Summer 2013R Past Paper	BR www.mystudybro.com Math This resource was created and owned by Pearson Edexcel					athematic	nematics FP1 6667				
Centre No.			Paper Reference				Initi	al(s)			
Candidate No.		6 6	6	7	/	0	1	R	Signature	I	
· · · · ·	Paper Reference(s)	2		•						Examiner's u	se only
					1						
	Edex		J		1					Team Leader's	use only
	Further	Pure	e M	lat	he	m	ati	CS	FP1		
	Advance	d/Ad	van	ceo		uh	sia	lia	rv		
	Monday 1		201	13		lor	nin	<u>.</u>	- 5	Question	n Leave Blank
	Times 1 h	0 June	201	1.5 -	- 1 v	1011		B		1	
	lime: I no	our 30	min	iute	es					2	
										3	
										4	
	Materials require Mathematical For	ed for exam mulae (Pink)	<u>n</u>	Nil	s inclu	ided	with	question papers	5	
	Candidates may	use any cal	culator	r allov	wed b	y the	regi	ılatio	ns of the Joint	6	
	Council for Qual algebra manipula	ifications. (ation or syn	Calcula nbolic	tors : differ	must centia	not h tion/i	ave t nteg	the fa ratio	cility for symbolic n, or have	7	
	retrievable math	ematical for	rmulae	e stor	ed in	them	•			8	
										9	
Instructions to Ca	Indidates									10	
In the boxes above, w Check that you have Answer ALL the que You must write your When a calculator is	vrite your centre nu the correct question estions. answer to each que used, the answer sh	imber, canon n paper. estion in the hould be gi	didate e spac- ven to	numl e foll an a	oer, y owin pprop	our s g the priate	urna ques deg	me, i stion. ree o	nitials and signatu f accuracy.	re.	
Information for C	andidates										
A booklet 'Mathemat	tical Formulae and	Statistical	Tables	s' is p	provie	led.				_	
The marks for individ There are 10 question There are 36 pages in	dual questions and ns in this question pap	the parts of the paper. The paper Any bla	of quest total r	ns. tions nark ges at	are s for the	shown nis pa licate	n in 1 per 1 d	rounc is 75.	l brackets: e.g. (2)		
- nere are so pages in	question pup	olu	Pug	u1	- 1110						
Advice to Candida	ates	arts of que	stione	arec	learly	v labe	elled				
You should show suf Answers without wo	fficient working to rking may not gain	make your full credit	metho.	ods cl	lear t	o the	Exa	mine	r.		
										Total	
This publication may be reproduced or Pearson Education Ltd copyright polic ©2013 Pearson Education Ltd. Printer's Log. No.	nly in accordance with cy.									Turr	i over

P42828A w850/R6667/57570 5/5/5/

PEARSON

Summer Past Paper	⁻ 2013R	www.mystudybro.com This resource was created and owned by Pearson Edexcel	Mathematic	cs FP 666
				Leave
1.	The complex	x numbers z and w are given by		blank
	· · · · · · · · · · · · · · · · ·			
		$z = 8 + 3\mathbf{i}, w = -2\mathbf{i}$		
	Express in th	the form $a + bi$, where a and b are real constants.		
	I			
	(a) $z - w$,		(1)	
			(1)	
	(b) <i>zw</i> .			
			(2)	
—				
—				

Question Number	Scheme	Mark	KS
1.	$z = 8 + 3\mathbf{i}, w = -2\mathbf{i}$		
(a)	$z - w \{= (8 + 3i) - (-2i)\} = 8 + 5i$ 8 + 5i	B1	[1]
(b)	$zw \left\{ = (8+3i)(-2i) \right\} = 6-16i$ Either the real or imaginary part is correct. 6-16i	M1 A1	[1]
			3

Mathematics FP1

6667 Leave

blank

2. (i)

 $\mathbf{A} = \begin{pmatrix} 2k+1 & k \\ -3 & -5 \end{pmatrix}, \text{ where } k \text{ is a constant}$

Given that

$\mathbf{B} = \mathbf{A} + 3\mathbf{I}$

where I is the 2×2 identity matrix, find

(a) **B** in terms of k,

- (b) the value of k for which **B** is singular.
- (ii) Given that

 $\mathbf{C} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}, \quad \mathbf{D} = (2 \ -1 \ 5)$

and

 $\mathbf{E} = \mathbf{C}\mathbf{D}$

find E.

