www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics C2

6664

Centre No.			Paper Reference			Surname	Initial(s)				
Candidate No.			6	6	6	4	/	0	1	Signature	

Paper Reference(s)

6664/01

Edexcel GCE

Core Mathematics C2 Advanced Subsidiary

Monday 10 January 2011 – Morning

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)Items included with question papers
Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 10 questions in this question paper. The total mark for this paper is 75.

There are 28 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance wi Edexcel Limited copyright policy. ©2011 Edexcel Limited.

Printer's Log. No. H35403A W850/R6664/57570 5/5/3/3

Turn over

Team Leader's use only

Question

Leave

Examiner's use only

10

Total

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6664

Leave

1.	$f(x) = x^4 + x^3 + 2x^2 + ax + b$	
where a and b are	e constants.	
When $f(x)$ is divide	ded by $(x - 1)$, the remainder is 7.	
(a) Show that $a - a$	+ b = 3.	(2)
When $f(x)$ is divide	ded by $(x + 2)$, the remainder is -8 .	
(b) Find the valu	the of a and the value of b .	(5)

Mathematics C2 edexcel 6664

January 2011 Core Mathematics C2 6664 Mark Scheme

Question Number	Scheme	Marks	
1.			
	$f(x) = x^4 + x^3 + 2x^2 + ax + b$		
	Attempting $f(1)$ or $f(-1)$.	M1	
	$f(1) = 1 + 1 + 2 + a + b = 7$ or $4 + a + b = 7 \Rightarrow a + b = 3$ (as required) AG	A1 * cso (2)	
(b)	Attempting $f(-2)$ or $f(2)$.	M1	
	$f(-2) = 16 - 8 + 8 - 2a + b = -8 $ $\{ \Rightarrow -2a + b = -24 \}$	A1	
	Solving both equations simultaneously to get as far as $a =$ or $b =$	dM1	
	Any one of $a = 9$ or $b = -6$	A1	
	Both $a = 9$ and $b = -6$	A1 cso	
		(5) [7]	
	<u>Notes</u>		
(a)	M1 for attempting either $f(1)$ or $f(-1)$. A1 for applying $f(1)$, setting the result equal to 7, and manipulating this correctly to give the result given on the paper as $a + b = 3$. Note that the answer is given in part (a).		
(b)	 (b) M1: attempting either f(-2) or f(2). A1: correct underlined equation in a and b; eg 16-8+8-2a+b=-8 or equivalent, eg -2a+b=-24. dM1: an attempt to eliminate one variable from 2 linear simultaneous equations in a and Note that this mark is dependent upon the award of the first method mark. A1: any one of a = 9 or b = -6. A1: both a = 9 and b = -6 and a correct solution only. 		
	Alternative Method of Long Division: (a) M1 for long division by $(x-1)$ to give a remainder in a and b which is independent A1 for {Remainder =} $b + a + 4 = 7$ leading to the correct result of $a + b = 3$ (answer give) (b) M1 for long division by $(x + 2)$ to give a remainder in a and b which is independent A1 for {Remainder =} $b - 2(a - 8) = -8$ { $\Rightarrow -2a + b = -24$ }. Then dM1A1A1 are applied in the same way as before.		

1

www.mystudybro.com

st Pape	er This resource was created and owned by Pearson Edexcel	6	666
		Lea	
2.	In the triangle ABC , $AB = 11$ cm, $BC = 7$ cm and $CA = 8$ cm.	bla	ınk
	in the triangle 1120, 112 in this 20 7 this and 0.11 0 this		
	(a) Find the size of angle C, giving your answer in radians to 3 significant figures.		
		(3)	
	(b) Find the area of triangle ABC, giving your answer in cm ² to 3 significant figures.		
		(3)	

