Past Paper

www.mystudybro.com

This resource was created and owned by Pearson Edexcel

Mathematics FP1

Examiner's use only

Team Leader's use only

Question

1

2

Leave

6667

Centre No.					Pape	er Refer	ence			Surname	Initial(s)
Candidate No.			6	6	6	7	/	0	1	Signature	

Paper Reference(s)

6667/01

Edexcel GCE

Further Pure Mathematics FP1 Advanced/Advanced Subsidiary

Monday 30 January 2012 – Morning

Time: 1 hour 30 minutes

Materials required for examination
Mathematical Formulae (Pink)Items included with question papers
Nil

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initials and signature. Check that you have the correct question paper.

Answer ALL the questions.

You must write your answer to each question in the space following the question.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information for Candidates

A booklet 'Mathematical Formulae and Statistical Tables' is provided.

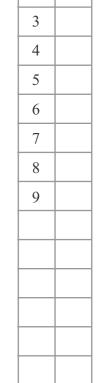
Full marks may be obtained for answers to ALL questions.

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2).

There are 9 questions in this question paper. The total mark for this paper is 75.

There are 24 pages in this question paper. Any blank pages are indicated.

Advice to Candidates


You must ensure that your answers to parts of questions are clearly labelled. You should show sufficient working to make your methods clear to the Examiner. Answers without working may not gain full credit.

This publication may be reproduced only in accordance with Pearson Education Ltd copyright policy.

© 2012 Pearson Education Ltd.

Turn over

Total

PEARSON

Past Paper

This resource was created and owned by Pearson Edexcel

6667

Leav
blank

- 1. Given that $z_1 = 1 i$,
 - (a) find $arg(z_1)$.

(2)

Given also that $z_2 = 3 + 4i$, find, in the form a + ib, $a, b \in \mathbb{R}$,

(b) $z_1 z_2$,

(2)

(c) $\frac{z_2}{z_1}$

(3)

In part (b) and part (c) you must show all your working clearly.

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

January 2012 6667 Further Pure Mathematics FP1 **Mark Scheme**

Question Number	Scheme	Notes	Marks
1(a)	$\arg z_1 = -\arctan(1)$	-arctan(1) or arctan(-1)	M1
	$=-\frac{\pi}{4}$	or -45 or awrt -0.785 (oe e.g $\frac{7\pi}{4}$)	A1
	Correct ar	nswer only 2/2	(2)
(b)	$z_1 z_2 = (1-i)(3+4i) = 3-3i+4i-4i^2$	At least 3 correct terms (Unsimplified)	M1
	=7+i	cao	A1
			(2)
(c)	$\frac{z_2}{z_1} = \frac{(3+4i)}{(1-i)} = \frac{(3+4i).(1+i)}{(1-i).(1+i)}$	Multiply top and bottom by (1 + i)	M1
	$= \frac{(3+4i).(1+i)}{2}$ $= -\frac{1}{2} + \frac{7}{2}i$	(1+i)(1-i)=2	A1
		or $\frac{-1+7i}{2}$	A1
	Special case $\frac{z_1}{z_2} = \frac{(1-i)}{(3+4i)} = \frac{1}{(3+4i)}$	$\frac{(1-i).(3-4i)}{(3+4i).(3-4i)}$ Allow M1A0A0	
			(3)
	Correct answers only in	(b) and (c) scores no marks	Total 7

	(a)	Show that $f(x) = x^4 + x - 1$ has a real root α in the interval [0.5, 1.0].
	(b)	Starting with the interval [0.5, 1.0], use interval bisection twice to find an interval of
		width 0.125 which contains α . (3)
	(c)	Taking 0.75 as a first approximation, apply the Newton Raphson process twice to $f(x)$ to obtain an approximate value of α . Give your answer to 3 decimal places.
		(5)
_		

