# www.mystudybro.com

Mathematics C2

Past Paper

This resource was created and owned by Pearson Edexcel

6664

| Centre<br>No.    |  |  |   |   | Pape | r Refer | ence |   |   | Surname   | Initial(s) |
|------------------|--|--|---|---|------|---------|------|---|---|-----------|------------|
| Candidate<br>No. |  |  | 6 | 6 | 6    | 4       | /    | 0 | 1 | Signature |            |

Paper Reference(s)

# 6664/01

# **Edexcel GCE**

# **Core Mathematics C2 Advanced Subsidiary**

Tuesday 10 January 2006 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Green)

Items included with question papers
Nil

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G.

### **Instructions to Candidates**

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.

Check that you have the correct question paper.

You must write your answer for each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

# **Information for Candidates**

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 9 questions in this question paper. The total mark for this paper is 75.

There are 20 pages in this question paper. Any blank pages are indicated.

## **Advice to Candidates**

You must ensure that your answers to parts of questions are clearly labelled.

You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy.

©2006 Edexcel Limited.

Printer's Log. No. N23552A





Examiner's use only

9

7

Total

Turn over



**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

6664

| 1. $f(x) = 2x^3 + x^2 - 5x + c$ , where <i>c</i> is a constant. |     |
|-----------------------------------------------------------------|-----|
| Given that $f(1) = 0$ ,                                         |     |
| (a) find the value of $c$ ,                                     |     |
|                                                                 | (2) |
| (b) factorise $f(x)$ completely,                                |     |
|                                                                 | (4) |
| (c) find the remainder when $f(x)$ is divided by $(2x - 3)$ .   |     |
|                                                                 | (2) |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |
|                                                                 |     |

**Total 7 marks** 

6664

Past Paper (Mark Scheme) January 2006

| Question<br>number | Scheme                                                                                   | Marks         |            |
|--------------------|------------------------------------------------------------------------------------------|---------------|------------|
| 1.                 | (a) $2+1-5+c=0$ or $-2+c=0$                                                              | M1            |            |
|                    | $\underline{c} = \underline{2}$                                                          | A1 (2         | )          |
|                    | (b) $f(x) = (x-1)(2x^2+3x-2)$ $(x-1)$                                                    | B1            |            |
|                    | division                                                                                 | M1            |            |
|                    | $= \dots \ \underline{(2x-1)(x+2)}$                                                      | M1 A1 (4      | .)         |
|                    |                                                                                          |               |            |
|                    | (c) $f\left(\frac{3}{2}\right) = 2 \times \frac{27}{8} + \frac{9}{4} - \frac{15}{2} + c$ | M1            |            |
|                    | Remainder = $c + 1.5$ = $\frac{3.5}{}$ ft their $c$                                      | A1ft (2       | !)         |
|                    |                                                                                          | Total 8 marks |            |
| 2.                 | (a) $(1+px)^9 = 1+9px$ ; $+\binom{9}{2}(px)^2$                                           | B1 B1 (2      | !)         |
|                    | (b) $9p = 36$ , so $p = 4$                                                               | M1 A1         |            |
|                    | $q = \frac{9 \times 8}{2} p^2$ or $36p^2$ or $36p$ if that follows from their (a)        | M1            |            |
|                    | So $q = 576$                                                                             | A1cao (4      | <b>!</b> ) |
|                    |                                                                                          | Total 6 marks |            |
| 3.                 | (a) $(AB)^2 = (4-3)^2 + (5)^2$ [= 26]                                                    | M1            |            |
|                    | $AB = \sqrt{26}$                                                                         | A1 (2         | )          |
|                    | (b) $p = \left(\frac{4+3}{2}, \frac{5}{2}\right)$                                        | M1            |            |
|                    | $=\frac{\left(\frac{7}{2},\frac{5}{2}\right)}{}$                                         | A1 (2         | )          |
|                    | (c) $(x-x_p)^2 + (y-y_p)^2 = \left(\frac{AB}{2}\right)^2$ LHS                            | M1            |            |
|                    | RHS                                                                                      | M1            | 2.         |
|                    | $(x-3.5)^2 + (y-2.5)^2 = 6.5$ oe                                                         | A1 c.a.o (    | 3)         |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