Question	Scheme	Marks				
Number	Scheme	Wai KS				
2. (a)	$11^2 = 8^2 + 7^2 - (2 \times 8 \times 7 \cos C)$	M1				
	$\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7} \text{ (or equivalent)}$ $\{\hat{C} = 1.64228\} \implies \hat{C} = \text{awrt } 1.64$	A1				
	$\left\{\hat{C} = 1.64228\right\} \Rightarrow \hat{C} = \text{awrt } 1.64$	A1 cso				
	1	(3)				
(b)	Use of Area $\triangle ABC = \frac{1}{2}ab\sin(\text{their }C)$, where a, b are any of 7, 8 or 11.	M1				
	$=\frac{1}{2}(7\times8)\sin C$ using the value of their C from part (a).	A1 ft				
	$\{=27.92848 \text{ or } 27.93297\} = \text{awrt } 27.9 \text{ (from angle of either } 1.64^{\circ} \text{ or } 94.1^{\circ})$	A1 cso				
		(3) [6]				
	<u>Notes</u>	[-]				
(a)	M1 is also scored for $8^2 = 7^2 + 11^2 - (2 \times 7 \times 11\cos C)$ or $7^2 = 8^2 + 11^2 - (2 \times 8 \times 11\cos C)$					
	or $\cos C = \frac{7^2 + 11^2 - 8^2}{2 \times 7 \times 11}$ or $\cos C = \frac{8^2 + 11^2 - 7^2}{2 \times 8 \times 11}$					
	1 st A1: Rearranged correctly to make $\cos C =$ and numerically correct (possibly					
	unsimplified). Award A1 for any of $\cos C = \frac{8^2 + 7^2 - 11^2}{2 \times 8 \times 7}$ or $\cos C = \frac{-8}{112}$ or $\cos C$	$=-\frac{1}{14}$ or				
	$\cos C = \text{awrt} - 0.071.$					
	SC: Also allow 1^{st} A1 for $112\cos C = -8$ or equivalent.					
	Also note that the 1 st A1 can be implied for $\hat{C} = \text{awrt } 1.64$ or $\hat{C} = \text{awrt } 94.1^{\circ}$.					
	Special Case: $\cos C = \frac{1}{14}$ or $\cos C = \frac{11^2 - 8^2 - 7^2}{2 \times 8 \times 7}$ scores a SC: M1A0A0.					
	2 nd A1: for awrt 1.64 cao					
	Note that $A = 0.6876^{\circ} (\text{or } 39.401^{\circ}), B = 0.8116^{\circ} (\text{or } 46.503^{\circ})$					
(b)	M1: alternative methods must be fully correct to score the M1. For any (or both) of the M1 or the 1 st A1; their <i>C</i> can either be in degrees or radians.					
	Candidates who use $\cos C = \frac{1}{14}$ to give $C = 1.499$, can achieve the correct answer of	of awrt				
	27.9 in part (b). These candidates will score M1A1A0cso, in part (b). Finding $C = 1.499$ in part (a) and achieving awrt 27.9 with no working scores M1A					
	Otherwise with no working in part (b), awrt 27.9 scores M1A1A1. Special Case: If the candidate gives awrt 27.9 from any of the below then award M1A1A1.	d				
	$\frac{1}{2}(7 \times 11)\sin(0.8116^{\circ} \text{ or } 46.503^{\circ}) = \text{awrt } 27.9, \ \frac{1}{2}(8 \times 11)\sin(0.6876^{\circ} \text{ or } 39.401^{\circ}) = \text{awrt } 27.9$	rt 27.9.				
	Alternative: Hero's Formula: $A = \sqrt{13(13-11)(13-8)(13-7)} = \text{awrt } 27.9 \text{ , where } N$	M1 is				
	attempt to apply $A = \sqrt{s(s-11)(s-8)(s-7)}$ and the first A1 is for the correct application the formula.	ation of				
	MIC TOTHIGH.					

<u>'</u>		
3. The second and fifth terms of a geometric series are 750 and –6 respectively.		I
3. The second and fifth terms of a geometric series are 750 and –6 respectively. Find		
Tillu		
(a) the common ratio of the series,	(3)	
	(3)	
(b) the first term of the series,	(2)	
(c) the sum to infinity of the series.	(2)	

This resource was created and owned by Pearson Edexcel

Question				
Question Number	Scheme	Marks		
3.				
(a)	$ar = 750$ and $ar^4 = -6$ (could be implied from later working in either (a) or (b)).	B1		
	$r^3 - \frac{-6}{}$	M1		
	$r^3 = \frac{-6}{750}$	IVII		
	Correct answer from no working, except for special case below gains all three	A 1		
	$r = -\frac{1}{5}$ for special case below gains all three marks.	A1		
	marks.	(3)		
(b)	a(-0.2) = 750	M1		
	$a\left\{=\frac{750}{-0.2}\right\} = -3750$	A 1 f+		
	$a = \frac{1}{-0.2} = -3730$	A1 ft		
		(2)		
(c)	Applies $\frac{a}{1-r}$ correctly using both their a and their $ r < 1$. Eg. $\frac{-3750}{10.2}$ So, $S_{\infty} = -3125$	M1		
	1-r 10.2			
	So, $S_{\infty} = -3125$	A1		
		(2) [7]		
	<u>Notes</u>	<u> </u>		
(a)	B1: for both $ar = 750$ and $ar^4 = -6$ (may be implied from later working in either	(a) or		
(a)	(b)).			
	M1: for eliminating a by either dividing $ar^4 = -6$ by $ar = 750$ or dividing			
	$ar = 750$ by $ar^4 = -6$, to achieve an equation in r^3 or $\frac{1}{r^3}$ Note that $r^4 - r = -\frac{6}{750}$ is MO			
	Note also that any of $r^3 = \frac{-6}{750}$ or $r^3 = \frac{750}{-6} \{ = -125 \}$ or $\frac{1}{r^3} = \frac{-6}{750}$ or $\frac{1}{r^3} = \frac{750}{-6} \{ = -125 \}$ are			
	fine for the award of M1.			
	SC: $ar^{\alpha} = 750$ and $ar^{\beta} = -6$ leading to $r^{\delta} = \frac{-6}{750}$ or $r^{\delta} = \frac{750}{-6} \{ = -125 \}$			
	or $\frac{1}{r^{\delta}} = \frac{-6}{750}$ or $\frac{1}{r^{\delta}} = \frac{750}{-6} \{ = -125 \}$ where $\delta = \beta - \alpha$ and $\delta \ge 2$ are fine for the award	l of M1.		
	SC: $ar^2 = 750$ and $ar^5 = -6$ leading to $r = -\frac{1}{5}$ scores B0M1A1.			
(b)	M1 for inserting their r into either of their original correct equations of either $ar = 7$.	50 or		
	$\{a=\}$ $\frac{750}{r}$ or $ar^4=-6$ or $\{a=\}$ $\frac{-6}{r^4}$ – in both a and r . No slips allowed here for M1			
	A1 for either $a = -3750$ or a equal to the correct follow through result expressed either	ther as		
	an exact integer, or a fraction in the form $\frac{c}{d}$ where both c and d are integers, or corre	ect to		
(0)	awrt 1 dp.			
(c)	M1 for applying $\frac{a}{1-r}$ correctly (only a slip in substituting r is allowed) using both the	neir a		
	and their $ r < 1$. Eg. $\frac{-3750}{1 - 0.2}$. A1 for -3125			
	In parts (a) or (b) or (c), the correct answer with no working scores full marks.			

