	Cao (Penalise -12	2.)	A1		
				(6) [12]		