Past Paper

This resource was created and owned by Pearson Edexcel

Surname	Other n	ames
Pearson Edexcel GCE	Centre Number	Candidate Number
Further I Mathem	atics FP1	
Advanced/Advan	icea Subsidiary	

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Past Paper

Leave blank

1.

$$f(x) = \frac{1}{3}x^2 + \frac{4}{x^2} - 2x - 1, \quad x > 0$$

(a) Show that the equation f(x) = 0 has a root α in the interval [6,7]

(2)

(b) Taking 6 as a first approximation to α , apply the Newton-Raphson process once to f(x) to obtain a second approximation to α . Give your answer to 2 decimal places.

(5)

Mathematics FP1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question	Scheme	Marks
Number	Selicine	Tracks
1.	$f(x) = \frac{1}{3}x^2 + \frac{4}{x^2} - 2x - 1, \ x > 0$	
(a)	f(6) = -0.888888888 Either any one of $f(6) = awrt - 0.9$ or	M1
	f(7) = 1.414965986 $f(7) = awrt 1.4$	
	Sign change or $f(6) = -ve$ and $f(7) = +ve$ or Both $f(6) = awrt - 0.9$ and $f(7) = awrt 1.4$,	A1
	$f(6) \times f(7) = -\text{ ve o.e. (and } f(x) \text{ is continuous)}$ sign change and conclusion.	
	therefore a root $/\alpha$ (exists between $x = 6$ and $x = 7$) o.e. Allow $f(6) = -\frac{8}{9}$ and $f(7) = \frac{208}{147}$.	
		[2]
(b)	$f'(x) = \frac{2}{3}x - \frac{8}{x^3} - 2$ $\frac{1}{3}x^2 \to \pm Ax \text{ or } \frac{4}{x^2} \to \pm Bx^{-3} \text{ or } -2x - 1 \to -2$	M1
	At least two of these terms differentiated correctly.	A1
	Correct derivative.	A1
	$\{f'(6) = 1.962962963\}$ $f'(6) = \frac{53}{27}$	
	("-0 88888888 ") Correct application of Newton-Raphson	M1
	$\alpha \simeq 6 - \left(\frac{\text{"-0.88888888"}}{\text{"1.962962963"}}\right)$ Correct application of Newton-Raphson using their values.	
	= 6.452830189 342	
	= 6.452830189 Exact form of α is $\frac{342}{53}$	
	=6.45 (2 dp) 6.45	A1 cso
		[5] 7
	Question 1 Notes	
1. (a)	Note Accept at least 'sign change therefore root' o.e. for A1.	
(b)	Any incorrect statements made in the conclusion award A0. Note Denominator in NR calculation may contain evidence for first 3 marks.	
(0)	Correct answer of 6.45 with minimal working will imply earlier marks for elements not e	explicitly
	stated. However, incorrect values leading to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to a correct final answer should be marked according to the correct final answer should be marked according to the correct final answer should be marked according to the correct final answer should be marked according to the correct final answer should be according to the correct f	
		<i>- ,</i>

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

.

blank

6667

Leave

DO NOT WRITE IN THIS AREA

2.

Past Paper

$$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix}, \quad \mathbf{P} = \begin{pmatrix} 3 & 6 \\ 11 & -8 \end{pmatrix}$$

(a) Find A^{-1}

(2)

The transformation represented by the matrix $\bf B$ followed by the transformation represented by the matrix $\bf A$ is equivalent to the transformation represented by the matrix $\bf P$.

(b) Find ${\bf B}$, giving your answer in its simplest form.

(3)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel **Mathematics FP1**

6667

Past Paper (Mark Scheme)

Question Number	Scheme		Ma	rks
2.	$\mathbf{A} = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} 3 & 6 \\ 11 & -8 \end{pmatrix}$			
(a)	$\mathbf{A}^{-1} = \frac{1}{10} \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix}$	Either $\frac{1}{10}$ or $\begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix}$	M1	
(b)	P = AB	Correct matrix seen.	A1	[2]
Way 1	$\Rightarrow \mathbf{A}^{-1}\mathbf{P} = \mathbf{A}^{-1}\mathbf{A}\mathbf{B} \Rightarrow \mathbf{B} = \mathbf{A}^{-1}\mathbf{P}$			
	$\mathbf{B} = \frac{1}{10} \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} 3 & 6 \\ 11 & -8 \end{pmatrix}$	Multiplies their A^{-1} by P in correct order. This substituted statement is sufficient.	M1	
	$= \begin{pmatrix} 2 & 1 \\ 1 & -4 \end{pmatrix} $ A	t least 2 elements correct or $k \begin{pmatrix} 20 & 10 \\ 10 & -40 \end{pmatrix}$ oe.	A1	
		May be unsimplified Correct simplified matrix.	A1	
				[3]
	$\{\mathbf{P} = \mathbf{A}\mathbf{B} \Rightarrow\}$			
way 2	$ \begin{pmatrix} 3 & 6 \\ 11 & -8 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} $			
	$ \begin{pmatrix} 3 & 6 \\ 11 & -8 \end{pmatrix} = \begin{pmatrix} 2a - c & 2b - d \\ 4a + 3c & 4b + 3d \end{pmatrix} $ At	tempt to multiply A by B in the correct order and puts equal to P	M1	
	$\Rightarrow a = 2, c = 1, b = 1, d = -4$	At least 2 elements are correct.	A1	
	So, $\mathbf{B} = \begin{pmatrix} 2 & 1 \\ 1 & -4 \end{pmatrix}$	Correct matrix.	A1	
	(* ')	Correct matrix.	AI	[2]
				[3] 5

Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

The rectangular hyperbola H has parametric equations

$$x = 4t, \quad y = \frac{4}{t} \qquad t \neq 0$$

The points P and Q on this hyperbola have parameters $t = \frac{1}{4}$ and t = 2 respectively.

The line l passes through the origin O and is perpendicular to the line PQ.

(a) Find an equation for l.

(3)

(b) Find a cartesian equation for H.

(1)

(c) Find the exact coordinates of the two points where l intersects H. Give your answers in their simplest form.

(3)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics FP1 6667

Question	Scheme		Marks
Number	Some		1,141115
3. (a)	$x = 4t, \ y = \frac{4}{t}, \ t \neq 0$		
	$t = \frac{1}{4} \Rightarrow P(1, 16), t = 2 \Rightarrow Q(8, 2)$	Coordinates for either P or Q are correctly stated. (Can be implied).	B1
	(2-16) (2)	Finds the gradient of the chord PQ with	M1
	$m(PQ) = \frac{2-16}{8-1} \ \left\{ = -2 \right\}$	$\frac{y_2 - y_1}{x_2 - x_1}$ then uses in $y = -\frac{1}{m}x$.	
		Condone incorrect sign of gradient.	
	$m(l) = \frac{1}{2}$		
	So, $l: y = \frac{1}{2}x$ or $2y = x$	$y = \frac{1}{2}x \text{or} 2y = x$	A1 oe
			[3]
(b)	$xy = 16 \text{ or } y = \frac{16}{x} \text{ or } x = \frac{16}{y}$	Correct Cartesian equation. Accept	B1 oe
	x y	$\frac{4}{y} = \frac{x}{4} \text{ or } xy = 4^2$	
(-)	W1 W2 W2		[1]
(c)	Way 1 Way 2 Way 3 $4 + 1 = 16$ $2 + 16$	Attempts to substitute their l into either	M1
	$\frac{1}{2}x = \frac{16}{x} \qquad \frac{4}{t} = \frac{1}{2}(4t) \qquad 2y = \frac{16}{y}$ $\{x^2 = 32\} \qquad \{t^2 = 2\} \qquad \{y^2 = 8\}$	their Cartesian equation or parametric equations of <i>H</i>	
	${x^2 = 32}$ ${t^2 = 2}$ ${y^2 = 8}$	•	
	$(4\sqrt{2}, 2\sqrt{2}), (-4\sqrt{2}, -2\sqrt{2})$	At least one set of coordinates	A1
	, ((simplified or un-simplified) or $x = \pm 4\sqrt{2}$, $y = \pm 2\sqrt{2}$	
		$x = \pm 4\sqrt{2}$, $y = \pm 2\sqrt{2}$ Both sets of simplified coordinates.	A1
		Accept written in pairs as	111
		$x = 4\sqrt{2}$, $y = 2\sqrt{2}$	
		$x = -4\sqrt{2}$, $y = -2\sqrt{2}$	
			[3] 7

This resource was created and owned by Pearson Edexcel

Leave blank

(i) The complex number w is given by

$$w = \frac{p - 4i}{2 - 3i}$$

where p is a real constant.

(a) Express w in the form a + bi, where a and b are real constants. Give your answer in its simplest form in terms of p.

(3)

Given that arg $w = \frac{\pi}{4}$

(b) find the value of p.

(2)

(ii) The complex number z is given by

$$z = (1 - \lambda i)(4 + 3i)$$

where λ is a real constant.

Given that

$$|z| = 45$$

find the possible values of λ .

Give your answers as exact values in their simplest form.