(2)

(2)

(2)

Question Number	Scheme	Marks
2.	$\mathbf{A} = \begin{pmatrix} 2k+1 & k \\ -3 & -5 \end{pmatrix}, \mathbf{B} = \mathbf{A} + 3\mathbf{I}$	
(i)(a)	$\mathbf{B} = \mathbf{A} + 3\mathbf{I} = \begin{pmatrix} 2k+1 & k \\ -3 & -5 \end{pmatrix} + 3 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ For applying $\mathbf{A} + 3\mathbf{I}$. Can be implied by three out of four correct elements in candidate's final answer. Solution must come from addition.	M1
	$= \begin{pmatrix} 2k+4 & k \\ -3 & -2 \end{pmatrix}$ Correct answer.	A1 [2]
(b)	B is singular $\Rightarrow \det \mathbf{B} = 0$.	
	-2(2k+4) - (-3k) = 0 Applies "ad - bc" to B and equates to 0	M1
	-4k - 8 + 3k = 0	
	k = -8	A1cao
(ii)	$\mathbf{C} = \begin{pmatrix} 2 \\ -3 \\ 4 \end{pmatrix}, \mathbf{D} = \begin{pmatrix} 2 & -1 & 5 \end{pmatrix}, \mathbf{E} = \mathbf{C} \mathbf{D}$	
	$\begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{pmatrix} 4 & -2 & 10 \\ 5 & -2 & 15 \end{bmatrix}$ Candidate writes down a 3×3 matrix.	M1
	$\mathbf{E} = \begin{bmatrix} -3\\4 \end{bmatrix} \begin{pmatrix} 2 & -1 & 5 \end{pmatrix} = \begin{bmatrix} -6 & 3 & -15\\8 & -4 & 20 \end{bmatrix}$ Correct answer.	A1
		[2] 6

6667 Leave

blank

 $f(x) = \frac{1}{2}x^4 - x^3 + x - 3$ 3. (a) Show that the equation f(x) = 0 has a root α between x = 2 and x = 2.5(2) (b) Starting with the interval [2, 2.5] use interval bisection twice to find an interval of width 0.125 which contains α . (3) The equation f(x) = 0 has a root β in the interval [-2, -1]. (c) Taking -1.5 as a first approximation to β , apply the Newton-Raphson process once to f(x) to obtain a second approximation to β . Give your answer to 2 decimal places. (5) 8 2 8 2 8 A 0 8 3

Question Number	Scheme		Marks
3.	$f(x) = \frac{1}{2}x^4 - x^3 + x - 3$		
(a)	f(2) = -1 f(2.5) = 3.40625	Either any one of $f(2) = -1$ or f(2.5) = awrt 3.4	M1
	Sign change (and $f(x)$ is continuous) therefore a root α exists between $x = 2$ and $x = 2.5$	both values correct, sign change and conclusion	A1
			[2]
(b)	$f(2.25) = 0.673828125 \left\{ = \frac{345}{512} \right\} \ \left\{ \Rightarrow 2 \leqslant \alpha \leqslant 2.25 \right\}$	$f(2.25) = awrt \ 0.7$	B1
		Attempt to find $f(2.125)$	M1
	f(2.125) = -0.2752685547	f(2.125) = awrt - 0.3 with	
	$\Rightarrow 2.125 \leqslant \alpha \leqslant 2.25$	$2.125 \leqslant \alpha \leqslant 2.25$ or $2.125 < \alpha < 2.25$ or $[2.125, 2.25]$ or $(2.125, 2.25)$	A1
		01 [2.123, 2.23] 01 (2.123, 2.23).	[3]
(c)	$f'(x) = 2x^3 - 3x^2 + 1\{+0\}$	At least two of the four terms differentiated correctly. Correct derivative.	M1 A1
	$f(-1.5) = 1.40625 (= 1\frac{13}{32})$	f(-1.5) = awrt 1.41	B1
	$\{f'(-1.5) = -12.5\}$		
	$\beta_2 = -1.5 - \left(\frac{"1.40625"}{"-12.5"}\right)$	Correct application of Newton-Raphson using their values.	M1
	$= -1.3875 (= -1\frac{31}{80})$	-1.3875 seen as answer to first iteration, award M1A1B1M1	
	= -1.39 (2 dp)	-1.39	A1 cao [5]