This resource was created and owned by Pearson Edexcel

6664 Leave

blank

4.

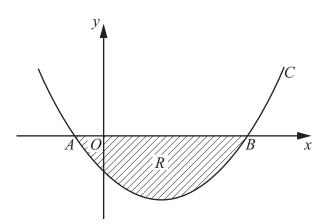


Figure 1

Figure 1 shows a sketch of part of the curve C with equation

$$y = (x+1)(x-5)$$

The curve crosses the x-axis at the points A and B.

(a) Write down the x-coordinates of A and B.

(1)

The finite region R, shown shaded in Figure 1, is bounded by C and the x-axis.

(b) Use integration to find the area of R.

- 1	6	١
•	v	,

Question Number	Scheme			
4. (a)	Seeing –1 and 5. (See note below.)	B1 (1)		
(b)	$(x+1)(x-5) = x^2 - 4x - 5$ or $x^2 - 5x + x - 5$	<u>B1</u>		
	$\int (x^2 - 4x - 5) dx = \frac{x^3}{3} - \frac{4x^2}{2} - 5x \{+c\}$ M: $x^n \to x^{n+1}$ for any one term. 1st A1 at least two out of three terms correctly ft.	M1A1ft A1		
	$\left[\frac{x^3}{3} - \frac{4x^2}{2} - 5x\right]_{-1}^5 = (\dots) - (\dots)$ Substitutes 5 and -1 (or limits from part(a)) into an "integrated function" and subtracts, either way round.	dM1		
	$\begin{cases} \left(\frac{125}{3} - \frac{100}{2} - 25\right) - \left(-\frac{1}{3} - 2 + 5\right) \\ = \left(-\frac{100}{3}\right) - \left(\frac{8}{3}\right) = -36 \end{cases}$			
	Hence, Area = 36 Final answer must be 36 , not -36	A1 (6) [7]		
	Notes Notes	[/]		
	B1: for -1 and 5. Note that $(-1,0)$ and $(5,0)$ are acceptable for B1. Also allow $(0,-1)$ and $(0,5)$ generously for B1. Note that if a candidate writes down that $A:(5,0)$, $B:(-1,0)$, (ie A and B interchanged,) then B0. Also allow values inserted in the correct position on the x -axis of the graph.			
(b)	B1 for $x^2 - 4x - 5$ or $x^2 - 5x + x - 5$. If you believe that the candidate is applying the Way 2 method then $-x^2 + 4x + 5$ or $-x^2 + 5x - x + 5$ would then be fine for B1. 1^{st} M1 for an attempt to integrate meaning that $x^n \to x^{n+1}$ for at least one of the terms. Note that $-5 \to 5x$ is sufficient for M1. 1^{st} A1 at least two out of three terms correctly ft from their multiplied out brackets. 2^{nd} A1 for correct integration only and no follow through. Ignore the use of a '+c'. Allow 2^{nd} A1 also for $\frac{x^3}{3} - \frac{5x^2}{2} + \frac{x^2}{2} - 5x$. Note that $-\frac{5x^2}{2} + \frac{x^2}{2}$ only counts as one integrated term for the 1^{st} A1 mark. Do not allow any extra terms for the 2^{nd} A1 mark. 2^{nd} M1: Note that this method mark is dependent upon the award of the first M1 mark in part (b). Substitutes 5 and -1 (and not 1 if the candidate has stated $x = -1$ in part (a).) (or the limits the candidate has found from part(a)) into an "integrated function" and subtracts, either way round. 3^{rd} A1: For a final answer of 36, not -36 . Note: An alternative method exists where the candidate states from the outset that Area $(R) = -\int_{-1}^{5} (x^2 - 4x + 5) dx$ is detailed in the Appendix.			

www.mystudybro.com

■ Past Paper

This resource was created and owned by Pearson Edexcel

Leave

blank

5. Given that	$\begin{pmatrix} 40 \\ 4 \end{pmatrix}$	$=\frac{40!}{4!b!}$,
----------------------	---	-----------------------

(a) write down the value of b.