(3)

(3)	

Question	Scheme	Ma	rks
Number 4. (i)	Mark (i)(a) and (i)(b) together.		
	$w = \frac{p - 4i}{2 - 3i} \qquad \arg w = \frac{\pi}{4}$		
(a) Way 1	$w = \frac{(p-4i)}{(2-3i)} \times \frac{(2+3i)}{(2+3i)}$ $= \left(\frac{2p+12}{13}\right) + \left(\frac{3p-8}{13}\right)i$ At least one of either the real or imaginary part of w is correct. Must be expanded but	M1	
	$= \left(\frac{2p+12}{13}\right) + \left(\frac{3p-8}{13}\right)i$ At least one of either the real or imaginary part of w is correct. Must be expanded but could be unsimplified e.g. expressed as single fraction. Condone $a+ib$. Correct w in its simplest form.	A1 A1	
(a) Way 2	(a+ib)(2-3i) = (p-4i)		[3]
way 2	2a+3b=p Multiplies out to obtain 2 equations in two unknowns.	M1	
	$= \left(\frac{2p+12}{13}\right) + \left(\frac{3p-8}{13}\right)i$ At least one of either the real or imaginary part of w is correct. Must be expanded but could be unsimplified e.g. expressed as single fraction. Condone $a+ib$. Correct w in its simplest form.	A1 A1	
(b)	$\left\{\arg w = \frac{\pi}{4} \Rightarrow \right\} 2p + 12 = 3p - 8 \text{ o.e. seen anywhere.} $ Sets the numerators of the real part of their w equal to the imaginary part of their w or if arctan used, require	M1	[3]
	evidence of $\tan \frac{\pi}{4} = 1$		
	$\Rightarrow p = 20$ $p = 20$	A1	[2]
(ii)	$z = (1 - \lambda i)(4 + 3i)$ and $ z = 45$		[2]
Way 1	$\sqrt{1+\lambda^2} \sqrt{4^2+3^2}$ Attempts to apply $ (1-\lambda i)(4+3i) = \sqrt{1+\lambda^2} \sqrt{4^2+3^2}$	M1	
	$\sqrt{1+\lambda^2} \sqrt{4^2+3^2} = 45$ Correct equation.	A1	
	$\left\{\lambda^2 = 9^2 - 1 \Rightarrow \right\} \lambda = \pm 4\sqrt{5}$ $\lambda = \pm 4\sqrt{5}$	A1	
Way 2	$z = (4 + 3\lambda) + (3 - 4\lambda)i$ Attempt to multiply out, group real and imaginary parts and apply the modulus.	M1	[3]
	$(4+3\lambda)^2 + (3-4\lambda)^2 = 45^2 \text{ or}$ Correct equation.	A1	
	$\sqrt{(4+3\lambda)^2 + (3-4\lambda)^2} = 45$		
	$\left\{16 + 24\lambda + 9\lambda^2 + 9 - 24\lambda + 16\lambda^2 = 2025\right\}$ Condone if middle terms in expansions not explicitly stated.		
	$\left\{25\lambda^2 = 2000 \Longrightarrow\right\} \lambda = \pm 4\sqrt{5}$ $\lambda = \pm 4\sqrt{5}$	A1	
			[3] 8
	Question 4 Notes		Ō
(ii)	M1 Also allow $(1+\lambda^2)(4^2+3^2)$ for M1.		
	M1 Also allow $(4 + 3\lambda)^2 + (3 - 4\lambda)^2$ for M1.		

5. (i)

$$\mathbf{A} = \begin{pmatrix} p & 2 \\ 3 & p \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} -5 & 4 \\ 6 & -5 \end{pmatrix}$$

where p is a constant.

(a) Find, in terms of p, the matrix AB

(2)

Given that

$$AB + 2A = kI$$

where k is a constant and I is the 2 × 2 identity matrix,

(b) find the value of p and the value of k.

(4)

(ii)

$$\mathbf{M} = \begin{pmatrix} a & -9 \\ 1 & 2 \end{pmatrix}, \text{ where } a \text{ is a real constant}$$

Triangle *T* has an area of 15 square units.

Triangle T is transformed to the triangle T' by the transformation represented by the matrix M.

Given that the area of triangle T' is 270 square units, find the possible values of a.