| 0004   |  |
|--------|--|
| eave   |  |
| blank  |  |
| Dialik |  |
|        |  |
|        |  |

| (a) Find the first 3 terms, in ascending powers of $x$ , of the binomial expansion of | f   |
|---------------------------------------------------------------------------------------|-----|
| $(1+px)^9,$                                                                           |     |
| where $p$ is a constant.                                                              | (2) |
| These first 3 terms are 1, $36x$ and $qx^2$ , where $q$ is a constant.                |     |
| (b) Find the value of $p$ and the value of $q$ .                                      | (4) |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |
|                                                                                       |     |

**Total 7 marks** 

6664

Past Paper (Mark Scheme) January 2006

| Question<br>number | Scheme                                                                                   | Marks         |            |
|--------------------|------------------------------------------------------------------------------------------|---------------|------------|
| 1.                 | (a) $2+1-5+c=0$ or $-2+c=0$                                                              | M1            |            |
|                    | $\underline{c} = \underline{2}$                                                          | A1 (2         | )          |
|                    | (b) $f(x) = (x-1)(2x^2+3x-2)$ $(x-1)$                                                    | B1            |            |
|                    | division                                                                                 | M1            |            |
|                    | $= \dots \ \underline{(2x-1)(x+2)}$                                                      | M1 A1 (4      | .)         |
|                    |                                                                                          |               |            |
|                    | (c) $f\left(\frac{3}{2}\right) = 2 \times \frac{27}{8} + \frac{9}{4} - \frac{15}{2} + c$ | M1            |            |
|                    | Remainder = $c + 1.5$ = $\frac{3.5}{}$ ft their $c$                                      | A1ft (2       | !)         |
|                    |                                                                                          | Total 8 marks |            |
| 2.                 | (a) $(1+px)^9 = 1+9px$ ; $+\binom{9}{2}(px)^2$                                           | B1 B1 (2      | !)         |
|                    | (b) $9p = 36$ , so $p = 4$                                                               | M1 A1         |            |
|                    | $q = \frac{9 \times 8}{2} p^2$ or $36p^2$ or $36p$ if that follows from their (a)        | M1            |            |
|                    | So $q = 576$                                                                             | A1cao (4      | <b>!</b> ) |
|                    |                                                                                          | Total 6 marks |            |
| 3.                 | (a) $(AB)^2 = (4-3)^2 + (5)^2$ [= 26]                                                    | M1            |            |
|                    | $AB = \sqrt{26}$                                                                         | A1 (2         | )          |
|                    | (b) $p = \left(\frac{4+3}{2}, \frac{5}{2}\right)$                                        | M1            |            |
|                    | $=\frac{\left(\frac{7}{2},\frac{5}{2}\right)}{}$                                         | A1 (2         | )          |
|                    | (c) $(x-x_p)^2 + (y-y_p)^2 = \left(\frac{AB}{2}\right)^2$ LHS                            | M1            |            |
|                    | RHS                                                                                      | M1            | 2.         |
|                    | $(x-3.5)^2 + (y-2.5)^2 = 6.5$ oe                                                         | A1 c.a.o (    | 3)         |

This resource was created and owned by Pearson Edexcel

6664 Leave blank

**3.** 

Figure 1



In Figure 1, A(4, 0) and B(3, 5) are the end points of a diameter of the circle C.

Find

(a) the exact length of AB,

**(2)** 

(b) the coordinates of the midpoint P of AB,

**(2)** 

(c) an equation for the circle C.