(1)

In the binomial expansion of $(1+x)^{40}$, the coefficients of x^4 and x^5 are p and q respectively.

(b) Find the value of $\frac{q}{p}$.

(3)

Question Number	Scheme	Marks				
5.						
	$\binom{40}{4} = \frac{40!}{4!b!}$; $(1+x)^n$ coefficients of x^4 and x^5 are p and q respectively.					
	b = 36	B1				
	Candidates should usually "identify" two terms as their p and q respectively.	(1)				
(b)	Any one of					
(-)	Term 1 or					
	Term 2	,				
	Term 1: $\binom{40}{4}$ or $\frac{40!}{4!36!}$ or $\frac{40(39)(38)(37)}{4!}$ or 91390 correct (Ignore the	M1				
	(4) 4! (Ignore the	:				
	label of p					
	Term and/or q .)					
	2: $\binom{40}{5}$ or $\frac{40!}{5!35!}$ or $\frac{40(39)(38)(37)(36)}{5!}$ or 658008 Both of them correct					
	(Ignore the					
	label of p and/or q.)					
	Hence, $\frac{q}{p} = \frac{658008}{91390} \left\{ = \frac{36}{5} = 7.2 \right\}$ for $\frac{658008}{91390}$ or	A1 oe cso				
		(3) [4]				
	<u>Notes</u>					
(a)	B1: for only $b = 36$.					
(6)	(b) The candidate may expand out their binomial series. At this stage no marks should be until they start to identify either one or both of the terms that they want to focus on. identify their terms then if one out of two of them (ignoring which one is p and which is correct then award M1. If both of the terms are identified correctly (ignoring which and which one is q) then award the first A1. Term $1 = \binom{40}{4}x^4$ or $\binom{40}{4}(x^4)$ or $\frac{40!}{4!36!}x^4$ or $\frac{40(39)(38)(37)}{4!}x^4$ or $91390x^4$,					
	Term $2 = {40 \choose 5} x^5$ or ${}^{40}C_5(x^5)$ or $\frac{40!}{5!35!} x^5$ or $\frac{40(39)(38)(37)(36)}{5!} x^5$ or $658008x^5$					
	are fine for any (or both) of the first two marks in part (b).					
	2^{nd} A1 for stating $\frac{q}{p}$ as $\frac{658008}{91390}$ or equivalent. Note that $\frac{q}{p}$ must be independent of x . Also note that $\frac{36}{5}$ or 7.2 or any equivalent fraction is fine for the 2^{nd} A1 mark.					
	SC: If candidate states $\frac{p}{q} = \frac{5}{36}$, then award M1A1A0.					
	Note that either $\frac{4!36!}{5!35!}$ or $\frac{5!35!}{4!36!}$ would be awarded M1A1.					

This resource was created and owned by Pearson Edexcel

Leave blank

6.

$$y = \frac{5}{3x^2 - 2}$$

(a) Complete the table below, giving the values of y to 2 decimal places.

х	2	2.25	2.5	2.75	3
у	0.5	0.38			0.2

(2)

(b) Use the trapezium rule, with all the values of y from your table, to find an approximate value for $\int_{2}^{3} \frac{5}{3x^{2}-2} dx$.

(4)

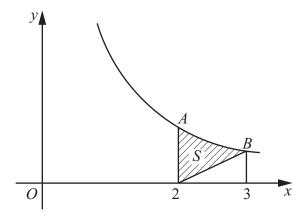


Figure 2

Figure 2 shows a sketch of part of the curve with equation $y = \frac{5}{3x^2 - 2}$, x > 1.

At the points A and B on the curve, x = 2 and x = 3 respectively.

The region S is bounded by the curve, the straight line through B and (2, 0), and the line through A parallel to the y-axis. The region S is shown shaded in Figure 2.

(c) Use your answer to part (b) to find an approximate value for the area of S.