(5)

Summer 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Question	Scheme	Ma	ırks
Number 5. (i)	$(p \ 2) \ (-5 \ 4) \ (a \ -9)$ p, a are constants.		
	$\mathbf{A} = \begin{pmatrix} p & 2 \\ 3 & p \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} -5 & 4 \\ 6 & -5 \end{pmatrix}, \ \mathbf{M} = \begin{pmatrix} a & -9 \\ 1 & 2 \end{pmatrix}$ p, a are constants.		
(a)	$\{\mathbf{AB}\} = \begin{pmatrix} -5p + 12 & 4p - 10 \\ -15 + 6p & 12 - 5p \end{pmatrix}$ At least 2 elements are correct.	M1	
	$\{\mathbf{AB}\} = \begin{pmatrix} -15 + 6p & 12 - 5p \end{pmatrix}$ Correct matrix.	A1	
			[2]
(b)	$\left\{ \mathbf{AB} + 2\mathbf{A} = k\mathbf{I} \right\}$		
	$\begin{pmatrix} -5p+12 & 4p-10 \\ -15+6p & 12-5p \end{pmatrix} + 2 \begin{pmatrix} p & 2 \\ 3 & p \end{pmatrix} = k \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ If 'simultaneous equations' used, allocate marks as below.		
	$\begin{pmatrix} -3p+12 & 4p-6 \\ -9+6p & 12-3p \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$		
	"4p-10"+4=0 or $"-15+6p"+6=0$ Forms an equation in p	M1	
	or " $-9+6p$ " = " $4p-6$ "		
	$\Rightarrow p = \frac{3}{2}$ o.e.	A 1	
	2	M1	
	$k = -5\left(\frac{3}{2}\right) + 12 + 2\left(\frac{3}{2}\right) \Rightarrow k = \dots$ Substitutes their $p = \frac{3}{2}$ into "their $(-5p + 12)$ " + $2p$	1411	
	to find a value for k or eliminates p to find k .		
	$k = \frac{15}{2}$ oe	Al	
			[4]
(ii)	$\pm \frac{270}{15}$ {= ± 18 }	B1	
Way 1	det $\mathbf{M} = (a)(2) - (-9)(1)$ Applies $ad - bc$ to \mathbf{M} . Require clear	M1	
	evidence of correct formula being used for M1	1/11	
	if errors seen.		
	$\Rightarrow 2a+9=18$ or $2a+9=-18$ Equates their det A to either 18 or -18 $\Rightarrow a=4.5$ or $a=-13.5$ At least one of either $a=4.5$ or $a=-13.5$	M1 A1	
	a = 4.5 of $a = -13.5Both a = 4.5 and a = -13.5$	A1	
		111	[5]
(ii)	Consider vertices of triangle with area 15 units	B1	
Way 2	e.g. $(0,0)$, $(15,0)$ and $(0,2)$ and attempting 2 values of a .		
	e.g. $\begin{pmatrix} a & -9 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 15 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 15a & -18 \\ 0 & 15 & 4 \end{pmatrix}$ Pre-multiplies their matrix by M and obtains single matrix	M1	
	e.g. $\frac{1}{2}\begin{vmatrix} 0 & 15a & -18 & 0 \\ 0 & 15 & 4 & 0 \end{vmatrix} = 270$ Equates their determinant to 270 and attempts to solve.	M1	
	· ·		
	$\Rightarrow a = 4.5$ or $a = -13.5$ At least one of either $a = 4.5$ or $a = -13.5$	A1	
	Both $a = 4.5$ and $a = -13.5$	A1	
			[5]
			11

This resource was created and owned by Pearson Edexcel

6667

DO NOT WRITE IN THIS AREA

Leave blank

6. Given that 4 and 2i - 3 are roots of the equation

$$x^3 + ax^2 + bx - 52 = 0$$

where a and b are real constants,

(a) write down the third root of the equation,

(1)

(b) find the value of a and the value of b.

(5)