Paper	This resource was created and owned by Pearson Edexcel	Wathematic
4.	$f(x) = (4x^2 + 9)(x^2 - 2x + 5)$	
(a) Find	d the four roots of $f(x) = 0$	
		(4)
(b) Sho	w the four roots of $f(x) = 0$ on a single Argand diagram.	
		(2)

P 4 2 8 2 8 A 0 1 2 3 6

Question	Scheme		Marks
Number			
4.	$f(x) = (4x^2 + 9)(x^2 - 2x + 5) = 0$	An attempt to	
(a)	$(4x^2 + 9) = 0 \implies x = \frac{3i}{2}, -\frac{3i}{2}$	solve $(4x^2 + 9) = 0$ which	M1
	2 2	involves i. $\frac{3i}{2}, -\frac{3i}{2}$	A1
	$(x^{2} - 2x + 5) = 0 \implies x = \frac{2 \pm \sqrt{4 - 4(1)(5)}}{2(1)}$	Solves the 3TQ	M1
	$\Rightarrow x = \frac{2 \pm \sqrt{-16}}{2}$		
	$\Rightarrow x = 1 \pm 2i$	1 ± 2i	A1
(b)		Any two of their roots	
	у ф	plotted correctly on a	
	•	single	B1ft
		which have	
		been found in part (a).	
	O x	Both sets of their roots	
	•	plotted	
	•	single diagram with	B1ft
		symmetry about $y = 0$.	
		, in the second s	[2]
	Method mark for solving 3 term quadratic:		U
	1. <u>Factorisation</u> $(x^2 + bx + c) = (x + p)(x + q)$, where $ pq = c $, leading to x =		
	$(ax^2 + bx + c) = (mx + p)(nx + q)$, where $ pq = c $ and $ mn = a $, leading to x =		
	2. <u>Formula</u> Attempt to use <u>correct</u> formula (with values for a, b and c).		
	3. <u>Completing the square</u>		
	Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c$, $q \neq 0$, leading to $x =$		

