Mathematics FP1 Examiner's use only Team Leader's use only 1 2 3 4 5 6 7 8 9 10 Leave Past Paper This resource was created and owned by Pearson Edexcel 6667 | Centre
No. | | | | Paper Reference | | | Surname | Initial(s) | | | | |------------------|--|--|---|-----------------|---|---|---------|------------|---|-----------|--| | Candidate
No. | | | 6 | 6 | 6 | 7 | / | 0 | 1 | Signature | | Paper Reference(s) 6667/01 ## **Edexcel GCE** # Further Pure Mathematics FP1 Advanced/Advanced Subsidiary Friday 30 January 2009 – Afternoon Time: 1 hour 30 minutes Materials required for examination Items included with question papers Ni Mathematical Formulae (Orange) Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. #### **Instructions to Candidates** In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper. Answer ALL the questions. Write your answers in the spaces provided in this question paper. When a calculator is used, the answer should be given to an appropriate degree of accuracy. #### **Information for Candidates** A booklet 'Mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 10 questions in this question paper. The total mark for this paper is 75. There are 28 pages in this question paper. Any blank pages are indicated. #### **Advice to Candidates** You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit. This publication may be reproduced only in accordance with Edexcel Limited copyright policy. ©2009 Edexcel Limited N34694A Total advancing learning, changing lives W850/R6667/57570 3/4/5/3 **Mathematics FP1** | | This resource was created and owned by Pearson Edexcei | | |------------------|--|-----| | | | | | | (x) 2 3 0 2 + 7 2 | | | | $f(x) = 2x^3 - 8x^2 + 7x - 3$ | | | G: 41 + | | | | Given that $x =$ | = 3 is a solution of the equation $f(x) = 0$, solve $f(x) = 0$ completely | | | | | (5) | This resource was created and owned by Pearson Edexcel ## January 2009 6667 Further Pure Mathematics FP1 (new) Mark Scheme | Question
Number | Scheme | Marks | |--------------------|--|--------| | 1 | | | | | x-3 is a factor | B1 | | | $f(x) = (x-3)(2x^2 - 2x + 1)$ | M1 A1 | | | Attempt to solve quadratic i.e. $x = \frac{2 \pm \sqrt{4 - 8}}{4}$ | M1 | | | $x = \frac{1 \pm i}{2}$ | A1 [5] | Notes: First and last terms in second bracket required for first M1 Use of correct quadratic formula for their equation for second M1 ■ Past Paper This resource was created and owned by Pearson Edexcel 6667 Leave blank 2. (a) Show, using the formulae for $\sum r$ and $\sum r^2$, that $$\sum_{r=1}^{n} (6r^2 + 4r - 1) = n(n+2)(2n+1)$$ **(5)** (b) Hence, or otherwise, find the value of $\sum_{r=1}^{20} (6r^2 + 4r - 1)$. **(2)** Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel | Question
Number | | Scheme | Marks | 5 | |--------------------|-----|---|----------|------------| | 2 | (a) | $6\sum_{n} r^{2} + 4\sum_{n} r - \sum_{n} 1 = 6\frac{n}{6}(n+1)(2n+1) + 4\frac{n}{2}(n+1), -n$ | M1 A1, B | 31 | | | | $= \frac{n}{6}(12n^2 + 18n + 6 + 12n + 12 - 6) \text{ or } n(n+1)(2n+1) + (2n+1)n$ | M1 | | | | | $= \frac{n}{6}(12n^2 + 30n + 12) = n(2n^2 + 5n + 2) = n(n+2)(2n+1) *$ | A1 | (5) | | | (b) | $\sum_{r=1}^{20} (6r^2 + 4r - 1) - \sum_{r=1}^{10} (6r^2 + 4r - 1) = 20 \times 22 \times 41 - 10 \times 12 \times 21$ | M1 | | | | | = 15520 | A1 | (2)