Winter 2012 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Mathematics FP1

2	Question Number	Scheme	Notes	Marks
	2	$f(x) = x^4 + x - 1$		
continuous) therefore (a root) α is between $x = 0.5$ and $x = 1.0$ (2) (b) $f(0.75) = 0.06640625(\frac{17}{256})$ $f(0.625) = -0.222412109375(-\frac{911}{4096})$ $0.625, \alpha, 0.75$ $0.625, 0.75$ $0.625, 0.75$ $0.625, 0.75$ $0.625, 0.75$ $0.625, 0.75$ 0.75	(a)	10	Either any one of $f(0.5) = awrt -0.4$ or $f(1) = 1$	M1
(b) $ f(0.75) = 0.06640625(\frac{17}{256}) $ Attempt $f(0.75)$ M1 $ f(0.625) = -0.222412109375(-\frac{911}{4096}) $ $f(0.75) = \text{awrt } 0.07 \text{ and } f(0.625) = \text{awrt } -0.2 $ A1 $ 0.625 \text{, } \alpha \text{, } 0.75 $ or $[0.625, \alpha^2, 0.75 \text{ or } 0.625 < \alpha < 0.75 $ or $[0.625, 0.75] \text{ or } (0.625, 0.75)$. A1 or equivalent in words.		continuous) therefore (a root) α is between	_ _	A1
				(2)
	(b)	$f(0.75) = 0.06640625(\frac{17}{256})$	Attempt f(0.75)	M1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$f(0.625) = -0.222412109375(-\frac{911}{4096})$		A1
or equivalent in words. In (b) there is no credit for linear interpolation and a correct answer with no working scores no marks. (c) $f'(x) = 4x^3 + 1$ $x_1 = 0.75$ $x_2 = 0.75 - \frac{f(0.75)}{f'(0.75)} = 0.75 - \frac{0.06640625}{2.6875(43/16)}$ Attempt Newton-Raphson $x_2 = 0.72529(06976) = \frac{499}{688}$ Correct first application – a correct numerical expression e.g. $0.75 - \frac{17/256}{43/16}$ A1 $x_3 = 0.724493\left(\frac{499}{688} - \frac{0.002015718978}{2.562146811}\right)$ Awrt 0.724 A final answer of 0.724 with evidence of NR applied twice with no incorrect work should score 5/5 (5)			0.625 ,, α ,, 0.75 or $0.625 < \alpha < 0.75$	
$ \begin{array}{c c} \textbf{In (b) there is no credit for linear interpolation and a} \\ \textbf{correct answer with no working scores no marks.} \\ \hline \\ f'(x) = 4x^3 + 1 & \text{Correct derivative (May be implied later by e.g. } 4(0.75)^3 + 1)} \\ \hline \\ x_1 = 0.75 \\ \hline \\ x_2 = 0.75 - \frac{f(0.75)}{f'(0.75)} = 0.75 - \frac{0.06640625}{2.6875 \left(43/16\right)} \\ \hline \\ Attempt Newton-Raphson \\ \hline \\ x_2 = 0.72529(06976) = \frac{499}{688} \\ \hline \\ \hline \\ a_3 = 0.7224493 \left(\frac{499}{688} - \frac{0.002015718978}{2.562146811}\right) \\ \hline \\ Awrt 0.724 \\ \hline \\ A final answer of 0.724 with evidence of NR applied twice with no incorrect work should score 5/5 \\ \hline \end{array} \begin{array}{c} \textbf{(3)} \\ \textbf{(3)} \\ \textbf{(3)} \\ \textbf{(3)} \\ \textbf{(2)} \\ \textbf{(3)} \\ \textbf{(2)} \\ \textbf{(3)} \\ \textbf{(2)} \\ \textbf{(4)} \\ \textbf{(2)} \\ \textbf{(3)} \\ \textbf{(3)} \\ \textbf{(4)} \\ \textbf{(2)} \\ \textbf{(3)} \\ \textbf{(4)} \\ \textbf{(2)} \\ \textbf{(3)} \\ \textbf{(4)} \\ \textbf{(2)} \\ \textbf{(3)} \\ \textbf{(4)} \\ \textbf{(4)} \\ \textbf{(5)} \\ \textbf{(6)} \\ \textbf{(6)} \\ \textbf{(7)} \\ \textbf{(1)} \\ \textbf{(1)} \\ \textbf{(2)} \\ \textbf{(3)} \\ \textbf{(3)} \\ \textbf{(2)} \\ \textbf{(3)} \\ \textbf{(4)} \\ \textbf{(2)} \\ \textbf{(3)} \\ \textbf{(4)} \\ \textbf{(2)} \\ \textbf{(3)} \\ \textbf{(4)} \\ \textbf{(4)} \\ \textbf{(5)} \\ \textbf{(6)} \\ \textbf{(6)} \\ \textbf{(6)} \\ \textbf{(7)} \\ \textbf{(7)} \\ \textbf{(7)} \\ \textbf{(7)} \\ \textbf{(7)} \\ \textbf{(8)} \\ \textbf{(7)} \\ \textbf{(8)} \\ \textbf{(8)} \\ \textbf{(8)} \\ \textbf{(8)} \\ \textbf{(8)} \\ \textbf{(8)} \\ \textbf{(9)} \\ \textbf{(8)} \\ \textbf{(10)} \\ \textbf{(20)} \\ (20$		0.625 ,, α ,, 0.75	or $[0.625, 0.75]$ or $(0.625, 0.75)$.	A1
correct answer with no working scores no marks. (c) $f'(x) = 4x^3 + 1$ Correct derivative (May be implied later by e.g. $4(0.75)^3 + 1$) B1 $x_1 = 0.75$ $x_2 = 0.75 - \frac{f(0.75)}{f'(0.75)} = 0.75 - \frac{0.06640625}{2.6875(43/16)}$ Attempt Newton-Raphson M1				