Question Number	Scheme		Marks
6.	$x^3 + ax^2 + bx - 52 = 0$, $a, b \in \mathbb{R}$, 4 and 2i – 3 are	re roots	
(a)	-2i-3	-2i-3 seen anywhere in solution for Q6.	B1 [1]
(b) Way 1	$(x-(2i-3))(x-"(-2i-3)"); = x^2 + 6x + 13 \text{ or}$ $x = -3 \pm 2i \Rightarrow (x+3)^2 = -4; = x^2 + 6x + 13 = 0)$ $(x-4)(x-(2i-3)); = x^2 - (1+2i)x + 4(2i-3)$ $(x-4)(x-"(-2i-3)"); = x^2 - (1-2i)x + 4(-2i-3)$	Must follow from their part (a). Any incorrect signs for their part (a) in initial statement award M0; accept any equivalent expanded expression for A1.	M1; A1
	$(x-4)(x^2+6x+13)$ {= $x^3+ax^2+bx-52$ }	$(x-3^{rd} \text{ root})$ (their quadratic).	M1
	$a=2$, $b=-11$ or $x^3+2x^2-11x-52$	Could be found by comparing coefficients from long division. At least one of $a = 2$ or $b = -11$ Both $a = 2$ and $b = -11$	A1 A1 [5]
(b) Way 2	Sum = $(2i-3) + "(-2i-3)" = -6$ Product = $(2i-3) \times "(-2i-3)" = 13$	Attempts to apply either $x^2 - (\text{sum roots})x + (\text{product roots}) = 0$	M1
	So quadratic is $x^2 + 6x + 13$	or $x^2 - 2\operatorname{Re}(\alpha)x + \left \alpha^2\right = 0$	
		$x^2 + 6x + 13$	A1
	$(x-4)(x^2+6x+13)$ {= $x^3+ax^2+bx-52$ }	$(x-3^{rd} \text{ root})$ (their quadratic)	M1
	$a=2$, $b=-11$ or $x^3+2x^2-11x-52$	At least one of $a = 2$ or $b = -11$	A1
		Both $a=2$ and $b=-11$	A1
(b)	$(2i-3)^3 + a(2i-3)^2 + b(2i-3) - 52 = 0$		[5]
Way 3	5a-3b=43 (real parts) and $6a-b=23$ (imaginary parts) or uses $f(4)=0$ and $f(a complex root)=0$ to form equations in a and b .	Substitutes $2i-3$ into the displayed equation and equates both real and imaginary parts. $5a-3b=43$ and $6a-b=23$ or	M1 A1
		$16a + 4b = -12 \text{ and}$ $(2i-3)^3 + a(2i-3)^2 + b(2i-3) - 52 = 0 /$	
	So $a = 2$, $b = -11$ or $x^3 + 2x^2 - 11x - 52$	$(-2i-3)^3 + a(-2i-3)^2 + b(-2i-3) - 52 = 0$ Solves these equations simultaneously to find at least one of either $a =$ or $b =$	M1
		At least one of $a = 2$ or $b = -11$	A1
		Both $a=2$ and $b=-11$	A1 [5]
(b) Way 4	b = sum of product pairs	Attempts sum of product pairs.	M1
	= 4(2i-3) + 4"(-2i-3)" + (2i-3)"(-2i-3)" $a = -(sum of 3 roots) = -(4+2i-3"-2i-3")$	All pairs correct o.e. Adds up all 3 roots	A1 M1
	$a=2$, $b=-11$ or $x^3+2x^2-11x-52$	At least one of $a = 2$ or $b = -11$	A1
		Both $a=2$ and $b=-11$	A1
			[5]

Summer 2017

www.mystudybro.com

Mathematics FP1

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

(b) Uses f(4) = 0M1Way 5 16a + 4b = -12A1a = -(sum of 3 roots) = -(4 + 2i - 3'' - 2i - 3'')Adds up all 3 roots M1a=2, b=-11 or $x^3+2x^2-11x-52$ At least one of a=2 or b=-11A1Both a=2 and b=-11A1[5] 6

Past Paper

Leave blank

- The parabola C has equation $y^2 = 4ax$, where a is a constant and a > 0The point $Q(aq^2, 2aq)$, q > 0, lies on the parabola C.
 - (a) Show that an equation of the tangent to C at Q is

$$qy = x + aq^2 \tag{4}$$

The tangent to C at the point Q meets the x-axis at the point $X\left(-\frac{1}{4}a,0\right)$ and meets the directrix of C at the point D.

(b) Find, in terms of a, the coordinates of D.

(4)

Given that the point F is the focus of the parabola C,

(c) find the area, in terms of a, of the triangle FXD, giving your answer in its simplest form.

(2)