Question Number	Scheme		Marks
	Ignore part labels and mark part (a) and part (b) together	
5.	$H: x = 3t, y = \frac{5}{t}, L: 6y = 4x - 15$		
		An attempt to substitute	
(a)	$H = L \implies 6\left(\frac{3}{t}\right) = 4(3t) - 15$	$x = 3t$ and $y = \frac{3}{t}$ into L	MIAI
		Correct equation in <i>t</i> .	
	$\Rightarrow 18 = 12t^2 - 15t \Rightarrow 12t^2 - 15t - 18 = 0$		
	$\Rightarrow 4t^2 - 5t - 6 = 0 *$	Correct solution only, involving at least one intermediate step to given answer.	A1 cso [3]
(b)	(t-2)(4t+3) = 0	A valid attempt at solving the quadratic.	M1
	$\Rightarrow t = 2, -\frac{3}{4}$	Both $t = 2$ and $t = -\frac{3}{4}$	A1
	When $t = 2$,	An attempt to use one of their <i>t</i> -values to find one of either r or y	M1
	$x = 3(2) = 6, \ y = \frac{3}{2} \implies \left(6, \frac{3}{2}\right)$	One set of coordinates correct	
	When $t = -\frac{3}{4}$,	or both <i>x</i> -values are correct.	Al
	$x = 3\left(-\frac{3}{4}\right) = -\frac{9}{4}, \ y = \frac{3}{\left(-\frac{3}{4}\right)} = -4 \implies \left(-\frac{9}{4}, -4\right)$	Both sets of values correct.	A1
			[5] 8
(b)	<u>Alt Method:</u> An attempt to eliminate either <i>x</i> or <i>y</i> from 1 st M1: A full method to obtain a quadratic equation in 1 st A1: For either $4x^2 - 15x - 54 = 0$ or $6y^2 + 15y + 2^{nd}$ M1: A valid attempt at solving the quadratic. 2 nd A1: For either $x = 6, -\frac{9}{4}$ or $y = \frac{3}{2}, -4$ 3 rd A1: Both $\left(6, \frac{3}{2}\right)$ and $\left(-\frac{9}{4}, -4\right)$.	xy = 9 and 6y = 4x - 15 n either x or y. -36 = 0 or equivalent.	

6667

Leave blank $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$ 6. The transformation represented by **B** followed by the transformation represented by **A** is equivalent to the transformation represented by P. (a) Find the matrix **P**. (2) Triangle T is transformed to the triangle T' by the transformation represented by **P**. Given that the area of triangle T' is 24 square units, (b) find the area of triangle *T*. (3) Triangle T' is transformed to the original triangle T by the matrix represented by **Q**. (c) Find the matrix **Q**. (2) 18 P 4 2 8 2 8 A 0 1 8 3 6

Question Number	Scheme	Mar	ks
6.	$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \mathbf{B} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$		
(a)	$\mathbf{P} = \mathbf{A}\mathbf{B} \left\{ = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \right\} \qquad \qquad \mathbf{P} = \mathbf{A}\mathbf{B} \text{, seen or implied.}$	M1	
	$\mathbf{P} = \begin{pmatrix} 1 & 4 \\ -2 & -3 \end{pmatrix}$ Correct answer.	A1	[2]
(b)	det $\mathbf{P} = 1(-3) - (4)(-2) \{= -3 + 8 = 5\}$ Applies " <i>ad</i> - <i>bc</i> ".	M1	
	Area $(T) = \frac{24}{5}$ (units) ² $\frac{24}{\text{their det } \mathbf{P}}$, dependent on previous M $\frac{24}{5}$ or $\frac{24}{5}$ or $\frac{4.8}{5}$	dM1 A1ft	[3]
(c)	$\mathbf{QP} = \mathbf{I} \implies \mathbf{QPP}^{\cdot 1} = \mathbf{IP}^{\cdot 1} \implies \mathbf{Q} = \mathbf{P}^{\cdot 1}$		
	$\mathbf{Q} = \mathbf{P}^{-1} = \frac{1}{5} \begin{pmatrix} -3 & -4 \\ 2 & 1 \end{pmatrix}$ $\mathbf{Q} = \mathbf{P}^{-1} \text{ stated or an attempt to find } \mathbf{P}^{-1}.$ Correct ft inverse matrix.	M1 A1ft	[2] 7
	Using BA , area is the same in (b) and inverse is $\frac{1}{5}\begin{pmatrix} 1 & -2 \\ 4 & -3 \end{pmatrix}$ in (c) and could gain ft marks.		