[7] | #### Notes: - (a) First M1 for first 2 terms, B1 for -n Second M1 for attempt to expand and gather terms. Final A1 for correct solution only - (b) Require (r from 1 to 20) subtract (r from 1 to 10) and attempt to substitute for M1 ■ Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | | 7 | |------|---| | eave | | | | | | lank | | | TI | | |---|-----| | The rectangular hyperbola, H , has parametric equations $x = 5t$, $y = \frac{5}{t}$, $t \neq 0$. | | | (a) Write the cartesian equation of H in the form $xy = c^2$. | (4) | | | (1) | | Points A and B on the hyperbola have parameters $t = 1$ and $t = 5$ respectively. | | | (b) Find the coordinates of the mid-point of AB. | | | (e) | (3) | **Mathematics FP1** Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel | Question
Number | | Scheme | Mari | KS | |--------------------|-----|--|------|------------| | 3 | (a) | $xy = 25 = 5^2$ or $c = \pm 5$ | B1 | (1) | | | (b) | A has co-ords $(5, 5)$ and B has co-ords $(25, 1)$ | B1 | | | | | Mid point is at (15, 3) | M1A1 | (3)
[4] | 4 Notes: (a) $$xy = 25$$ only B1, $c^2 = 25$ only B1, $c = 5$ only B1 (b) Both coordinates required for B1 Add theirs and divide by 2 on both for M1 **Mathematics FP1** ■ Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | Leave | | |-------|--| | blank | | | 4. | Prove by induction that, for $n \in \mathbb{Z}^+$, | |----|---| | | $\sum_{r=1}^{n} \frac{1}{r(r+1)} = \frac{n}{n+1}$ | | $\sum_{r=1}^{n} \frac{1}{r(r+1)} = \frac{n}{n+1}$ | | | |---|-----|--| | $rac{r}{r=1}$ $r(r+1)$ $n+1$ | (5) | Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel | 6 | 6 | 6 | 7 | |---|---|---|---| | | | | | | Question
Number | Scheme | Marks | |--------------------|---|--------| | 4 | When $n = 1$, LHS = $\frac{1}{1 \times 2} = \frac{1}{2}$, RHS = $\frac{1}{1+1} = \frac{1}{2}$. So LHS = RHS and result true for $n = 1$ | B1 | | | Assume true for $n = k$; $\sum_{r=1}^{k} \frac{1}{r(r+1)} = \frac{k}{k+1}$ and so $\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$ | M1 | | | $\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k(k+2)+1}{(k+1)(k+2)} = \frac{k^2+2k+1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2}$ | M1 A1 | | | and so result is true for $n = k + 1$ (and by induction true for $n \in \mathbb{Z}^+$) | B1 [5] | #### Notes: Evaluate both sides for first B1 Final two terms on second line for first M1 Attempt to find common denominator for second M1. Second M1 dependent upon first. $$\frac{k+1}{k+2} \text{ for A1}$$ 'Assume true for n = k 'and 'so result true for n = k + 1' and correct solution for final B1 **Mathematics FP1** ■ Past Paper This resource was created and owned by Pearson Edexcel 6667 Leave blank | 5. | $f(x) = 3\sqrt{x} + \frac{18}{\sqrt{x}} - 20$ | |----|---| |----|---| (a) Show that the equation f(x) = 0 has a root α in the interval [1.1, 1.2]. (2) (b) Find f'(x). **(3)** (c) Using $x_0 = 1.1$ as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to find a second approximation to α , giving your answer to 3 significant figures. **(4)** 6667 | Que:
Num | stion
iber | Scheme | Marks | 3 | |-------------|---------------|--|----------|------------| | 5 | (a) | attempt evaluation of $f(1.1)$ and $f(1.2)$ (– looking for sign change) | M1 | | | | | $f(1.1) = 0.30875$, $f(1.2) = -0.28199$ Change of sign in $f(x) \Rightarrow$ root in the interval | A1 | (2) | | | (b) | $f'(x) = \frac{3}{2}x^{-\frac{1}{2}} - 9x^{-\frac{1}{2}}$ | M1 A1 A1 | 1 (3) | | | (c) | f(1.1) = 0.30875 $f'(1.1) = -6.37086$ | B1 B1 | | | | | $x_1 = 1.1 - \frac{0.30875}{-6.37086}$
= 1.15(to 3 sig.figs.) | M1
A1 | (4)
[9] | #### Notes: - (a) awrt 0.3 and -0.3 and indication of sign change for first A1 - (b) Multiply by power and subtract 1 from power for evidence of differentiation and award of first M1 - (c) awrt 0.309 B1and awrt -6.37 B1 if answer incorrect Evidence of Newton-Raphson for M1 Evidence of Newton-Raphson and awrt 1.15 award 4/4 **Mathematics FP1** ■ Past Paper **www.mystudybro.com**This resource was created and owned by Pearson Edexcel | $u_1 = 6$ and $u_{n+1} = 6u_n - 5$, for $n \ge 1$. | | |--|--------------| | | | | Prove by induction that $u_n = 5 \times 6^{n-1} + 1$, for $n \ge 1$. | (=) | | | (5) | 12 Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel | Question