Mathematics FP1

Summer 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Questin Number	Scheme		Marks
7.	$y^2 = 4ax$, at $Q(aq^2, 2aq)$		
(a)	$y = 4ax, \text{ at } \mathcal{G}(dq^{-1}, 2dq)$ $y = 2\sqrt{a}x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \sqrt{a}x^{-\frac{1}{2}} \text{ or } 2y\frac{dy}{dx} = 4a \text{ or } \frac{dy}{dx} = 2a \times \frac{1}{2aq}$	ar .	M1
		$\frac{\text{their } \frac{dy}{dq}}{\text{their } \frac{dx}{dq}}$	
	When $x = aq^2$, $m_T = \frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{a q^2}} = \frac{\sqrt{a}}{\sqrt{a} q} = \frac{1}{q}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{q}$	A1
	or when $y = 2aq$, $m_T = \frac{dy}{dx} = \frac{4a}{2(2aq)} = \frac{1}{q}$		
	$\mathbf{T}: \ y - 2aq = \frac{1}{q} \left(x - aq^2 \right)$	Applies $y - 2aq = (\text{their } m_T)(x - aq^2)$	dM1
		or $y = (\text{their } m_T)x + c$ and an attempt to find c with gradient from calculus.	
	$T: qy - 2aq^2 = x - aq^2$	from calculus.	
	$T: qy = x + aq^{2} *$	cso	A1 * [4]
(b)	$X\left(-\frac{1}{4}a,0\right) \Rightarrow 0 = -\frac{1}{4}a + aq^2$	Substitutes $x = -\frac{1}{4}a$ and $y = 0$ into T	M1
	$\Rightarrow \left\{ q^2 = \frac{1}{4} \Rightarrow q = -\frac{1}{2} \text{ (reject)} \right\} \ q = \frac{1}{2}$	$q = \frac{1}{2}$ oe	A1
	So, $\frac{1}{2}y = -a + a\left(\frac{1}{2}\right)^2$	Substitutes their " $q = \frac{1}{2}$ " and $x = -a$ in T or finds	M1
		$y_D = \frac{1}{q} \left(-a + aq^2 \right)$	
	giving, $y = -\frac{3a}{2}$. So $D(-a, -\frac{3}{2}a)$ o.e.	$D\left(-a,-\frac{3}{2}a\right)$ o.e.	
(c)			[4]
XX/ 1	$\{\text{focus } F(a,0)\}$	A	M1
Way 1	Area(FXD) = $\frac{1}{2} \left(\frac{5a}{4} \right) \left(\frac{3a}{2} \right) = \frac{15a^2}{16}$	Applies $\frac{1}{2}(\text{their } FX)(\text{their } y_D).$	M1
		If their $y_D = \frac{1}{q}(-a + aq^2)$ then	
		require an attempt to sub for q to award M.	
		$\frac{15a^2}{16}$ or $0.9375a^2$	A1 cso
			[2]

www.mystudybro.com

Mathematics FP1

6667

10

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

Area(FXD) = $\frac{1}{2}\begin{vmatrix} a & -\frac{1}{4}a & -a & a \\ 0 & 0 & -\frac{3}{2}a & 0 \end{vmatrix}$ $=\frac{1}{2}\left[0+\frac{3}{8}a^2+0\right]-\left(0+0-\frac{3}{2}a^2\right]=\frac{15}{16}a^2$ M1A correct attempt to apply the shoelace method. A1cao $\frac{15a^2}{16}$ or $0.9375a^2$ [2] Rectangle – triangle 1 – triangle 2 (c) Way 3 M1 $=2a.\frac{3a}{2}-\frac{1}{2}.\frac{3a}{4}.\frac{3a}{2}-\frac{1}{2}.2a.\frac{3a}{2}=3a^2-\frac{9a^2}{16}-\frac{3a^2}{2}$ $\frac{15a^2}{16}$ or $0.9375a^2$ A1cao Attempts sine rule using appropriate choice from (c) Uses Area = $\frac{1}{2}ab\sin C$ Wav 4 $FX = \frac{5a}{4}$, $FD = \frac{5a}{2}$, $DX = \frac{3\sqrt{5}a}{4}$, $\sin F = \frac{3}{5}$, $\sin X = \frac{2}{\sqrt{5}}$ $\frac{15a^2}{16}$ or $0.9375a^2$ A1cao

	Question 7 Notes
(c) Way 1	Do not award M1 if area of wrong triangle found e.g. $\frac{1}{2}.2a.\frac{3a}{2} = \frac{3a^2}{2}$

DO NOT WRITE IN THIS AREA

Past Paper

Leave blank

(a) Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that

$$\sum_{r=1}^{n} (3r^2 + 8r + 3) = \frac{1}{2}n(2n+5)(n+3)$$

for all positive integers n.

(5)

Given that

$$\sum_{r=1}^{12} (3r^2 + 8r + 3 + k(2^{r-1})) = 3520$$

(b) find the exact value of the constant k.

(4)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Past Paper (Mark Scheme) 6667