Summe Past Paper	r 2013R www.mystudybro.com This resource was created and owned by Pearson Edexce	Mathematics FP 666
		Leave
7.	The parabola <i>C</i> has equation $y^2 = 4ax$, where <i>a</i> is a positive constant.	
	The point $P(at^2, 2at)$ is a general point on <i>C</i> .	
	(a) Show that the equation of the tangent to <i>C</i> at $P(at^2, 2at)$ is	
	$ty = x + at^2$	(4)
	The tangent to C at P meets the y-axis at a point Q .	
	(b) Find the coordinates of Q .	(1)
	Given that the point S is the focus of C ,	
	(c) show that PQ is perpendicular to SQ .	(3)
\Box		

Question Number	Scheme		Marks
7.	$y^2 = 4ax$, at $P(at^2, 2at)$.		
(a)	$y = 2\sqrt{a} x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \sqrt{a} x^{-\frac{1}{2}}$ or (implicitly) $2y \frac{dy}{dx} = 4a$ or (chain rule) $\frac{dy}{dx} = 2a \times \frac{1}{2at}$	$\frac{dy}{dx} = \pm k x^{-\frac{1}{2}}$ or $k y \frac{dy}{dx} = c$ or $\frac{\text{their } \frac{dy}{dt}}{\text{their } \frac{dx}{dt}}$	M1
	When $x = at^2$, $\frac{dy}{dx} = \frac{\sqrt{a}}{\sqrt{at^2}} = \frac{\sqrt{a}}{\sqrt{at}} = \frac{1}{t}$ or $\frac{dy}{dx} = \frac{4a}{2(2at)} = \frac{1}{t}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{t}$	A1
	T : $y - 2at = \frac{1}{t}(x - at^2)$	Applies $y - 2at$ = their $m_T(x - at^2)$ Their m_T must be a function of t from calculus.	M1
	$\mathbf{T}: ty - 2at^2 = x - at^2$		
	T : $ty = x + at^2$	Correct solution.	A1 cso * [4]
(b)	At Q , $x = 0 \Rightarrow y = \frac{at^2}{t} = at \Rightarrow Q(0, at)$	y = at or $Q(0, at)$	B1 [1]
(c)	S(a,0)		
	$m(PQ) = \frac{at - 2at}{0 - at^2} = \frac{-at}{-at^2} = \frac{1}{t}$	A correct method for finding either $m(PQ)$ or $m(SQ)$ for their Q or S.	M1
	$m(SQ) = \frac{at - 0}{0 - a} = \frac{at}{-a} = -t$	$m(PQ) = \frac{1}{t}$ and $m(SQ) = -t$	A1
	$m(PQ) \times m(SQ) = \frac{1}{t} \times -t = -1 \implies PQ \perp SQ$	Shows $m(PQ) \times m(SQ) = -1$ and conclusion.	A1 cso [3] 8

Mathematics FP1

6667 Leave

blank

8. (a) Prove by induction, that for $n \in \mathbb{Z}^+$,

$$\sum_{r=1}^{n} r(2r-1) = \frac{1}{6}n(n+1)(4n-1)$$

(6)

(b) Hence, show that

$$\sum_{r=n+1}^{3n} r(2r-1) = \frac{1}{3}n(an^2 + bn + c)$$

where a, b and c are integers to be found.

(4)

Question Number	Scheme		Marks
8. (a)	$\sum_{r=1}^{n} r(2r-1) = \frac{1}{6}n(n+1)(4n-1)$ $n=1;$ LHS = $\sum_{r=1}^{1} r(2r-1) = 1$ RHS = $\frac{1}{6}(1)(2)(3) = 1$ As LHS = RHS, the summation formula is true for $n = 1$. Assume that the summation formula is true for $n = k$. i.e. $\sum_{r=1}^{k} r(2r-1) = \frac{1}{6}k(k+1)(4k-1)$.	$\frac{1}{6}(1)(2)(3) = 1$ seen	B1
	With $n = k+1$ terms the summation formula becomes: $\sum_{r=1}^{k+1} r(2r-1) = \frac{1}{6}k(k+1)(4k-1) + (k+1)(2(k+1)-1)$ $= \frac{1}{6}k(k+1)(4k-1) + (k+1)(2k+1)$	$S_{k+1} = S_k + u_{k+1}$ with $S_k = \frac{1}{6}k(k+1)(4k-1).$	M1
	$= \frac{1}{6}(k+1)(k(4k-1) + 6(2k+1))$	Factorise by $\frac{1}{6}(k+1)$	dM1
	$= \frac{1}{6}(k+1)(4k^2 + 11k + 6)$	$(4k^2 + 11k + 6)$ or equivalent quadratic seen	A1
	$= \frac{1}{6}(k+1)(k+2)(4k+3)$		
	$= \frac{1}{6}(k+1)(k+1+1)(4(k+1)-1)$	Correct completion to S_{k+1} in terms of $k+1$ dependent on both Ms.	dM1
	If the summation formula is <u>true for</u> $n = k$, then it is shown to be <u>true for</u> $n = k+1$. As the result is <u>true for</u> $n = 1$, it is now also <u>true for all</u> n and $n \in \mathbb{Z}^+$ by mathematical induction.	Conclusion with all 4 underlined elements that can be seen anywhere in the solution	A1 cso [6]