Number | Scheme | Marks | |--------------------|---|--------| | 6 | At $n = 1$, $u_n = 5 \times 6^0 + 1 = 6$ and so result true for $n = 1$ | B1 | | | Assume true for $n = k$; $u_k = 5 \times 6^{k-1} + 1$, and so $u_{k+1} = 6(5 \times 6^{k-1} + 1) - 5$ | M1, A1 | | | $\therefore u_{k+1} = 5 \times 6^k + 6 - 5 \therefore u_{k+1} = 5 \times 6^k + 1$ | A1 | | | and so result is true for $n = k + 1$ and by induction true for $n \ge 1$ | B1 [5] | | | | [9] | Notes: 6 and so result true for n = 1 award B1 Sub u_k into u_{k+1} or M1 and A1 for correct expression on right hand of line 2 Second A1 for $\therefore u_{k+1} = 5 \times 6^k + 1$ 'Assume true for n = k' and 'so result is true for n = k + 1' and correct solution for final B1 ■ Past Paper This resource was created and owned by Pearson Edexcel 6667 Leave blank - 7. Given that $\mathbf{X} = \begin{pmatrix} 2 & a \\ -1 & -1 \end{pmatrix}$, where a is a constant, and $a \neq 2$, - (a) find X^{-1} in terms of a. **(3)** Given that $X + X^{-1} = I$, where I is the 2×2 identity matrix, (b) find the value of *a*. (3) Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel | | estion
nber | Scheme | Marks | |---|----------------|--|----------------------| | 7 | (a) | The determinant is $a - 2$ | M1 | | | | $\mathbf{X}^{-1} = \frac{1}{a-2} \begin{pmatrix} -1 & -a \\ 1 & 2 \end{pmatrix}$ | M1 A1 (3) | | | (b) | $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ | B1 | | | | Attempt to solve $2 - \frac{1}{a-2} = 1$, or $a - \frac{a}{a-2} = 0$, or $-1 + \frac{1}{a-2} = 0$, or $-1 + \frac{2}{a-2} = 1$ | M1 | | | | To obtain $a = 3$ only | A1 cso
(3)
[6] | | | | Alternatives for (b) If they use $\mathbf{X}^2 + \mathbf{I} = \mathbf{X}$ they need to identify \mathbf{I} for B1, then attempt to solve suitable equation for M1 and obtain $a = 3$ for A1 If they use $\mathbf{X}^2 + \mathbf{X}^{-1} = \mathbf{O}$, they can score the B1then marks for solving If they use $\mathbf{X}^3 + \mathbf{I} = \mathbf{O}$ they need to identify \mathbf{I} for B1, then attempt to solve suitable equation for M1 and obtain $a = 3$ for A1 | | Notes: (a) Attempt ad-bc for first M1 $$\frac{1}{\det} \begin{pmatrix} -1 & -a \\ 1 & 2 \end{pmatrix}$$ for second M1 (b) Final A1 for correct solution only ■ Past Paper This resource was created and owned by Pearson Edexcel lank | 3. A parabola has equation y² = 4ax, a > 0. The point Q (aq², 2aq) lies on the parabola. (a) Show that an equation of the tangent to the parabola at Q is yq = x + aq². (4) This tangent meets the y-axis at the point R. (b) Find an equation of the line l which passes through R and is perpendicular to the tangent at Q. (3) (c) Show that l passes through the focus of the parabola. (d) Find the coordinates of the point where l meets the directrix of the parabola. | • | • | | |---|----|--|-----| | (a) Show that an equation of the tangent to the parabola at Q is yq = x + aq². (4) This tangent meets the y-axis at the point R. (b) Find an equation of the line l which passes through R and is perpendicular to the tangent at Q. (3) (c) Show that l passes through the focus of the parabola. (d) Find the coordinates of the point where l meets the directrix of the parabola. | 8. | A parabola has equation $v^2 = 4ax$, $a > 0$. The point $O(aq^2, 2aq)$ lies on the parabola. | | | yq = x + aq². This tangent meets the y-axis