$f'(x) = 4x^{3} + 1 \qquad \qquad \text{Correct derivative (May be implied later by e.g. } 4(0.75)^{3} + 1) \qquad \qquad \text{B1}$ $x_{1} = 0.75$ $x_{2} = 0.75 - \frac{f(0.75)}{f'(0.75)} = 0.75 - \frac{0.06640625}{2.6875(43/16)} \qquad \text{Attempt Newton-Raphson} \qquad \qquad \text{M1}$ $x_{2} = 0.72529(06976) = \frac{499}{688} \qquad \qquad \text{numerical expression e.g. } 0.75 - \frac{17/256}{43/16} \qquad \text{A1}$ $x_{3} = 0.724493 \left(\frac{499}{688} - \frac{0.002015718978}{2.562146811}\right) \qquad \text{Awrt } 0.724 \qquad \qquad \text{A1}$ $(\alpha) = 0.724 \qquad \qquad \text{cao} \qquad \qquad \text{A1}$ $A \text{ final answer of } 0.724 \text{ with evidence of NR applied twice with no incorrect work should score } 5/5 \qquad \qquad \text{(5)}$			<u>-</u>	(3)
$x_1 = 0.75$ $x_2 = 0.75 - \frac{f(0.75)}{f'(0.75)} = 0.75 - \frac{0.06640625}{2.6875(43/16)}$ Attempt Newton-Raphson $x_2 = 0.72529(06976) = \frac{499}{688}$ Correct first application – a correct numerical expression e.g. $0.75 - \frac{17/256}{43/16}$ A1 $x_3 = 0.724493 \left(\frac{499}{688} - \frac{0.002015718978}{2.562146811} \right)$ Awrt 0.724 $(\alpha) = 0.724$ Cao A1 A final answer of 0.724 with evidence of NR applied twice with no incorrect work should score 5/5	(c)			
$x_1 = 0.75$ $x_2 = 0.75 - \frac{f(0.75)}{f'(0.75)} = 0.75 - \frac{0.06640625}{2.6875(43/16)}$ Attempt Newton-Raphson $x_2 = 0.72529(06976) = \frac{499}{688}$ Correct first application – a correct numerical expression e.g. $0.75 - \frac{17/256}{43/16}$ or awrt 0.725 (may be implied) $x_3 = 0.724493 \left(\frac{499}{688} - \frac{0.002015718978}{2.562146811} \right)$ Awrt 0.724 α A final answer of 0.724 with evidence of NR applied twice with no incorrect work should score $5/5$	(0)	$f'(x) = 4x^3 + 1$		B1
Correct first application – a correct numerical expression e.g. $0.75 - \frac{17}{256}$ A1 $x_2 = 0.72529(06976) = \frac{499}{688}$ numerical expression e.g. $0.75 - \frac{17}{256}$ A1 or awrt 0.725 (may be implied) Aurt 0.725 (may be implied) Aurt 0.724 A 0.724 Cao A1 A final answer of 0.724 with evidence of NR applied twice with no incorrect work should score $5/5$		$x_1 = 0.75$		
$x_2 = 0.72529(06976) = \frac{499}{688}$ numerical expression e.g. $0.75 - \frac{17/256}{43/16}$ or awrt 0.725 (may be implied) $x_3 = 0.724493 \left(\frac{499}{688} - \frac{0.002015718978}{2.562146811} \right)$ Awrt 0.724 $(\alpha) = 0.724$ cao A1 A final answer of 0.724 with evidence of NR applied twice with no incorrect work should score $5/5$		$x_2 = 0.75 - \frac{f(0.75)}{f'(0.75)} = 0.75 - \frac{0.06640625}{2.6875(43/16)}$	Attempt Newton-Raphson	M1
or awrt 0.725 (may be implied) $x_3 = 0.724493 \left(\frac{499}{688} - \frac{0.002015718978}{2.562146811} \right)$ Awrt 0.724 A final answer of 0.724 with evidence of NR applied twice with no incorrect work should score 5/5 Awrt 0.725 (may be implied) All A final answer of 0.724 with evidence of NR applied twice with no incorrect work should score 5/5			Correct first application – a correct	
or awrt 0.725 (may be implied) $x_3 = 0.724493 \left(\frac{499}{688} - \frac{0.002015718978}{2.562146811} \right) \qquad \text{Awrt 0.724} \qquad \qquad \text{A1}$ $(\alpha) = 0.724 \qquad \qquad \text{cao} \qquad \qquad \text{A1}$ A final answer of 0.724 with evidence of NR applied twice with no incorrect work should score 5/5 (5)		$x_2 = 0.72529(06976) = \frac{499}{688}$	numerical expression e.g. $0.75 - \frac{17}{256}$	A1
$x_3 = 0.724493 \left(\frac{1}{688} - \frac{1}{2.562146811} \right) \qquad \text{Awrt } 0.724 \qquad \qquad \text{A1}$ $(\alpha) = 0.724 \qquad \qquad \text{cao} \qquad \qquad \text{A1}$ A final answer of 0.724 with evidence of NR applied twice with no incorrect work should score 5/5 (5)				
A final answer of 0.724 with evidence of NR applied twice with no incorrect work should score 5/5 (5)		$ x_0 = 0.724493 $	Awrt 0.724	A1
work should score 5/5		$(\alpha) = 0.724$	cao	A1
			NR applied twice with no incorrect	(5)
		WOLK SHOULD SCOLE 3/3		Total 10