(3)

Question Number	Scheme		Marks
6. (a)	x 2 2.25 2.5 2.75 y 0.5 0.38 0.298507 0.241691	3	
	$y \mid 0.5 \mid 0.38 \mid 0.298507 \mid 0.241691 \mid$ At $\{x = 2.5,\}\ y = 0.30 \text{ (only)}$	0.2 At least one <i>y</i> -ordinate correct.	B1
	At $\{x = 2.75,\}\ y = 0.24 \text{ (only)}$	Both <i>y</i> -ordinates correct.	B1
			(2)
		Outside brackets $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$	B1 aef
		$\underline{\text{For structure of}}\left\{\right\};$	M1
(b)	$\frac{1}{2}$ × 0.25; × $\left\{ 0.5 + 0.2 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) \right\}$	Correct expression inside brackets which all must be multiplied by their "outside constant".	<u>A1</u> √
	$\left\{ = \frac{1}{8}(2.54) \right\} = \text{awrt } 0.32$	awrt 0.32	A1
			(4)
(c)	Area of triangle = $\frac{1}{2} \times 1 \times 0.2 = 0.1$		B1
	Area $(S) = "0.3175" - 0.1$		M1
	= 0.2175		A1 ft
			(3) [9]

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Past Paper (Mark Scheme)

Question Number	Scheme	Marks			
rumber	<u>Notes</u>				
(b)	B1 for using $\frac{1}{2} \times 0.25$ or $\frac{1}{8}$ or equivalent. M1 requires the correct {} bracket structure. This is for the first bracket to contain first y-				
	ordinate plus last <i>y</i> -ordinate and the second bracket to be the summation of the remaining y-ordinates in the table.				
	No errors (eg. an omission of a y-ordinate or an extra y-ordinate or a repeated y-ordinate) are allowed in the second bracket and the second bracket must be multiplied by 2. Only one copying error is allowed here in the $2(0.38 + \text{their } 0.30 + \text{their } 0.24)$ bracket.				
	A1ft for the correct bracket {} following through candidate's y-ordinates found in part (a).				
	A1 for answer of awrt 0.32.				
	Bracketing mistake: Unless the final answer implies that the calculation has been done correctly				
	then award M1A0A0 for either $\frac{1}{2} \times 0.25 \times 0.5 + 2(0.38 + \text{their } 0.30 + \text{their } 0.24) + 0.2$				
	(nb: yielding final answer of 2.1025) so that the 0.5 is only multiplied by $\frac{1}{2} \times 0.25$				
	or $\frac{1}{2} \times 0.25 \times (0.5 + 0.2) + 2(0.38 + \text{their } 0.30 + \text{their } 0.24)$				
	(nb: yielding final answer of 1.9275) so that the $(0.5 + 0.2)$ is multiplied by $\frac{1}{2} \times 0.25$.				
	Need to see trapezium rule – answer only (with no working) gains no marks. Alternative: Separate trapezia may be used, and this can be marked equivalently. (See appendix.)				
(c)	B1 for the area of the triangle identified as either $\frac{1}{2} \times 1 \times 0.2$ or 0.1. May be identified on	the			
diagram. M1 for "part (b) answer" – "0.1 only" or "part (b) answer – their attempt at 0.1 only". (St attempt!) A1ft for correctly following through "part (b) answer" – 0.1. This is also dependent on t answer to (b) being greater than 0.1. Note: candidates may round answers here, so allow they round their answer correct to 2 dp.		e			

This resource was created and owned by Pearson Edexcel

6664 Leave blank

7. (a) Show that the equation

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

can be written in the form

$$4\sin^2 x + 7\sin x + 3 = 0$$

(2)

(b) Hence solve, for $0 \le x < 360^{\circ}$,

$$3\sin^2 x + 7\sin x = \cos^2 x - 4$$

giving your answers to 1 decimal place where appropriate.

(5)