Question Number	Scheme	Marks
8. (b)	$\sum_{r=n+1}^{3n} r(2r-1) = \mathbf{S}_{3n} - \mathbf{S}_n$	
	$= \frac{1}{6} \cdot 3n(3n+1)(12n-1) - \frac{1}{6}n(n+1)(4n-1)$ Use of $S_{3n} - S_n$ or $S_{3n} - S_{n+1}$ with the result from (a) used at least once. Correct un-simplified expression.	M1 A1
	$= \frac{1}{6}n\{3(3n+1)(12n-1) - (n+1)(4n-1)\}$	
	$= \frac{1}{6}n\left\{3(36n^2 + 9n - 1) - (4n^2 + 3n - 1)\right\}$ Factorises out $\frac{1}{6}n$ or $\frac{1}{3}n$ and an attempt to open up the brackets.	dM1
	$= \frac{1}{6}n\left\{108n^2 + 27n - 3 - 4n^2 - 3n + 1\right\}$	
	$= \frac{1}{6}n\{104n^2 + 24n - 2\}$	
	$= \frac{1}{3}n(52n^2 + 12n - 1) = \frac{1}{3}n(52n^2 + 12n - 1)$	A1
	$\{a = 52, b = 12, c = -1\}$	[4] 10

6667

Summer 2013R www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper Leave blank The complex number w is given by 9. w = 10 - 5i(a) Find |w|. (1) (b) Find arg w, giving your answer in radians to 2 decimal places. (2) The complex numbers z and w satisfy the equation (2 + i)(z + 3i) = w(c) Use algebra to find z, giving your answer in the form a + bi, where *a* and *b* are real numbers. (4) Given that $\arg(\lambda + 9i + w) = \frac{\pi}{4}$ where λ is a real constant, (d) find the value of λ . (2)