**(3)** 

**Total 7 marks** 

6664

Past Paper (Mark Scheme) January 2006

| Question<br>number | Scheme                                                                                   | Marks         |            |
|--------------------|------------------------------------------------------------------------------------------|---------------|------------|
| 1.                 | (a) $2+1-5+c=0$ or $-2+c=0$                                                              | M1            |            |
|                    | $\underline{c} = \underline{2}$                                                          | A1 (2         | )          |
|                    | (b) $f(x) = (x-1)(2x^2+3x-2)$ $(x-1)$                                                    | B1            |            |
|                    | division                                                                                 | M1            |            |
|                    | $= \dots \ \underline{(2x-1)(x+2)}$                                                      | M1 A1 (4      | .)         |
|                    |                                                                                          |               |            |
|                    | (c) $f\left(\frac{3}{2}\right) = 2 \times \frac{27}{8} + \frac{9}{4} - \frac{15}{2} + c$ | M1            |            |
|                    | Remainder = $c + 1.5$ = $\frac{3.5}{}$ ft their $c$                                      | A1ft (2       | !)         |
|                    |                                                                                          | Total 8 marks |            |
| 2.                 | (a) $(1+px)^9 = 1+9px$ ; $+\binom{9}{2}(px)^2$                                           | B1 B1 (2      | !)         |
|                    | (b) $9p = 36$ , so $p = 4$                                                               | M1 A1         |            |
|                    | $q = \frac{9 \times 8}{2} p^2$ or $36p^2$ or $36p$ if that follows from their (a)        | M1            |            |
|                    | So $q = 576$                                                                             | A1cao (4      | <b>!</b> ) |
|                    |                                                                                          | Total 6 marks |            |
| 3.                 | (a) $(AB)^2 = (4-3)^2 + (5)^2$ [= 26]                                                    | M1            |            |
|                    | $AB = \sqrt{26}$                                                                         | A1 (2         | )          |
|                    | (b) $p = \left(\frac{4+3}{2}, \frac{5}{2}\right)$                                        | M1            |            |
|                    | $=\frac{\left(\frac{7}{2},\frac{5}{2}\right)}{}$                                         | A1 (2         | )          |
|                    | (c) $(x-x_p)^2 + (y-y_p)^2 = \left(\frac{AB}{2}\right)^2$ LHS                            | M1            |            |
|                    | RHS                                                                                      | M1            | 2.         |
|                    | $(x-3.5)^2 + (y-2.5)^2 = 6.5$ oe                                                         | A1 c.a.o (    | 3)         |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

6664

|    |                                                                                        |     | Leave |
|----|----------------------------------------------------------------------------------------|-----|-------|
| 4. | The first term of a geometric series is 120. The sum to infinity of the series is 480. |     | olum  |
|    | (a) Show that the common ratio $x$ is $\frac{3}{x}$                                    |     |       |
|    | (a) Show that the common ratio, $r$ , is $\frac{3}{4}$ .                               | (3) |       |
|    |                                                                                        |     |       |
|    | (b) Find, to 2 decimal places, the difference between the 5th and 6th term.            | (2) |       |
|    | (c) Calculate the sum of the first 7 terms.                                            | (2) |       |
|    |                                                                                        | (2) |       |
|    | The sum of the first $n$ terms of the series is greater than 300.                      |     |       |
|    | The sum of the first <i>n</i> terms of the series is greater than 500.                 |     |       |
|    | (d) Calculate the smallest possible value of $n$ .                                     |     |       |
|    |                                                                                        | (4) |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |
|    |                                                                                        |     |       |