Question	Scheme		Marks			
Number 7.						
(a)	$3\sin^2 x + 7\sin x = \cos^2 x - 4$; $0 \le x < 360^\circ$					
(a)	$3\sin^2 x + 7\sin x = \cos^2 x + 7\cos^2 x + 3\cos^2 x + 3\sin^2 x + 3\sin^2$		M1			
	$4\sin^2 x + 7\sin x - (1 + \sin^2 x) + 4\sin^2 x + 7\sin x + 3 = 0$ AG		A1 * cso			
	$4\sin^2 x + 7\sin x + 3 = 0 \mathbf{AG}$					
(b)	$(4\sin x + 3)(\sin x + 1) = 0$	Valid attempt at factorisation and $\sin x =$	M1			
	$\sin x = -\frac{3}{4} , \qquad \sin x = -1$	Both $\sin x = -\frac{3}{4}$ and $\sin x = -1$.	A1			
	$(\alpha = 48.59)$					
	x = 180 + 48.59 or $x = 360 - 48.59$	Either $(180 + \alpha)$ or $(360 - \alpha)$	dM1			
	x = 228.59, x = 311.41	Both awrt 228.6 and awrt 311.4	A1			
	$\{\sin x = -1\} \implies x = 270$	270	B1			
			(5)			
	Note	9	[7]			
(a)	M1 for a correct method to change $\cos^2 x$ into $\sin^2 x$					
	Note that applying $\cos^2 x = \sin^2 x - 1$, scores M0.	λ (must use $\cos \lambda = 1 - \sin \lambda$).				
		(except for implied use of zero)	although			
	A1 for obtaining the printed answer without error (except for implied use of zero.), although the equation at the end of the proof must be = 0 . Solution just written only as above would					
	score M1A1.					
(b)	1 st M1 for a valid attempt at factorisation, can use	any variable here, s , y , x or $\sin x$, a	and an			
	attempt to find at least one of the solutions. Alternatively, using a correct formula for solving	the quadratic. Either the formula n	aust ba			
	stated correctly or the correct form must be implied	-	iiust be			
	1^{st} A1 for the two correct values of $\sin x$. If they	•	value of			
	their s or their y or their x .					
	2^{nd} M1 for solving $\sin x = -k$, $0 < k < 1$ and realist	_				
	$(180 + \alpha)$ or $(360 - \alpha)$ where $\alpha = \sin^{-1}(k)$. No	ote that you cannot access this mar	k from			
	$\sin x = -1 \Rightarrow x = 270$. Note that this mark is dependent	ndent upon the 1 st M1 mark awarde	ed.			
	2 nd A1 for both awrt 228.6 and awrt 311.4					
	B1 for 270. If there are any EXTRA solutions inside the range	$r = 0 < r < 360^{\circ}$ and the candidate wo	mld			
	•					
	otherwise score FULL MARKS then withhold the final bA2 mark (the fourth mark in this part of the question).					
	Also ignore EXTRA solutions outside the range $0 \le x < 360^{\circ}$.					
	Working in Radians: Note the answers in radians are $x = 3.9896, 5.4351, 4.7123$					
	If a candidate works in radians then mark part (b) as above awarding the 2 nd A1 for both awrt 4.0 and awrt 5.4 and the B1 for awrt 4.7 or $\frac{3\pi}{2}$. If the candidate would then score FULL					
	MARKS then withhold the final bA2 mark (the fourth mark in this part of the question.)					
	No working: Award B1 for 270 seen without any working.					
	Award M0A0M1A1 for awrt 228.6 and awrt 311.4 seen without any working.					
	Award M0A0M1A0 for any one of awrt 228.6 or awrt 311.4 seen without any working.					

This resource was created and owned by Pearson Edexcel

6664

Leave blank

8. (a) Sketch the graph of $y = 7^x$, $x \in \mathbb{R}$, showing the coordinates of any points at which the graph crosses the axes.

(2)

(b) Solve the equation

$$7^{2x} - 4(7^x) + 3 = 0$$

giving your answers to 2 decimal places where appropriate.

(6)

Question Number	Scheme		rks	
8. (a)	Graph of $y = 7^x$, $x \in \mathbb{R}$ and solving $7^{2x} - 4(7^x) + 3 = 0$			
	At least two of the three criteria correct. (See notes below.)			
	All three criteria correct. (See notes below.)	B1		
	O X		(2)	
(b)	Forming a quadratic {using $y^2 - 4y + 3 = 0$ } $y'' = 7^x$	M1		
	$y^2 - 4y + 3 = 0$	A1		
	$\{(y-3)(y-1) = 0 \text{ or } (7^x-3)(7^x-1) = 0\}$			
	$y=3$, $y=1$ or $7^x=3$, $7^x=1$ Both $y=3$ and $y=1$. $\{7^x=3\Rightarrow\}$ $x\log 7=\log 3$	A1		
	$ \begin{cases} 7^x = 3 \implies x \log 7 = \log 3 \\ \text{or } x = \frac{\log 3}{\log 7} \text{ or } x = \log_7 3 \end{cases} $ A valid method for solving $ 7^x = k \text{ where } k > 0, k \neq 1 $	dM1		
	x = 0.5645 0.565 or awrt 0.56	A1		
	x = 0 stated as a solution.	B1	(6)	
			[8]	
	<u>Notes</u>			
(a)	B1B0: Any two of the following three criteria below correct. B1B1: All three criteria correct. Criteria number 1: Correct shape of curve for $x \ge 0$.			
	Criteria number 2: Correct shape of curve for $x < 0$.			
	Criteria number 3: (0, 1) stated or 1 marked on the <i>y</i> -axis. Allow (1, 0) rather than (0, 1) marked in the "correct" place on the <i>y</i> -axis.			

www.mystudybro.com

Past Paper (Mark Scheme)

Question Number	Scheme	Marks
(b)	1^{st} M1 is an attempt to form a quadratic equation {using "y" = 7^x .}	
	1^{st} A1 mark is for the correct quadratic equation of $y^2 - 4y + 3 = 0$.	
	Can use any variable here, eg: y , x or 7^x . Allow M1A1 for $x^2 - 4x + 3 = 0$.	
	Writing $(7^x)^2 - 4(7^x) + 3 = 0$ is also sufficient for M1A1.	
	Award M0A0 for seeing $7^{x^2} - 4(7^x) + 3 = 0$ by itself without seeing $y^2 - 4y + 3 = 0$	or
	$\left(7^{x}\right)^{2}-4\left(7^{x}\right)+3=0.$	
	1^{st} A1 mark for both $y = 3$ and $y = 1$ or both $7^x = 3$ and $7^x = 1$. Do not give this according	uracy
	mark for both $x = 3$ and $x = 1$, unless these are recovered in later working by candidate	
	applying logarithms on these.	
	Award M1A1A1 for $7^x = 3$ and $7^x = 1$ written down with no earlier working.	
	3 rd dM1 for solving $7^x = k$, $k > 0$, $k \ne 1$ to give either $x \ln 7 = \ln k$ or $x = \frac{\ln k}{\ln 7}$ or $x = \log k$	$g_7 k$.

