Summer 2	013R
----------	------

www.mystudybro.com

Mathematics C4

I			
Centre No.	Paper Reference Surname	Initia	ul(s)
Candidate No.	66666/01R Signature		
	Paper Reference(s) 66666/01R	Examiner's us	e only
	Edovcol CCE		
		Team Leader's u	ise or
	Core Mathematics C4		
	Advanced	Question	Lea
	Tuesday 18 June 2013 – Morning	Number	Bla
	Time: 1 hour 30 minutes	2	
		3	
		4	
	Materials required for examinationItems included with question papersMathematical Formulae (Pink)Nil	5	
	Candidates may use any calculator allowed by the regulations of the Joint	6	
	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have	6 7	
	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8	
	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8	
Instructions to	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8	
Instructions to In the boxes abov Check that you ha Answer ALL the	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8	
Instructions to In the boxes abov Check that you he Answer ALL the You must write y When a calculato	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8	
Instructions to In the boxes abov Check that you hanswer ALL the You must write y When a calculato	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8	
Instructions to In the boxes abov Check that you ha Answer ALL the You must write y When a calculato Information fo A booklet 'Mathe Full marks may b	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8	
Instructions to In the boxes abov Check that you he Answer ALL the You must write y When a calculato Information fo A booklet 'Mathe Full marks may b The marks for in There are 8 quest	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8 	
Instructions to In the boxes abov Check that you ha Answer ALL the You must write y When a calculato Information fo A booklet 'Mathe Full marks may b The marks for im There are 8 quest There are 28 pag	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8 -	
Instructions to In the boxes above Check that you have Answer ALL the You must write y When a calculato Information fo A booklet 'Mathe Full marks may b The marks for in- There are 8 quest There are 28 pag Advice to Cance	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8 	
Instructions to In the boxes above Check that you he Answer ALL the You must write y When a calculato Information fo A booklet 'Mathe Full marks may be The marks for ine There are 8 quest There are 28 pag Advice to Cano You must ensure You should show Answers without	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8 	
Instructions to In the boxes abov Check that you had Answer ALL the You must write y When a calculato Information fo A booklet 'Mathe Full marks may b The marks for ind There are 8 quest There are 8 quest There are 28 pag Advice to Cano You must ensure You should show Answers without	Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation or symbolic differentiation/integration, or have retrievable mathematical formulae stored in them.	6 7 8 	

Paper	This resource was created and owned by Pearson Edexcel	
1 Express in pa	rtial fractions	
1. Express in par		
	5x + 3	
	$(2x+1)(x+1)^2$	
		(4)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel			6666
Question Number	1 Scheme		
1.	$\frac{5x+3}{(2x+1)(x+1)^2} = \frac{A}{(2x+1)} + \frac{B}{(x+1)} + \frac{C}{(x+1)^2}$	At least one of "A" or "C" are correct.	B1
	A = 2, C = 2	Breaks up their partial fraction correctly into three terms and both " A " = 2 and " C " = 2.	B1 cso
	$5x + 3 \equiv A(x + 1)^{2} + B(2x + 1)(x + 1) + C(2x + 1)$ $x = -1 \Rightarrow -2 = -C \Rightarrow C = 2$ $x = -\frac{1}{2} \Rightarrow -\frac{5}{2} + 3 = \frac{1}{4}A \Rightarrow \frac{1}{2} = \frac{1}{4}A \Rightarrow A = 2$	Writes down <i>a correct identity</i> and attempts to find the value of either one " <i>A</i> " or " <i>B</i> " or " <i>C</i> ".	M1
	Either $x^2: 0 = A + 2B$, constant: $3 = A + B + C$ x: 5 = 2A + 3B + 2C	Compost value for "D" which is found	
	leading to $B = -1$	using a correct identity and follows from their partial fraction decomposition.	A1 cso
	So, $\frac{5x+3}{(2x+1)(x+1)^2} \equiv \frac{2}{(2x+1)} - \frac{1}{(x+1)} + \frac{2}{(x+1)^2}$		[4] 4
	Notes for Questio	n 1	
	 BE CAREFUL! Candidates will assign <i>their own "A</i>, <i>B</i> B1: At least one of "<i>A</i>" or "<i>C</i>" are correct. B1: Breaks up their partial fraction correctly into three M1: Writes down <i>a correct identity</i> (although this can be a correct identity). 	<i>B</i> and <i>C</i> '' for this question. terms and both $"A" = 2$ and $"C" = 2$. be implied) and attempts to find the valu	e of either
	one of " <i>A</i> " or " <i>B</i> " or " <i>C</i> ". This can be achieved by <i>either</i> substituting values comparing coefficients and solving the resulting e	into their identity <i>or</i> equations simultaneously.	
	A1: Correct value for "B" which is found using a correct decomposition.Note: If a candidate does not give partial fraction of the second se	ct identity and follows from their partial decomposition then:	traction
	 the 2nd B1 mark can follow from a correct i the final A1 mark can be awarded for a cor fractions at the end. 	dentity. rect " <i>B</i> " if a candidate goes writes out th	eir partial
	Note: The correct partial fraction from no working scor Note: A number of candidates will start this problem by find " <i>A</i> " or " <i>B</i> " or " <i>C</i> ". Therefore the B1 marks	res B1B1M1A1. y writing out the correct identity and the s can be awarded from this method.	n attempt to