Past Paper (Mark Scheme) January 2006

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

6664

6664 Core Mathematics C2 Mark Scheme

| 4. (a) $\frac{a}{1-r} = 480$<br>$\frac{120}{1-r} = 480 \Rightarrow 120 = 480(1-r)$<br>$1-r = \frac{1}{4} \Rightarrow r = \frac{3}{4}$ *  (b) $u_5 = 120 \times \left(\frac{3}{4}\right)^4 [= 37.96875]$ eith $u_6 = 120 \times \left(\frac{3}{4}\right)^5 [= 28.4765625]$ Difference $= 9.49$ (allow (c) $S_7 = \frac{120(1-(0.75)^7)}{1-0.75}$ $= 415.9277$ (AWRT) $\underline{416}$ (d) $\frac{120(1-(0.75)^n)}{1-0.75} > 300$ $1-(0.75)^n > \frac{300}{480}$ (or better) | / ±) A1               | (3)   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|
| $\frac{120}{1-r} = 480 \Rightarrow 120 = 480(1-r)$ $1-r = \frac{1}{4} \Rightarrow \qquad r = \frac{3}{4} \qquad *$ (b) $u_5 = 120 \times \left(\frac{3}{4}\right)^4 [= 37.96875]$ $u_6 = 120 \times \left(\frac{3}{4}\right)^5 [= 28.4765625]$ Difference = $9.49$ (allow (c) $S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$ $= 415.9277$ (d) $\frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$ $1 - (0.75)^n > \frac{300}{480}$ (or better)                                           | A1cso her M1 ( ± ) A1 |       |
| (b) $u_5 = 120 \times \left(\frac{3}{4}\right)^4 [= 37.96875]$ eith $u_6 = 120 \times \left(\frac{3}{4}\right)^5 [= 28.4765625]$ Difference $= 9.49$ (allow (c) $S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$ $= 415.9277$ (AWRT) $\underline{416}$ (d) $\frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$ $1 - (0.75)^n > \frac{300}{480}$ (or better)                                                                                                                                | her M1                |       |
| (b) $u_6 = 120 \times \left(\frac{3}{4}\right)^5 [= 28.4765625]$ Difference = $9.49$ (allow $(c) S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$ $= 415.9277$ (d) $\frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$ $1 - (0.75)^n > \frac{300}{480}$ (or better)                                                                                                                                                                                                                         | / ±) A1               | (2)   |
| Difference = $9.49$ (allow (c) $S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$ = $415.9277$ (AWRT) $416$ (d) $\frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$ (or better)                                                                                                                                                                                                                                                                                                              |                       | (2)   |
| (c) $S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$<br>= 415.9277 (AWRT) 416<br>(d) $\frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$<br>$1 - (0.75)^n > \frac{300}{480}$ (or better)                                                                                                                                                                                                                                                                                                   |                       | (2)   |
| $= 415.9277 	 (AWRT) 416$ $(d) 	 \frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$ $1 - (0.75)^n > \frac{300}{480} 	 (or better)$                                                                                                                                                                                                                                                                                                                                                   |                       | (2)   |
| (d) $\frac{120(1-(0.75)^n)}{1-0.75} > 300$ $1-(0.75)^n > \frac{300}{480}$ (or better)                                                                                                                                                                                                                                                                                                                                                                                       | M1                    |       |
| $1 - (0.75)^n > \frac{300}{480} $ (or better)                                                                                                                                                                                                                                                                                                                                                                                                                               | A1                    | (2)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1                    |       |
| log(0.275)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1                    |       |
| $n > \frac{\log(0.375)}{\log(0.75)} \tag{=3.409}$                                                                                                                                                                                                                                                                                                                                                                                                                           | ) M1                  |       |
| $\underline{n=4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Alcso                 | (4)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total 11 n            | narks |
| 5. (a) $\cos A\hat{O}B = \frac{5^2 + 5^2 - 6^2}{2 \times 5 \times 5}$ or                                                                                                                                                                                                                                                                                                                                                                                                    | M1                    |       |
| $\sin \theta = \frac{3}{5}$ with use of $\cos 2\theta = 1 - 2\sin^2 \theta$ attempted                                                                                                                                                                                                                                                                                                                                                                                       |                       |       |
| $=\frac{7}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1cso                 | (2)   |
| (b) $A\hat{O}B = 1.2870022$ radians 1.287 or bet                                                                                                                                                                                                                                                                                                                                                                                                                            | etter B1              | (1)   |
| (c) Sector $= \frac{1}{2} \times 5^2 \times (b)$ , $= 16.087$ (AWRT) <u>10</u>                                                                                                                                                                                                                                                                                                                                                                                              | 16.1 M1 A1            | (2)   |
| (d) Triangle = $\frac{1}{2} \times 5^2 \times \sin(b)$ or $\frac{1}{2} \times 6 \times \sqrt{5^2 - 3^2}$                                                                                                                                                                                                                                                                                                                                                                    | M1                    |       |
| Segment = (their sector) – their triangle                                                                                                                                                                                                                                                                                                                                                                                                                                   | dM1                   |       |
| $= (\text{sector from c}) - 12 = (\text{AWRT}) \underline{4.1} $ (ft their part(c)                                                                                                                                                                                                                                                                                                                                                                                          | (c)) A1ft             | (3)   |

This resource was created and owned by Pearson Edexcel

Leave blank

5.