dM1 is dependent upon the award of M1. 2^{nd} A1 for 0.565 or awrt 0.56. B1 is for the solution of x = 0, from *any* working.

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6664

•	the points A and B have coordinates $(-2, 11)$ and $(8, 1)$ respectively.	
	iven that AB is a diameter of the circle C ,	
) show that the centre of C has coordinates $(3, 6)$,	(1)
) find an equation for C .	(4)
) Verify that the point $(10, 7)$ lies on C .	(1)
	Find an equation of the tangent to C at the point (10, 7), giving your answer if form $y = mx + c$, where m and c are constants.	
		(4)
_		
_		

Question	Scheme	Marks			
Number 9.					
	$C\left(\frac{-2+8}{2}, \frac{11+1}{2}\right) = C(3, 6)$ AG Correct method (no errors) for finding the mid-point of AB giving (3, 6)	B1*			
(b)	$(8-3)^2 + (1-6)^2$ or $\sqrt{(8-3)^2 + (1-6)^2}$ or $\sqrt{(2-3)^2 + (11-6)^2}$ Applies distance formula in order to find the radius. Correct application of formula.	(1) M1 A1			
	formula. $(x \pm 3)^{2} + (y \pm 6)^{2} = 50 \left(\text{or} \left(\sqrt{50} \right)^{2} \text{ or } \left(5\sqrt{2} \right)^{2} \right)$ $(x \pm 3)^{2} + (y \pm 6)^{2} = k,$ $k \text{ is a positive } \underline{\text{value}}.$ $(x - 3)^{2} + (y - 6)^{2} = 50 \text{ (Not } 7.07^{2} \text{)}$	M1			
	$(x-3)^2 + (y-6)^2 = 50$ (Not 7.07°)	A1 (4)			
(c)	{For $(10, 7)$, } $(10-3)^2 + (7-6)^2 = 50$, {so the point lies on C.}	<u>B1</u>			
		(1)			
(d)	{Gradient of radius} = $\frac{7-6}{10-3}$ or $\frac{1}{7}$ This must be seen in part (d).	B1			
	Gradient of tangent $=\frac{-7}{1}$ Using a perpendicular gradient method.	M1			
	y - 7 = -7(x - 10) $y - 7 = (their gradient)(x - 10)$	M1			
	y-7 = -7(x-10) $y-7 = (their gradient)(x-10)y = -7x + 77$ or $y = 77 - 7x$	A1 cao			
		(4) [10]			
	Notes	[]			
(a)	Alternative method: $C\left(-2 + \frac{82}{2}, 11 + \frac{1-11}{2}\right)$ or $C\left(8 + \frac{-2-8}{2}, 1 + \frac{11-1}{2}\right)$				
(b)	You need to be convinced that the candidate is attempting to work out the radius and not the diameter of the circle to award the first M1. Therefore allow 1 st M1 generously for $\frac{\left(-2-8\right)^2 + \left(11-1\right)^2}{2}$ Award 1 st M1A1 for $\frac{\left(-2-8\right)^2 + \left(11-1\right)^2}{4}$ or $\frac{\sqrt{\left(-2-8\right)^2 + \left(11-1\right)^2}}{2}$.				
	Correct answer in (b) with no working scores full marks.				
(c)	B1 awarded for correct verification of $(10-3)^2 + (7-6)^2 = 50$ with no errors.				
	Also to gain this mark candidates need to have the correct equation of the circle either from part (b) or re-attempted in part (c). They cannot verify $(10,7)$ lies on C without a correct C . Also a candidate could either substitute $x = 10$ in C to find $y = 7$ or substitute $y = 7$ in C to				
	find $x = 10$.				

Past Paper	(Mark	Scheme)	

Question Number	Scheme	Marks	
(d)	2^{nd} M1 mark also for the complete method of applying $7 = (\text{their gradient})(10) + c$, finding c .		
	Note : Award 2^{nd} M0 in (d) if their numerical gradient is either 0 or ∞ .		
	Alternative: For first two marks (differentiation):		
	$2(x-3) + 2(y-6)\frac{dy}{dx} = 0 \text{ (or equivalent) scores B1.}$		
	1 st M1 for substituting both $x = 10$ and $y = 7$ to find a value for $\frac{dy}{dx}$, which must co	ntain both	
	x and y. (This M mark can be awarded generously, even if the attempted "differentia not "implicit".)	tion" is	
	<u>Alternative</u> : $(10-3)(x-3) + (7-6)(y-6) = 50$ scores B1M1M1 which leads to		
	y = -7x + 77.		