6666

This resource was created and owned by Pearson Edexcel Past Paper Leave blank 2. The curve C has equation $3^{x-1} + xy - y^2 + 5 = 0$ Show that $\frac{dy}{dx}$ at the point (1, 3) on the curve *C* can be written in the form $\frac{1}{\lambda} \ln(\mu e^3)$, where λ and μ are integers to be found. (7) 4 P 4 2 9 5 4 A 0 4 2 8

Question Number	Scheme	Marks			
2.	$3^{x-1} + xy - y^2 + 5 = 0$				
	$3^{x-1} \rightarrow 3^{x-1} \ln 3$	B1 oe			
	$\left\{\frac{\partial y}{\partial x} \times \right\} = 3^{x-1} \ln 3 + \left(y + x \frac{dy}{dx}\right) - 2y \frac{dy}{dx} = 0 \qquad \qquad \pm \lambda x \frac{dy}{dx} \text{ or } \pm ky \frac{dy}{dx}.$	M1*			
	(ignore) $xy \rightarrow + y + x \frac{dy}{dx}$	B1			
	$\dots + y + x\frac{\mathrm{d}y}{\mathrm{d}x} - 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	A1			
	$\{(1,3) \Rightarrow\} 3^{(1-1)} \ln 3 + 3 + (1)\frac{dy}{dx} - 2(3)\frac{dy}{dx} = 0$ Substitutes $x = 1, y = 3$ into their differentiated equation or expression.	dM1*			
	$\ln 3 + 3 + \frac{dy}{dx} - 6\frac{dy}{dx} = 0 \implies 3 + \ln 3 = 5\frac{dy}{dx}$				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3+\ln 3}{5}$	dM1*			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5} \left(\ln \mathrm{e}^3 + \ln 3 \right) = \frac{1}{5} \ln \left(3\mathrm{e}^3 \right) \qquad $	A1 cso			
		[7] 7			
	Notes for Question 2				
	B1: Correct differentiation of 3^{x-1} . I.e. $3^{x-1} \rightarrow 3^{x-1} \ln 3$ or $3^{x-1} = \frac{1}{3}(3^x) \rightarrow \frac{1}{3}(3^x) \ln 3$				
	or $3^{x-1} = e^{(x-1)\ln 3} \rightarrow \ln 3 e^{(x-1)\ln 3}$ or $3^{x-1} = \frac{1}{3} (3^x) = \frac{1}{3} e^{x\ln 3} \rightarrow \frac{1}{3} (\ln 3) e^{x\ln 3}$				
	M1: Differentiates implicitly to include either $\pm \lambda x \frac{dy}{dx}$ or $\pm ky \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).				
	B1: $xy \rightarrow + y + x \frac{dy}{dx}$				
	1st A1: + $y + x \frac{dy}{dx} - 2y \frac{dy}{dx} = 0$ Note: The 1 st A0 follows from an award of the 2 nd B0.				
	Note: The " $= 0$ " can be implied by rearrangement of their equation.				
	ie: $3^{x-1}\ln 3 + y + x\frac{dy}{dx} - 2y\frac{dy}{dx}$ leading to $3^{x-1}\ln 3 + y = 2y\frac{dy}{dx} - x\frac{dy}{dx}$ will get A1 (implied).				
	2nd M1: Note: This method mark is dependent upon the 1 st M1* mark being awarded. Substitutes $x = 1$, $y = 3$ into their differentiated equation or expression. Allow one slip).			
	3rd M1: Note: This method mark is dependent upon the 1 st M1* mark being awarded.				
	Candidate has two differentiated terms in $\frac{dy}{dx}$ and rearranges to make $\frac{dy}{dx}$ the subject.				
	Note: It is possible to gain the 3^{rd} M1 mark before the 2^{nd} M1 mark.				
	Eg: Candidate may write $\frac{dy}{dx} = \frac{y + 3^{x-1} \ln 3}{2y - x}$ before substituting in $x = 1$ and $y = 3$				
	2nd A1: cso. Uses $3 = \ln e^3$ to achieve $\frac{dy}{dx} = \frac{1}{5}\ln(3e^3)$, $\left(=\frac{1}{\lambda}\ln(\mu e^3), \lambda = 5 \text{ and } \mu = 3\right)$				
	Note: $3 = \ln e^3$ needs to be seen in their proof.				