Figure 2



In Figure 2 OAB is a sector of a circle radius 5 m. The chord AB is 6 m long.

(a) Show that  $\cos A\hat{O}B = \frac{7}{25}$ .

**(2)** 

(b) Hence find the angle  $A\hat{O}B$  in radians, giving your answer to 3 decimal places.

**(1)** 

(c) Calculate the area of the sector *OAB*.

**(2)** 

(d) Hence calculate the shaded area.

**(3)** 

Past Paper (Mark Scheme) January 2006

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

6664

6664 Core Mathematics C2 Mark Scheme

| 4. (a) $\frac{a}{1-r} = 480$<br>$\frac{120}{1-r} = 480 \Rightarrow 120 = 480(1-r)$<br>$1-r = \frac{1}{4} \Rightarrow r = \frac{3}{4}$ *  (b) $u_5 = 120 \times \left(\frac{3}{4}\right)^4 [= 37.96875]$ eith $u_6 = 120 \times \left(\frac{3}{4}\right)^5 [= 28.4765625]$ Difference $= 9.49$ (allow (c) $S_7 = \frac{120(1-(0.75)^7)}{1-0.75}$ $= 415.9277$ (AWRT) $\underline{416}$ (d) $\frac{120(1-(0.75)^n)}{1-0.75} > 300$ $1-(0.75)^n > \frac{300}{480}$ (or better) | / ±) A1               | (3)   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|
| $\frac{120}{1-r} = 480 \Rightarrow 120 = 480(1-r)$ $1-r = \frac{1}{4} \Rightarrow \qquad r = \frac{3}{4} \qquad *$ (b) $u_5 = 120 \times \left(\frac{3}{4}\right)^4 [= 37.96875]$ $u_6 = 120 \times \left(\frac{3}{4}\right)^5 [= 28.4765625]$ Difference = $9.49$ (allow (c) $S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$ $= 415.9277$ (d) $\frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$ $1 - (0.75)^n > \frac{300}{480}$ (or better)                                           | A1cso her M1 ( ± ) A1 |       |
| (b) $u_5 = 120 \times \left(\frac{3}{4}\right)^4 [= 37.96875]$ eith $u_6 = 120 \times \left(\frac{3}{4}\right)^5 [= 28.4765625]$ Difference $= 9.49$ (allow (c) $S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$ $= 415.9277$ (AWRT) $\underline{416}$ (d) $\frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$ $1 - (0.75)^n > \frac{300}{480}$ (or better)                                                                                                                                | her M1                |       |
| (b) $u_6 = 120 \times \left(\frac{3}{4}\right)^5 [= 28.4765625]$ Difference = $9.49$ (allow $(c) S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$ $= 415.9277$ (d) $\frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$ $1 - (0.75)^n > \frac{300}{480}$ (or better)                                                                                                                                                                                                                         | / ±) A1               | (2)   |
| Difference = $9.49$ (allow (c) $S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$ = $415.9277$ (AWRT) $416$ (d) $\frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$ (or better)                                                                                                                                                                                                                                                                                                              |                       | (2)   |
| (c) $S_7 = \frac{120(1 - (0.75)^7)}{1 - 0.75}$<br>= 415.9277 (AWRT) 416<br>(d) $\frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$<br>$1 - (0.75)^n > \frac{300}{480}$ (or better)                                                                                                                                                                                                                                                                                                   |                       | (2)   |
| $= 415.9277 	 (AWRT) 416$ $(d) 	 \frac{120(1 - (0.75)^n)}{1 - 0.75} > 300$ $1 - (0.75)^n > \frac{300}{480} 	 (or better)$                                                                                                                                                                                                                                                                                                                                                   |                       | (2)   |
| (d) $\frac{120(1-(0.75)^n)}{1-0.75} > 300$ $1-(0.75)^n > \frac{300}{480}$ (or better)                                                                                                                                                                                                                                                                                                                                                                                       | M1                    |       |
| $1 - (0.75)^n > \frac{300}{480} $ (or better)                                                                                                                                                                                                                                                                                                                                                                                                                               | A1                    | (2)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1                    |       |
| log(0.275)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A1                    |       |
| $n > \frac{\log(0.375)}{\log(0.75)} \tag{=3.409}$                                                                                                                                                                                                                                                                                                                                                                                                                           | ) M1                  |       |
| $\underline{n=4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Alcso                 | (4)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total 11 n            | narks |
| 5. (a) $\cos A\hat{O}B = \frac{5^2 + 5^2 - 6^2}{2 \times 5 \times 5}$ or                                                                                                                                                                                                                                                                                                                                                                                                    | M1                    |       |
| $\sin \theta = \frac{3}{5}$ with use of $\cos 2\theta = 1 - 2\sin^2 \theta$ attempted                                                                                                                                                                                                                                                                                                                                                                                       |                       |       |
| $=\frac{7}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A1cso                 | (2)   |
| (b) $A\hat{O}B = 1.2870022$ radians 1.287 or bet                                                                                                                                                                                                                                                                                                                                                                                                                            | etter B1              | (1)   |
| (c) Sector $= \frac{1}{2} \times 5^2 \times (b)$ , $= 16.087$ (AWRT) <u>10</u>                                                                                                                                                                                                                                                                                                                                                                                              | 16.1 M1 A1            | (2)   |
| (d) Triangle = $\frac{1}{2} \times 5^2 \times \sin(b)$ or $\frac{1}{2} \times 6 \times \sqrt{5^2 - 3^2}$                                                                                                                                                                                                                                                                                                                                                                    | M1                    |       |
| Segment = (their sector) – their triangle                                                                                                                                                                                                                                                                                                                                                                                                                                   | dM1                   |       |
| $= (\text{sector from c}) - 12 = (\text{AWRT}) \underline{4.1} $ (ft their part(c)                                                                                                                                                                                                                                                                                                                                                                                          | (c)) A1ft             | (3)   |