www.mystudybro.comThis resource was created and owned by Pearson Edexcel ■ Past Paper

6667

Leave

	A parabola C has cartesian equation $y^2 = 16x$. The point $P(4t^2, 8t)$ is a general p on C.	
	(a) Write down the coordinates of the focus F and the equation of the directrix of C .	(3)
	(b) Show that the equation of the normal to C at P is $y + tx = 8t + 4t^3$.	(5)
_		

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics FP1

6667

Total 8

Question Number	Scheme	Notes	Marks
3(a)	Focus (4,0)		B1
	Discostrice at 1 0	x + "4" = 0 or x = - "4"	M1
	Directrix $x+4=0$	x + 4 = 0 or $x = -4$	A1
			(3)
(b)	$y = 4x^{\frac{1}{2}} \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 2x^{-\frac{1}{2}}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = k \ x^{-\frac{1}{2}}$	
	$y^2 = 16x \Rightarrow 2y \frac{dy}{dx} = 16$	$ky \frac{dy}{dx} = c$	
	or $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = 8 \cdot \frac{1}{8t}$	their $\frac{dy}{dt} \times \left(\frac{1}{\text{their } \frac{dx}{dt}}\right)$	M1
	$\frac{dy}{dx} = 2x^{-\frac{1}{2}} \text{ or } 2y \frac{dy}{dx} = 16 \text{ or } \frac{dy}{dx} = 8.\frac{1}{8t}$	Correct differentiation	A1
	At P , gradient of normal = $-t$	Correct normal gradient with no errors seen.	A1
	$y - 8t = -t(x - 4t^2)$	Applies $y - 8t = \text{their } m_N \left(x - 4t^2 \right)$ or $y = \left(\text{their } m_N \right) x + c$ using $x = 4t^2$ and $y = 8t$ in an attempt to find c. Their m_N must be different from their m_T and must be a function of t .	M1
	$y + tx = 8t + 4t^3 *$	cso **given answer**	A1
	Special case – if the correct gradient is	s <u>quoted</u> could score M0A0A0M1A1	(5)