Question	Scheme	Marks
Number		
8. (a)	$\sum_{r=1}^{n} (3r^2 + 8r + 3)$	
	$= \frac{3}{6}n(n+1)(2n+1) + \frac{8}{2}n(n+1) + 3n$ An attempt to use at least one of the correct standard formulae for first two terms.	M1
	Correct first two terms. $3 \rightarrow 3n$	A1 B1
	$= \frac{1}{2}n(n+1)(2n+1) + 4n(n+1) + 3n$	
	Factorise out $= \frac{1}{2}n((2n+1)(n+1)+8(n+1)+6)$ at least <i>n</i> from all terms at any point. There must be a factor of <i>n</i> in every term.	M1
	$= \frac{1}{2}n(2n^2 + 3n + 1 + 8n + 8 + 6)$ $= \frac{1}{2}n(2n^2 + 11n + 15)$	
	$= \frac{1}{2}n(2n+1)n+13$ Achieves the correct answer, no errors seen.	A1*cso
	$\sum_{r=1}^{12} \left(3r^2 + 8r + 3 + k(2^{r-1}) \right) = 3520$	[5]
(b)	$\sum_{r=1}^{12} (3r^2 + 8r + 3) = \frac{1}{2} (12)(29)(15) = 2610$ Attempt to evaluate $\sum_{r=1}^{12} (3r^2 + 8r + 3)$	M1
	$\sum_{r=0}^{12} (2^{r-1}) = \frac{1(1-2^{12})}{1-2} = \{ = 4095 \}$ Attempt to apply the sum to 12 terms of a GP or adds up all 12 terms.	M1
	$\frac{1}{1-2} = \frac{1}{1-2} = \frac{1(1-2^{12})}{1-2} \text{ o.e. or } 4095.$	A1
	So, $2610 + 4095k = 3520 \Rightarrow 4095k = 910$	A1
	giving, $k = \frac{2}{9}$ or $0.\dot{2}$	
		[4] 9
	Question 8 Notes	
8. (b)	Note 2 nd M1 1 st A1: These two marks can be implied by seeing 4095 or 4095k	

Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

9. (i) A sequence of numbers is defined by

$$u_1 = 6, \qquad u_2 = 27$$

$$u_{n+2} = 6u_{n+1} - 9u_n \qquad n \geqslant 1$$

Prove by induction that, for $n \in \mathbb{Z}^+$

$$u_n = 3^n(n+1)$$

(6)

(ii) Prove by induction that, for $n \in \mathbb{Z}^+$

$$f(n) = 3^{3n-2} + 2^{3n+1}$$
 is divisible by 19

(6)

6667

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks
9. (i)	$u_{n+2} = 6u_{n+1} - 9u_n$, $n \ge 1$, $u_1 = 6$, $u_2 = 27$; $u_n = 3^n(n+1)$ $n = 1$; $u_1 = 3(2) = 6$ Check that $u_1 = 6$ and $u_2 = 27$	B1
	$n=2; u_2=3^2(2+1)=27$	
	So u_n is true when $n=1$ and $n=2$.	
	Assume that $u_k = 3^k (k+1)$ and $u_{k+1} = 3^{k+1} (k+2)$ are true. Could assume for $n = k, n = k-1$ and show for $n = k+1$	
	Then $u_{k+2} = 6u_{k+1} - 9u_k$	
	$= 6(3^{k+1})(k+2) - 9(3^k)(k+1)$ Substituting u_k and u_{k+1} into $u_{k+2} = 6u_{k+1} - 9u_k$	M1
	Correct expression $= 2(3^{k+2})(k+2) - (3^{k+2})(k+1)$ Achieves an expression in 3^{k+2}	A1 M1
	$= (3^{k+2})(2k+4-k-1)$ = $(3^{k+2})(k+3)$	
	$= (3^{k+2})(k+2+1) (3^{k+2})(k+2+1) or (3^{k+2})(k+3)$	A1
	If the result is true for $n = k$ and $n = k+1$ then it is now true for $n = k+2$. As it is true for $n = 1$ and $n = 2$ then it is true for all $n \in \mathbb{Z}^+$. Correct conclusion seen at the end. Condone true for $n = 1$ and $n = 2$ seen anywhere. This should be compatible with	A1 cso
	assumptions.	[6]
(ii)	$f(n) = 3^{3n-2} + 2^{3n+1}$ is divisible by 19 In all ways, first M is for applying $f(k+1)$ with at least 1 power correct. The second M is dependent on at least one accuracy being awarded and making $f(k+1)$ the subject and the	[~]
	final A is correct solution only.	
(ii) Way 1	$f(1) = 3^1 + 2^4 = 19$ {which is divisible by 19}. Shows $f(1) = 19$	B1
	$\{ :: f(n) \text{ is divisible by 19 when } n = 1 \}$ {Assume that for $n = k$,	
	$f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$. } $f(k+1) - f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct	M1
	$f(k+1) - f(k) = 27(3^{3k-2}) + 8(2^{3k+1}) - (3^{3k-2} + 2^{3k+1})$ $f(k+1) - f(k) = 26(3^{3k-2}) + 7(2^{3k+1})$	
	$= 7(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ Either $7(3^{3k-2} + 2^{3k+1})$ or $7f(k)$; $19(3^{3k-2})$	A1;
	$\mathbf{or} = 26(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1}) \qquad \text{or} \qquad 26(3^{3k-2} + 2^{3k+1}) \text{ or } 26f(k); -19(2^{3k+1})$ $= 7f(k) + 19(3^{3k-2})$ $\mathbf{or} = 26f(k) - 19(2^{3k+1})$	A1
	$f(k+1) = 8f(k) + 19(3^{3k-2})$ Dependent on at least one of the previous accuracy marks being awarded. Makes Applies $f(k+1)$ with at least 1 power correct the subject	dM1
	$\{ :: f(k+1) = 8f(k) + 19(3^{3k-2}) \text{ is divisible by 19 as both } $	
	8f (k) and 19(3^{3k-2}) are both divisible by 19}	