This resource was created and owned by Pearson Edexcel

0004

Leave blank

**6.** The speed,  $v \text{ m s}^{-1}$ , of a train at time t seconds is given by

$$v = \sqrt{(1.2^t - 1)}, \quad 0 \leqslant t \leqslant 30.$$

The following table shows the speed of the train at 5 second intervals.

| t | 0 | 5    | 10   | 15 | 20   | 25 | 30 |
|---|---|------|------|----|------|----|----|
| ν | 0 | 1.22 | 2.28 |    | 6.11 |    |    |

(a) Complete the table, giving the values of v to 2 decimal places.

**(3)** 

The distance, s metres, travelled by the train in 30 seconds is given by

$$s = \int_0^{30} \sqrt{(1.2^t - 1)} dt.$$

| (b) | Use the trapezium rule, | with all the va | lues from your | table, to estimate | e the value of s. |
|-----|-------------------------|-----------------|----------------|--------------------|-------------------|
|     |                         |                 |                |                    | (3)               |

6664

Past Paper (Mark Scheme) January 2006

| Question<br>number | Scheme                                                                                                                                                                  | Marks                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 6.                 | (a) $t = 15$ 25 30<br>v = 3.80 9.72 15.37<br>(b) $S \approx \frac{1}{2} \times 5; [0+15.37+2(1.22+2.28+3.80+6.11+9.72)]$<br>$= \frac{5}{2}[61.63] = 154.075 = AWRT 154$ | B1 B1 B1 (3) B1 [M1] A1 (3) |
|                    |                                                                                                                                                                         | Total 6 marks               |