at the point R. (b) Find an equation of the line l which passes through R and is perpendicular to the tangent at Q. (c) Show that l passes through the focus of the parabola. (d) Find the coordinates of the point where l meets the directrix of the parabola. | | | | | (4) This tangent meets the <i>y</i>-axis at the point <i>R</i>. (b) Find an equation of the line <i>l</i> which passes through <i>R</i> and is perpendicular to the tangent at <i>Q</i>. (c) Show that <i>l</i> passes through the focus of the parabola. (d) Find the coordinates of the point where <i>l</i> meets the directrix of the parabola. | | (a) Show that an equation of the tangent to the parabola at Q is | | | This tangent meets the y-axis at the point R. (b) Find an equation of the line l which passes through R and is perpendicular to the tangent at Q. (c) Show that l passes through the focus of the parabola. (d) Find the coordinates of the point where l meets the directrix of the parabola. | | $yq = x + aq^2$. | | | (b) Find an equation of the line l which passes through R and is perpendicular to the tangent at Q. (c) Show that l passes through the focus of the parabola. (d) Find the coordinates of the point where l meets the directrix of the parabola. | | | (4) | | tangent at Q. (c) Show that l passes through the focus of the parabola. (d) Find the coordinates of the point where l meets the directrix of the parabola. | | This tangent meets the y -axis at the point R . | | | (c) Show that l passes through the focus of the parabola. (d) Find the coordinates of the point where l meets the directrix of the parabola. | | | the | | (c) Show that l passes through the focus of the parabola.(d) Find the coordinates of the point where l meets the directrix of the parabola. | | tangent at Q . | (3) | | (1) (d) Find the coordinates of the point where <i>l</i> meets the directrix of the parabola. | | | . , | | | | (c) Show that <i>l</i> passes through the focus of the parabola. | (1) | | | | (d) Find the examinates of the naint vibous I meets the directive of the name also | | | | | (d) Find the coordinates of the point where t meets the directrix of the parabola. | (2) | This resource was created and owned by Pearson Edexcel | Question
Number | Scheme | Marks | |--------------------|---|------------------------------------| | 8 (a) | The gradient of the tangent is $\frac{1}{q}$ The equation of the tangent is $y - 2aq = \frac{1}{q}(x - aq^2)$ | M1 A1 M1 | | (b) | So $yq = x + aq^2$ * R has coordinates (0, aq) The line l has equation $y - aq = -qx$ | A1 (4) B1 M1A1 | | (c) | When $y = 0$ $x = a$ (so line l passes through $(a, 0)$ the focus of the parabola.)
Line l meets the directrix when $x = -a$: Then $y = 2aq$. So coordinates are $(-a, 2aq)$ | (3)
B1 (1)
M1:A1 (2)
[10] | Notes: (a) $$\frac{dy}{dx} = \frac{2a}{2aq}$$ OK for M1 Use of y = mx + c to find c OK for second M1 Correct solution only for final A1 - (b) -1/(their gradient in part a) in equation OK for M1 - (c) They must attempt y = 0 or x = a to show correct coordinates of R for B1 - (d) Substitute x = -a for M1. Both coordinates correct for A1. Past Paper This resource was created and owned by Pearson Edexcel blank - **9.** Given that $z_1 = 3 + 2i$ and $z_2 = \frac{12 5i}{z_1}$, - (a) find z_2 in the form a + ib, where a and b are real. **(2)** (b) Show on an Argand diagram the point P representing z_1 and the point Q representing z_2 . **(2)** (c) Given that O is the origin, show that $\angle POQ = \frac{\pi}{2}$. **(2)** The circle passing through the points O, P and Q has centre C. Find (d) the complex number represented by C, **(2)** (e) the exact value of the radius of the circle. **(2)** | Ques | stion