Mathematics FP1

Summer 2017 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

	If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result has shown to be true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$. Correct conclusion seen at the end. Condone true for $n = 1$ stated earlier.	A1 cso
(ii) Way 2	f(1) = $3^1 + 2^4 = 19$ {which is divisible by 19}. Shows f(1) = 19 { \therefore f(n) is divisible by 19 when $n = 1$ } Assume that for $n = k$,	[6] B1
	$f(k) = 3^{3k-2} + 2^{3k+1}$ is divisible by 19 for $k \in \mathbb{Z}^+$. $f(k+1) = 3^{3(k+1)-2} + 2^{3(k+1)+1}$ Applies $f(k+1)$ with at least 1 power correct	M1
	$f(k+1) = 27(3^{3k-2}) + 8(2^{3k+1})$ $= 8(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2})$ $\mathbf{or} = 27(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1})$ $f(k+1) = 8f(k) + 19(3^{3k-2})$ $\mathbf{or} f(k+1) = 27f(k) - 19(2^{3k+1})$ Either $8(3^{3k-2} + 2^{3k+1}) \text{ or } 8f(k); 19(3^{3k-2})$ $27(3^{3k-2} + 2^{3k+1}) \text{ or } 27f(k); -19(2^{3k+1})$ Dependent on at least one of the previous accuracy marks being awarded.	A1; A1 dM1
	or $1(k+1) = 2/1(k) - 19(2)$ {∴ $f(k+1) = 8f(k) + 19(3^{3k-2})$ is divisible by 19 as both $8f(k)$ and $19(3^{3k-2})$ are both divisible by 19} If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result has shown to be true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$. Correct conclusion seen at the end. Condone true for $n = 1$ stated earlier.	A1 cso [6]
(ii) Way 3	$f(n) = 3^{3n-2} + 2^{3n+1} \text{ is divisible by } 19$ $f(1) = 3^{1} + 2^{4} = 19 \text{ {which is divisible by } 19}.$ $\{ \therefore f(n) \text{ is divisible by } 19 \text{ when } n = 1 \}$ Assume that for $n = k$, $f(k) = 3^{3k-2} + 2^{3k+1} \text{ is divisible by } 19 \text{ for } k \in \mathbb{Z}^{+}.$	В1
	$f(k) = 3^{k} + 2^{k} \text{ is divisible by 19 for } k \in \mathbb{Z}.$ $f(k+1) - \alpha f(k) = 3^{3(k+1)-2} + 2^{3(k+1)+1} - \alpha (3^{3k-2} + 2^{3k+1})$ Applies $f(k+1)$ with at least 1 power correct $f(k+1) - \alpha f(k) = (27 - \alpha)(3^{3k-2}) + (8 - \alpha)2^{3k+1}$	M1
	$ \begin{aligned} &= (8-\alpha)(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2}) \\ &= (8-\alpha)(3^{3k-2} + 2^{3k+1}) + 19(3^{3k-2}) \\ &= (27-\alpha)(3^{3k-2} + 2^{3k+1}) - 19(2^{3k+1}) \end{aligned} (8-\alpha)(3^{3k-2} + 2^{3k+1}) \text{ or } (8-\alpha)f(k); 19(3^{3k-2}) \\ &= (27-\alpha)(3^{3k-2} + 2^{3k+1}) \text{ or } (27-\alpha)f(k); -19(2^{3k+1}) $ $ (27-\alpha)(3^{3k-2} + 2^{3k+1}) \text{ or } (27-\alpha)f(k); -19(2^{3k+1}) $	A1; A1
	NB choosing $\alpha = 27$ makes first term disappear. $\therefore f(k+1) = 8f(k) + 19(3^{3k-2})$ Dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject.	dM1
	$\{ :: f(k+1) = 27f(k) - 19(2^{3k+1}) \text{ is divisible by 19 as both } 27f(k) $ and $19(2^{3k+1})$ are both divisible by 19} If the result is true for $n = k$, then it is now true for $n = k + 1$. As the result has shown to be true for $n = 1$, then the result is true for all $n \in \mathbb{Z}^+$. Correct conclusion seen at the end. Condone true for $n = 1$ stated earlier.	A1 cso
	Question 9 Notes	[6] 12
(ii)	Accept use of $f(k) = 3^{3k-2} + 2^{3k+1} = 19m$ o.e. and award method and accuracy as above.	