| 7. | (a) | $\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 10x - 4$                                                                                                                            | M1 A1      | (2)  |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
|    | (b) | $6x^2 - 10x - 4 = 0$                                                                                                                                                          | M1         |      |
|    |     | 2(3x+1)(x-2) [=0]                                                                                                                                                             | M1         |      |
|    |     | $x = 2$ or $-\frac{1}{3}$ (both x values)                                                                                                                                     | A1         |      |
|    |     | Points are $(2, \frac{10}{10})$ and $(-\frac{1}{3}, 2\frac{19}{27})$ or $\frac{73}{27}$ or 2.70 or better) (both y values)                                                    | A1         | (4)  |
|    | (c) | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 12x - 10$                                                                                                                             | M1 A1      | (2)  |
|    | (d) | $x = 2 \Rightarrow \frac{d^2 y}{dx^2} (= 14) \ge 0$ : $[(2, -10)]$ is a Min                                                                                                   | M1         |      |
|    |     | $x = -\frac{1}{3} \Rightarrow \frac{d^2 y}{dx^2} (= -14) \leq \underline{0} : \left[ \left( -\frac{1}{3}, \frac{73}{27} \right) \right] \text{ is a } \underline{\text{Max}}$ | A1         | (2)  |
|    |     |                                                                                                                                                                               | Total 10 m | arks |

This resource was created and owned by Pearson Edexcel

Leave blank

The curve *C* has equation

 $y = 2x^3 - 5x^2 - 4x + 2.$ 

(a) Find  $\frac{dy}{dx}$ .

**(2)** 

(b) Using the result from part (a), find the coordinates of the turning points of C.

**(4)** 

(c) Find  $\frac{d^2y}{dx^2}$ .

**(2)** 

(d) Hence, or otherwise, determine the nature of the turning points of C.

**(2)** 

6664

Past Paper (Mark Scheme) January 2006

| Question<br>number | Scheme                                                                                                                                                                  | Marks                       |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 6.                 | (a) $t = 15$ 25 30<br>v = 3.80 9.72 15.37<br>(b) $S \approx \frac{1}{2} \times 5; [0+15.37+2(1.22+2.28+3.80+6.11+9.72)]$<br>$= \frac{5}{2}[61.63] = 154.075 = AWRT 154$ | B1 B1 B1 (3) B1 [M1] A1 (3) |
|                    |                                                                                                                                                                         | Total 6 marks               |

| 7. | (a) | $\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 10x - 4$                                                                                                                            | M1 A1      | (2)  |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|
|    | (b) | $6x^2 - 10x - 4 = 0$                                                                                                                                                          | M1         |      |
|    |     | 2(3x+1)(x-2) [=0]                                                                                                                                                             | M1         |      |
|    |     | $x = 2$ or $-\frac{1}{3}$ (both x values)                                                                                                                                     | A1         |      |
|    |     | Points are $(2, \frac{10}{10})$ and $(-\frac{1}{3}, 2\frac{19}{27})$ or $\frac{73}{27}$ or 2.70 or better) (both y values)                                                    | A1         | (4)  |
|    | (c) | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 12x - 10$                                                                                                                             | M1 A1      | (2)  |
|    | (d) | $x = 2 \Rightarrow \frac{d^2 y}{dx^2} (= 14) \ge 0$ : $[(2, -10)]$ is a Min                                                                                                   | M1         |      |
|    |     | $x = -\frac{1}{3} \Rightarrow \frac{d^2 y}{dx^2} (= -14) \leq \underline{0} : \left[ \left( -\frac{1}{3}, \frac{73}{27} \right) \right] \text{ is a } \underline{\text{Max}}$ | A1         | (2)  |
|    |     |                                                                                                                                                                               | Total 10 m | arks |

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

|       | 7 |
|-------|---|
| Leave |   |
| Leave |   |
| blank |   |
| Diank |   |

| (4 | $5\sin(\theta+30^\circ)=3.$ |
|----|-----------------------------|
|    |                             |
|    | (•,                         |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |
|    |                             |

# www.mystudybro.com

**Mathematics C2** 

Past Paper

This resource was created and owned by Pearson Edexcel

6664

| estion 8 continued                                        |                                                                      |
|-----------------------------------------------------------|----------------------------------------------------------------------|
| (b) Find all the values of $\theta$ , to 1 decimal place, | in the interval $0^{\circ} \leqslant \theta < 360^{\circ}$ for which |
| $\tan^2\theta = 4$                                        |                                                                      |
|                                                           | (5)                                                                  |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           |                                                                      |
|                                                           | (Total 9 marks)                                                      |