- **4.** A right angled triangle *T* has vertices A(1,1), B(2,1) and C(2,4). When *T* is transformed by the matrix $\mathbf{P} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, the image is T'.
 - (a) Find the coordinates of the vertices of T'.

(2)

(b) Describe fully the transformation represented by ${\bf P}.$

(2)

The matrices $\mathbf{Q} = \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix}$ and $\mathbf{R} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ represent two transformations. When T is transformed by the matrix $\mathbf{Q}\mathbf{R}$, the image is T''.

(c) Find **QR**.

(2)

(d) Find the determinant of **QR**.

(2)

(e) Using your answer to part (d), find the area of T''.

(3)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics FP1

Question Number	Scheme	Notes	Marks			
4(a)	$ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ 1 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 2 \end{pmatrix} $	Attempt to multiply the right way round with at least 4 correct elements	M1			
	T' has coordinates $(1,1)$, $(1,2)$ and $(4,2)$ or $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$ NOT just $\begin{pmatrix} 1 & 1 & 4 \\ 1 & 2 & 2 \end{pmatrix}$	Correct coordinates or vectors	A1			
			(2)			
(b)	· · · · · · ·	Reflection	B1			
	Reflection in the line $y = x$	y = x	B1			
	Allow 'in the axis' 'about the line' $y = x$ etc. Provided bot reference to the origin unless there is a c					
			(2)			
(c)	(4 2)(1 2) (2 0)	2 correct elements	(2) M1			
	$\mathbf{QR} = \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} -2 & 0 \\ 0 & 2 \end{pmatrix}$	Correct matrix	A1			
	Note that $\mathbf{RQ} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} 10 \\ 24 \end{pmatrix}$	$\begin{pmatrix} -4 \\ -10 \end{pmatrix}$ scores M0A0 in (c) but				
	allow all the marks in (d) and (e)					
			(2)			
(d)	$\det\left(\mathbf{QR}\right) = -2 \times 2 - 0 = -4$	"-2"x"2" – "0"x"0"	M1			
		4	A1 (2)			
	Answer only scores 2/2					
	1					
	$\overline{\det(\mathbf{Q}\mathbf{R})}$ scores Mo	0				
(e)	Area of $T = \frac{1}{2} \times 1 \times 3 = \frac{3}{2}$	Correct area for T	B1			
	3	Attempt at " $\frac{3}{2}$ "×±"4"	M1			
	Area of $T'' = \frac{3}{2} \times 4 = 6$	6 or follow through their det(QR) x Their triangle area provided area > 0	A1ft			
			(3)			
			Total 11			

Mathematics FP1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

6667

The roots of	of the equation	
	$z^3 - 8z^2 + 22z - 20 = 0$	
are z_1 , z_2 a	and z_3 .	
(a) Given	that $z_1 = 3 + i$, find z_2 and z_3 .	(4)
(b) Show,	, on a single Argand diagram, the points representing z_1 , z_2 and z_3 .	(2)