iber | Scheme | N | /larks | |------|---------------|---|----------|-------------| | 9 | (a) | $z_2 = \frac{12 - 5i}{3 + 2i} \times \frac{3 - 2i}{3 - 2i} = \frac{36 - 24i - 15i - 10}{13}$ | M1
A1 | | | | (b) | = 2 - 3i $P(3, 2)$ | | (2) | | | | Q(2,-3) $P: B1, Q: B1ft$ | | B1, B1ft | | | (c) | Q(2,-3) $P: B1, Q: B1ftgrad. OP \times \text{grad. } OQ = \frac{2}{3} \times -\frac{3}{2}$ | | (2) | | | OR | $=-1 \Rightarrow \angle POQ = \frac{\pi}{2} (\$)$ $\angle POX = \tan^{-1}\frac{2}{3}, \angle QOX = \tan^{-1}\frac{3}{2}$ | | | | | | $Tan(\angle POQ) = \frac{\frac{2}{3} + \frac{3}{2}}{1 - \frac{2}{3} \times \frac{3}{2}} \qquad M1$ | M1 | | | | | $\Rightarrow \angle POQ = \frac{\pi}{2} (*) \qquad A1$ | A1 | (2) | | | | $z = \frac{3+2}{2} + \frac{2+(-3)}{2}i$ | M1 | | | | | $ \frac{-\frac{5}{2} - \frac{1}{2}i}{r = \sqrt{\left(\frac{5}{2}\right)^2 + \left(-\frac{1}{2}\right)^2}} $ | A1 | (2) | | | (e) | $r = \sqrt{\left(\frac{5}{2}\right)^2 + \left(-\frac{1}{2}\right)^2}$ | M1 | | | | | $=\frac{\sqrt{26}}{2}$ or exact equivalent | A1 | (2)
[10] | Notes: (a) $$\times \frac{3-2i}{3-2i}$$ for M1 - (b) Position of points not clear award B1B0 - (c) Use of calculator / decimals award M1A0 - (d) Final answer must be in complex form for A1 - (e) Radius or diameter for M1 **Mathematics FP1** Past Paper This resource was created and owned by Pearson Edexcel Leave blank 10. $$\mathbf{A} = \begin{pmatrix} 3\sqrt{2} & 0 \\ 0 & 3\sqrt{2} \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$ (a) Describe fully the transformations described by each of the matrices A, B and C. **(4)** It is given that the matrix $\mathbf{D} = \mathbf{C}\mathbf{A}$, and that the matrix $\mathbf{E} = \mathbf{D}\mathbf{B}$. (b) Find **D**. **(2)** (c) Show that $$\mathbf{E} = \begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix}$$. (1) The triangle ORS has vertices at the points with coordinates (0, 0), (-15, 15) and (4, 21). This triangle is transformed onto the triangle OR'S' by the transformation described by E. (d) Find the coordinates of the vertices of triangle OR'S'. **(4)** (e) Find the area of triangle *OR'S'* and deduce the area of triangle *ORS*. **(3)** 24 Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel | Question
Number | | Scheme | Marks | | |--------------------|-----|--|----------|-------------| | 10 | (a) | A represents an enlargement scale factor $3\sqrt{2}$ (centre O) | M1 A1 | | | | | B represents reflection in the line $y = x$
C represents a rotation of $\frac{\pi}{4}$, i.e.45° (anticlockwise) (about O) | B1
B1 | (4) | | | (b) | $\begin{pmatrix} 3 & -3 \\ 3 & 3 \end{pmatrix}$ | M1 A1 | (2) | | | (c) | $ \begin{pmatrix} 3 & -3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix} $ | B1 | (1) | | | (d) | $ \begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 0 - 15 & 4 \\ 0 & 15 & 21 \end{pmatrix} = \begin{pmatrix} 0 & 90 & 51 \\ 0 & 0 & 75 \end{pmatrix} $ so $(0, 0)$, $(90, 0)$ and $(51, 75)$ | M1A1A | 1A1
(4) | | | (e) | Area of $\triangle OR'S'$ is $\frac{1}{2} \times 90 \times 75 = 3375$ | B1 | | | | | Determinant of E is -18 or use area scale factor of enlargement So area of $\triangle ORS$ is $3375 \div 18 = 187.5$ | M1A1 | (3)
[14] | Notes: (a) Enlargement for M1 $3\sqrt{2}$ for A1 - (b) Answer incorrect, require CD for M1 - (c) Answer given so require \boldsymbol{DB} as shown for B1 - (d) Coordinates as shown or written as $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 90 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 51 \\ 75 \end{pmatrix}$ for each A1 - (e) 3375 B1 Divide by theirs for M1