Past Paper (Mark Scheme) January 2006

| Question<br>number | Scheme                                                                 |                                        | Marks         |
|--------------------|------------------------------------------------------------------------|----------------------------------------|---------------|
| 8.                 | $(a)  \sin(\theta + 30) = \frac{3}{5}$                                 | $(\frac{3}{5} \text{ on RHS})$         | B1            |
|                    | $\theta + 30 = 36.9$                                                   | $(\alpha = AWRT 37)$                   | B1            |
|                    | or = 143.1                                                             | $(180-\alpha)$                         | M1            |
|                    | $\theta = 6.9, 113.1$                                                  |                                        | A1cao (4)     |
|                    | (b) $\tan \theta = \pm 2$ or $\sin \theta = \pm \frac{2}{\sqrt{5}}$ or | $\cos \theta = \pm \frac{1}{\sqrt{5}}$ | B1            |
|                    | $(\tan \theta = 2 \Rightarrow) \qquad \theta = \underline{63.4}$       | $(\beta = AWRT 63.4)$                  | B1            |
|                    | or <u>243.4</u>                                                        | $(180 + \beta)$                        |               |
|                    | $(\tan \theta = -2 \Rightarrow)$ $\theta = \underline{116.6}$          | $(180-\beta)$                          | M1            |
|                    | or <u>296.6</u>                                                        | (180 + their 116.6)                    | M1 (5)        |
|                    |                                                                        |                                        | Total 9 marks |

6664

6664 Leave

blank

9.

Figure 3



Figure 3 shows the shaded region R which is bounded by the curve  $y = -2x^2 + 4x$  and the line  $y = \frac{3}{2}$ . The points A and B are the points of intersection of the line and the curve.

Find

(a) the x-coordinates of the points A and B,

**(4)** 

(b) the exact area of R.

**(6)** 

Past Paper (Mark Scheme) January 2006

**www.mystudybro.com**This resource was created and owned by Pearson Edexcel

6664 6664 Core Mathematics C2 Mark Scheme

| Question<br>number | Scheme                                                                                                                                                                                                                      | Marks          |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 9.                 | (a) $\frac{3}{2} = -2x^2 + 4x$                                                                                                                                                                                              | M1             |
|                    | $4x^2 - 8x + 3(=0)$                                                                                                                                                                                                         | A1             |
|                    | (2x-1)(2x-3)=0                                                                                                                                                                                                              | M1             |
|                    | $x = \frac{1}{2},  \frac{3}{2}$                                                                                                                                                                                             | A1 (4)         |
|                    |                                                                                                                                                                                                                             |                |
|                    | (b) Area of $R = \int_{\frac{1}{2}}^{\frac{3}{2}} \left(-2x^2 + 4x\right) dx - \frac{3}{2}$ (for $-\frac{3}{2}$ )                                                                                                           | B1             |
|                    | $\int \left(-2x^2 + 4x\right) dx = \left[-\frac{2}{3}x^3 + 2x^2\right] $ (Allow $\pm \left[\right]$ , accept $\frac{4}{2}x^2$ )                                                                                             | M1 [A1]        |
|                    | $\int_{\frac{1}{2}}^{\frac{3}{2}} \left( -2x^2 + 4x \right) dx = \left( -\frac{2}{3} \times \frac{3^3}{2^3} + 2 \times \frac{3^2}{2^2} \right) - \left( -\frac{2}{3} \times \frac{1}{2^3} + 2 \times \frac{1}{2^2} \right)$ | M1 M1          |
|                    | $\left(=\frac{11}{6}\right)$                                                                                                                                                                                                |                |
|                    | Area of $R = \frac{11}{6} - \frac{3}{2} = \frac{1}{\underline{3}}$ (Accept exact equivalent but not 0.33)                                                                                                                   | Alcao (6)      |
|                    |                                                                                                                                                                                                                             | Total 10 marks |