Winter 2012 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
5(a)	$(z_2) = 3 - i$		B1
	$(z - (3+i))(z - (3-i)) = z^2 - 6z + 10$	Attempt to expand $(z - (3+i))(z - (3-i))$ or any valid method to establish the quadratic factor e.g. $z = 3 \pm i \Rightarrow z - 3 = \pm i \Rightarrow z^2 - 6z + 9 = -1$ $z = 3 \pm \sqrt{-1} = \frac{6 \pm \sqrt{-4}}{2} \Rightarrow b = -6, c = 10$ Sum of roots 6, product of roots 10 $\therefore z^2 - 6z + 10$	M1
	$(z^2 - 6z + 10)(z - 2) = 0$	Attempt at linear factor with their cd in $(z^2 + az + c)(z + d) = \pm 20$ Or $(z^2 - 6z + 10)(z + a) \Rightarrow 10a = -20$ Or attempts f(2)	M1
	$(z_3) = 2$		A1
	_	oring both M's so it is possible to gain all	(4)
	4 marks quite easily e.g. $z_2 = 3 - i$ B1, s Answers only can score 4/4	snows $f(2) \equiv 0$ M2, $z_3 = 2$ A1.	
5(b)	with coordinates (allow points/lines/cross on imaginary axis.	rectly with an indication of scale or labelled es/vectors etc.) Allow <i>i/-i</i> for 1/-1 marked ative to the conjugate pair with an indication	B1 B1
			Total 6

www.mystudybro.com

Mathematics FP1

■ Past Paper This resource was created and owned by Pearson Edexcel

0007

Leave blank

6. (a) Prove by induction

$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$
 (5)

(b) Using the result in part (a), show that

$$\sum_{r=1}^{n} (r^3 - 2) = \frac{1}{4} n(n^3 + 2n^2 + n - 8)$$
(3)

	50	
(c)	Calculate the exact value of $\sum (r^3 - 2)$.	
()	r=20	(2)
	7-20	(3)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics	FP1
	0007

Question Number	Scheme	Notes	Marks
6(a)	$n = 1$, LHS = $1^3 = 1$, RHS = $\frac{1}{4} \times 1^2 \times 2^2 = 1$	Shows both LHS = 1 and RHS = 1	B1
	Assume true for $n = k$		
	When $n = k + 1$		
	$\sum_{r=1}^{k+1} r^3 = \frac{1}{4}k^2(k+1)^2 + (k+1)^3$	Adds $(k + 1)^3$ to the given result	M1
	1	Attempt to factorise out $\frac{1}{4}(k+1)^2$	dM1
	$= \frac{1}{4}(k+1)^2[k^2+4(k+1)]$	Correct expression with	
	7	$\frac{1}{4}(k+1)^2$ factorised out.	A1
	$= \frac{1}{4}(k+1)^{2}(k+2)^{2}$ Must see 4 things: true for $n = 1$	Fully complete proof with no errors and comment. All the previous marks must	A1cso
	Must see 4 things: $\underline{\text{true for } n = 1}$, $\underline{\text{assumption true for } n = k$, $\underline{\text{said true for } n = k + 1}$ and therefore $\underline{\text{true for all } n}$	have been scored.	Aicso
	See extra notes for	alternative approaches	(5)
(b)	$\sum (r^3 - 2) = \sum r^3 - \sum 2$	Attempt two sums	M1
	$\sum r^3 - \sum$	$\sum 2n$ is M0	
	$=\frac{1}{4}n^2\left(n+1\right)^2-2n$	Correct expression	A1
	$= \frac{n}{4}(n^3 + 2n^2 + n - 8) *$	Completion to printed answer with no errors seen.	A1
			(3)
(c)	$\sum_{r=20}^{r=50} (r^3 - 2) = \frac{50}{4} \times 130042 - \frac{19}{4} \times 7592$	Attempt $S_{50} - S_{20}$ or $S_{50} - S_{19}$ and substitutes into a correct expression at least once.	M1
	(=1625525 – 36062)	Correct numerical expression (unsimplified)	A1
	= 1 589 463	cao	A1
			(3)
(c) Way 2	$\sum_{r=20}^{r=50} (r^3 - 2) = \sum_{r=20}^{r=50} r^3 - \sum_{r=20}^{r=50} (2) = \frac{50^2}{4} \times 51^2 - \frac{1}{2} \times 51^2 = \frac{1}{2} \times 51^2 - \frac{1}{2} \times 51^2 = \frac{1}{2} \times 51^2 - \frac{1}{2} \times 51^2 = \frac{1}{2} \times 51^2$	$-\frac{19^{2}}{4} \times 20^{2} - 2 \times 31 \begin{vmatrix} M1 \text{ for } (S_{50} - S_{20} \text{ or } S_{50} \\ -S_{19} \text{ for cubes}) - (2x30 \\ \text{or } 2x31) \end{vmatrix}$ A1 correct numerical expression	Total 11
	=1 589 463	A1	