Question Number	Scheme		
9.	w = 10 - 5i		
(a)	$ w = \left\{\sqrt{10^2 + (-5)^2}\right\} = \sqrt{125} \text{ or } 5\sqrt{5} \text{ or } 11.1803$	$\sqrt{125}$ or $5\sqrt{5}$ or <u>awrt 11.2</u>	B1
(b)	$\arg w = -\tan^{-1}\left(\frac{5}{10}\right)$	Use of tan ⁻¹ or tan	[1] M1
	= -0.463647609 = -0.46 (2 dp)	awrt -0.46 or awrt 5.82	A1 oe [2]
(c)	(2 + i)(z + 3i) = w $z + 3i = \frac{10 - 5i}{(2 + i)}$	Simplifies to give $* = \frac{\text{complex no.}}{(2 + i)}$	B1
	$z + 3i = \frac{(10 - 5i)}{(2 + i)} \times \frac{(2 - i)}{(2 - i)}$	Multiplies by $\frac{\text{their } (2-i)}{\text{their } (2-i)}$	M1
	$z + 3i = \frac{20 - 10i - 10i - 5}{1 + 4}$	Simplifies realising that a real number is needed on the denominator and applies $i^2 = -1$ on their numerator expression	M1
	$z + 3i = \frac{15 - 20i}{5}$		
	z + 3i = 3 - 4i z = 3 - 7i (Note: $a = 3, b = -7.$)	z = 3 - 7i	A1 [4]
(b)	$\arg(\lambda + 9\mathbf{i} + w) = \frac{\pi}{4}$ $\lambda + 9\mathbf{i} + w = \lambda + 9\mathbf{i} + 10 - 5\mathbf{i} = (\lambda + 10) + 4\mathbf{i}$		
	$\arg(\lambda + 9i + w) = \frac{\pi}{4} \Longrightarrow \lambda + 10 = 4$	Combines real and imaginary parts and puts "Real part = Imaginary part" i.e. $\frac{\lambda + 10}{2} = 1$ or $\frac{4}{2} = 1$ o.e.	M1
	So, $\lambda = -6$	4 $\lambda + 10$ -6	A1 [2] 9
(c)	<u>Alt 1: Scheme as above:</u> $(2 + i)_7 + 6i + 3i^2 - 10 - 5i \rightarrow (2 + i)_7 - 13 - 11i$		
	$\begin{array}{c} (2+i)z + 6i + 5i = 10 - 5i = 2(2+i)z = 13 - 11i \\ B1 \text{ for } z = \frac{13 - 11i}{2 + i}; \text{ M1 for } z = \frac{(13 - 11i)}{(2 + i)} \times \frac{(2 - i)}{(2 - i)}; \text{ M1 for } z = \frac{26 - 13i - 22i - 11}{4 + 1}; \end{array}$		
(c)	A1 for $z = 3 - 7i$ <u>Alt 2:</u> Let $z = a + ib$ gives $(2+i)(a+ib+3i) = 10-5i$ for B1 Equating real and imaginary parts to form two equations both involving <i>a</i> and <i>b</i> for M1 Solves simultaneous equations as far as $a = $ or $b = $ for M1 a=3, b=-7 or $z = 3-7i$ for A1		

Mathematics FP1

Question Number	Scheme	Marks	5
10. (i)	$\sum_{r=1}^{24} (r^3 - 4r)$ $= \frac{1}{4} 24^2 (24+1)^2 - 4 \cdot \frac{1}{2} 24 (24+1)$ $\{= 90000 - 1200\}$ $= 88800$ An attempt standar	to use at least one of the d formulae correctly and substitute 24. 88800 A1 cao	[2]
(ii)	$\sum_{r=0}^{n} (r^{2} - 2r + 2n + 1)$ An attempt stan $= \frac{1}{6} n(n+1)(2n+1) - 2 \cdot \frac{1}{2} n(n+1) + 2n(n+1) + (n+1)$ An attempt stan <u>Correct</u> $= \frac{1}{6} (n+1) \{ 2n^{2} + n - 6n + 12n + 6 \}$ An attempt stan <u>Correct</u> An attempt stan <u>Correct</u> An attempt stan <u>Correct</u> An attempt stan <u>Correct</u> An attempt stan <u>Correct</u> An attempt stan <u>Correct</u> An attempt stan <u>Correct</u> An attempt <u>Stan</u> <u>Correct</u> An attempt <u>Stan</u> <u>Correct</u> An attempt <u>Stan</u> <u>Correct</u> An attempt <u>Stan</u> <u>Correct</u> An attempt <u>Stan</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correct</u> <u>Correc</u>	to use at least one of the dard formulae correctly. <u>ct underlined expression.</u> $2n \rightarrow 2n(n+1)$ $1 \rightarrow (n+1)$ n attempt to factorise out $\frac{1}{6}(n+1)$ or $\frac{1}{6}n$. M1 M1	
	$= \frac{1}{6}(n+1)\{2n^{2} + 7n + 6\}$ $= \frac{1}{6}(n+1)(n+2)(2n+3)$ (No	Correct answer. te: $a = 2, b = 2, c = 3.$) A1	[6] 8