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6664

	Leave
	blank
The volume V and of a heave of height v and is given by	

$V = 4x(5-x)^2$, $0 < x < 5$	
(a) Find $\frac{dV}{dx}$.	
dx	(4)
(b) Hence find the maximum volume of the box.	(4)
	(4)
(c) Use calculus to justify that the volume that you found in part (b) is a maximum	
	(2)

www.mystudybro.com

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks		
10.				
(a)	$V = 4x(5-x)^2 = 4x(25-10x+x^2)$			
	So, $V = 100x - 40x^2 + 4x^3$ $\pm \alpha x \pm \beta x^2 \pm \gamma x^3$, where $\alpha, \beta, \gamma \neq 0$	M1		
	$So, V = 100x - 40x^{2} + 4x^{3}$ $V = 100x - 40x^{2} + 4x^{3}$	A1		
	$\frac{dV}{dx} = 100 - 80x + 12x^2$ At least two of their expanded terms differentiated correctly.	M1		
	$100 - 80x + 12x^2$	A1 cao (4)		
(b)	$100 - 80x + 12x^2 = 0$ Sets their $\frac{dV}{dx}$ from part (a) = 0	M1		
	$\left\{ \Rightarrow 4(3x^2 - 20x + 25) = 0 \Rightarrow 4(3x - 5)(x - 5) = 0 \right\}$			
	{As $0 < x < 5$ } $x = \frac{5}{3}$ or $x = $ awrt 1.67	A1		
	$x = \frac{5}{3}$, $V = 4(\frac{5}{3})(5 - \frac{5}{3})^2$ Substitute candidate's value of x where $0 < x < 5$ into a formula for V .	dM1		
	So, $V = \frac{2000}{27} = 74\frac{2}{27} = 74.074$ Either $\frac{2000}{27}$ or $74\frac{2}{27}$ or awrt 74.1	A1		
		(4)		
(c)	$\frac{d^2V}{dx^2} = -80 + 24x$ Differentiates their $\frac{dV}{dx}$ correctly to give $\frac{d^2V}{dx^2}$.	M1		
	When $x = \frac{5}{3}$, $\frac{d^2V}{dx^2} = -80 + 24\left(\frac{5}{3}\right)$			
	$\frac{d^2V}{dx^2} = -40 < 0 \Rightarrow V \text{ is a maximum} \qquad \frac{d^2V}{dx^2} = -40 \text{ and } \leq 0 \text{ or negative and } \underline{\text{maximum}}.$	A1 cso		
		(2) [10]		
	<u>Notes</u>			
(a)	1 st M1 for a three term cubic in the form $\pm \alpha x \pm \beta x^2 \pm \gamma x^3$.			
	Note that an un-combined $\pm \alpha x \pm \lambda x^2 \pm \mu x^2 \pm \gamma x^3$, α , λ , μ , $\gamma \neq 0$ is fine for the 1 st M1.			
	$1^{\text{st}} \text{ A1 for either } 100x - 40x^2 + 4x^3 \text{ or } 100x - 20x^2 - 20x^2 + 4x^3.$			
	2 nd M1 for any two of their expanded terms differentiated correctly. NB: If expanded expression is divided by a constant, then the 2 nd M1 can be awarded for at least two terms are			
	correct. Note for un-combined $\pm \lambda x^2 \pm \mu x^2$, $\pm 2\lambda x \pm 2\mu x$ counts as one term differentiated correctly.			
	2^{nd} A1 for $100 - 80x + 12x^2$, cao .			
	Note: See appendix for those candidates who apply the product rule of differentiation	n.		

Question Number	Scheme	Marks			
(b)	Note you can mark parts (b) and (c) together.				
	Ignore the extra solution of $x = 5$ (and $V = 0$). Any extra solutions for V inside found	l for			
	values inside the range of x , then award the final A0.				
(c)	M1 is for their $\frac{dV}{dx}$ differentiated correctly (follow through) to give $\frac{d^2V}{dx^2}$.				
	A1 for all three of $\frac{d^2V}{dx^2} = -40$ and $\frac{\sqrt{0}}{\sqrt{2}} = -40$ and $\frac{\sqrt{0}}{\sqrt{2}} = -40$ and $\frac{\sqrt{2}}{\sqrt{2}} = -40$				
	Ignore any second derivative testing on $x = 5$ for the final accuracy mark.				
	Alternative Method: Gradient Test: M1 for finding the gradient either side of their x-value				
	from part (b) where $0 < x < 5$. A1 for both gradients calculated correctly to the near	integer,			
	$\underline{\text{using}} > 0 \text{ and } < 0 \text{ respectively or a correct sketch}$ and $\underline{\text{maximum}}$. (See appendix for §	gradient			
	values.)				