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

7. A sequence can be described by the recurrence formula	blank
$u_{n+1} = 2u_n + 1, \qquad n \geqslant 1, u_1 = 1$	
(a) Find u_2 and u_3 . (2)	
(b) Prove by induction that $u_n = 2^n - 1$ (5)	

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics	FP1
	6667

Question Number	Scheme	Notes	Marks
7(a)	$u_2 = 3, \ u_3 = 7$		B1, B1
			(2)
(b)	At $n = 1$, $u_1 = 2^1 - 1 = 1$ and so result true for $n = 1$		B1
	Assume true for $n = k$; $u_k = 2^k - 1$		
	1 (2 . 1) 2(2k 1) . 1	Substitutes u_k into u_{k+1} (must see this line)	M1
	and so $u_{k+1} (= 2u_k + 1) = 2(2^k - 1) + 1$	Correct expression	A1
	$u_{k+1} (= 2^{k+1} - 2 + 1) = 2^{k+1} - 1$	Correct completion to $u_{k+1} = 2^{k+1} - 1$	A1
	Must see 4 things: $\underline{\text{true for } n = 1}$, $\underline{\text{assumption true for } n = k$, $\underline{\text{said true for } n = k + 1}$ and therefore $\underline{\text{true for all } n}$	Fully complete proof with no errors and comment. All the previous marks in (b) must have been scored.	Alcso
	Ignore any subsequent attempts e.g. u_i	$u_{k+2} = 2u_{k+1} + 1 = 2(2^{k+1} - 1) + 1$ etc.	(5)
			Total 7

■ Past Paper

www.mystudybro.com

Mathematics FP1

This resource was created and owned by Pearson Edexcel

Leave

blank

8.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$$

(a) Show that A is non-singular.

(2)

(b) Find **B** such that $\mathbf{B}\mathbf{A}^2 = \mathbf{A}$.

(4)

Winter 2012 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Mathematics FP1

0007

Question Number	Scheme		Notes	Marks
8(a)	$\det(\mathbf{A}) = 3 \times 0 - 2 \times 1 (= -2)$	Correct attem	pt at the determinant	M1
	$det(\mathbf{A}) \neq 0$ (so A is non singular)	$det(A) = -2 \mathbf{a}$	nd some reference to zero	A1
	$\frac{1}{\det(\mathbf{A})}$	scores M0		(2)
(b)	$\mathbf{B}\mathbf{A}^2 = \mathbf{A} \Rightarrow \mathbf{B}\mathbf{A} = \mathbf{I} \Rightarrow \mathbf{B} = \mathbf{A}^{-1}$	Recognising	that A^{-1} is required	M1
	1(3-1)		rect terms in $\begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$	M1
	$\mathbf{B} = -\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$	$\frac{1}{\text{their} \det(A)} \bigg($		B1ft
	Comment or one	Fully correct		A1 (4)
	Ignore poor matrix algebra	er only score 4/ notation if the		Total 6
(b) Way 2	$\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$		Correct matrix	B1
	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow \begin{cases} 2a + 6b = 0 \\ 3a + 11b = 1 \end{cases} o $	2c + 6d = 2 $3c + 11d = 3$	2 equations in a and b or 2 equations in c and d	M1
	$a = -\frac{3}{2}, b = \frac{1}{2}, c = 1, d = 0$		M1 Solves for a and b or c and d	M1A1
	2 2		A1 All 4 values correct	
(b) Way 3	$\mathbf{A}^2 = \begin{pmatrix} 2 & 3 \\ 6 & 11 \end{pmatrix}$		Correct matrix	B1
	$\left(\mathbf{A}^{2}\right)^{-1} = \frac{1}{"2"\times"11"-"3"\times"6"} \begin{pmatrix} "11" & "-12" \\ "-6" & "22" \end{pmatrix}$	see note	Attempt inverse of A ²	M1
	$\mathbf{A} \left(\mathbf{A}^2 \right)^{-1} = \frac{1}{4} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 11 & -3 \\ -6 & 2 \end{pmatrix} or \frac{1}{4} \begin{pmatrix} 11 \\ -6 \end{pmatrix}$	$\begin{array}{c} -3 \\ 2 \end{array} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}$	Attempts $\mathbf{A}(\mathbf{A}^2)^{-1} or(\mathbf{A}^2)^{-1} \mathbf{A}$	M1
	$\mathbf{B} = -\frac{1}{2} \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$		Fully correct answer	A1
(b) Way 4	BA = I		Recognising that $\mathbf{B}\mathbf{A} = \mathbf{I}$	B1
(0) 11 41	$ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow \begin{cases} 2b = 1 \\ a + 3b = 0 \end{cases} or $ $ a = -\frac{3}{2}, b = \frac{1}{2}, c = 1, d = 0 $	2d = 0 $c + 3d = 1$	2 equations in a and b or 2 equations in c and d	M1
	$a = -\frac{3}{2}, b = \frac{1}{2}, c = 1, d = 0$		M1 Solves for a and b or c and d	M1A1
			A1 All 4 values correct	

9. The rectangular hyperbola H has cartesian equation xy = 9

The points $P\left(3p, \frac{3}{p}\right)$ and $Q\left(3q, \frac{3}{q}\right)$ lie on H, where $p \neq \pm q$.

(a) Show that the equation of the tangent at P is $x + p^2y = 6p$.

(4)

(b) Write down the equation of the tangent at Q.

(1)

The tangent at the point P and the tangent at the point Q intersect at R.

(c) Find, as single fractions in their simplest form, the coordinates of R in terms of p and q.

(4)

Mathematics FP1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
9 (a)	$y = 9x^{-1} \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -9x^{-2}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = k x^{-2}$	
	$xy = 9 \Rightarrow x \frac{\mathrm{d}y}{\mathrm{d}x} + y = 0$	Correct use of product rule. The sum of two terms, one of which is correct.	M1
	or $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{-3}{p^2} \cdot \frac{1}{3}$	their $\frac{dy}{dt} \times \left(\frac{1}{\text{their } \frac{dx}{dt}} \right)$	WII
	$\frac{dy}{dx} = -9x^{-2} \text{ or } x \frac{dy}{dx} + y = 0 \text{ or } \frac{dy}{dx} = \frac{-3}{p^2} \cdot \frac{1}{3}$	Correct differentiation.	A1
		Applies $y - \frac{3}{p} = (\text{their } m)(x - 3p) \text{ or }$	
	$y - \frac{3}{p} = -\frac{1}{p^2}(x - 3p)$	y = (their m)x + c using	M1
		$x = 3p$ and $y = \frac{3}{p}$ in an attempt to find c.	
		Their m must be a function of p and come from their dy/dx.	
	$x + p^2 y = 6p *$	Cso **given answer**	A1
	Special case – if the correct gradient	is <u>quoted</u> could score M0A0M1A1	(4)
(b)	$x + q^2 y = 6q$	Allow this to score here or in (c)	B1
(c)	$6p - p^2y = 6q - q^2y$	Attempt to obtain an equation in one variable <i>x</i> or <i>y</i>	(1) M1
	$y(q^{2} - p^{2}) = 6(q - p) \Rightarrow y = \frac{6(q - p)}{q^{2} - p^{2}}$ $x(q^{2} - p^{2}) = 6pq(q - p) \Rightarrow x = \frac{6pq(q - p)}{q^{2} - p^{2}}$	Attempt to isolate x or y – must reach x or $y = f(p, q)$ or $f(p)$ or $f(q)$	M1
	$y = \frac{6}{p+q}$	One correct simplified coordinate	A1
	$x = \frac{6pq}{p+q}$	Both coordinates correct and simplified	A1
	r 1		(4)
			Total 9