Summe	r 2013R	www.mystud	ybro.com	Mathem	atics C4
Past Paper 2.	(Mark Scheme) This n Alternative Method: M	esource was created and ultiplying both sides by 3	owned by Pearson Edexcel		6666
	$3^{x-1} + xy - xy$	$y^2 + 5 = 0$			
	$3^{x} + 3xy - 3$	$3y^2 + 15 = 0$			
			3^{\star}	$\rightarrow 3^{*} \ln 3$	B1
			Differentiates implicitly to inc.	lude either	M1*
Aliter Way 2	$\left \left\{ \frac{\partial \chi}{\partial x} \times \right\} 3^x \ln 3 + \left(3y \right) \right\}$	$+3x\frac{\mathrm{d}y}{\mathrm{d}x}$ $-6y\frac{\mathrm{d}y}{\mathrm{d}x}=0$	$\pm \lambda x \frac{\mathrm{d}y}{\mathrm{d}x}$ o	or $\pm ky \frac{dy}{dx}$.	IVI I .
Way 2	(ignore)		$3xy \rightarrow +3$	$y + 3x \frac{dy}{dx}$	B1
			$\dots + 3y + 3x\frac{\mathrm{d}y}{\mathrm{d}x} - 6$	$5y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	A1
	$\left\{ \left(1,3\right) \Longrightarrow \right\} 3^{1} \ln 3 + 3(3) $	$+ (3)(1)\frac{dy}{dx} - 6(3)\frac{dy}{dx} = 0$	Substitutes $x = 1$, $y = 3$ differentiated equation or e	3 into their expression.	dM1*
	$3\ln 3 + 9 + 3\frac{\mathrm{d}y}{\mathrm{d}x} - 18\frac{\mathrm{d}y}{\mathrm{d}x}$	$= 0 \implies 9 + 3\ln 3 = 15 \frac{dy}{dx}$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{9+1}{10}$	$\frac{3\ln 3}{5} \left\{ = \frac{3+\ln 3}{5} \right\}$			dM1*
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5} \Big(\ln \frac{1}{5} \Big) \Big(\ln \frac{1}{5} \Big) \Big]$	$\ln e^3 + \ln 3$)			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5} \left(\ln \mathrm{e}^3 + \ln 3 \right)$	$)=\frac{1}{5}\ln(3e^{3})$	Uses $3 = \ln e^3$ to achieve $\frac{dy}{dx} =$	$\frac{1}{5}\ln(3e^3)$	A1 cso
					[7] 7
	NOTE: Only apply this	scheme if the candidate h	as multiplied both sides of their ec	juation by 3.	
	NOTE: For reference, $\frac{d}{d}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3y + 3^x \ln 3}{6y - 3x}$	-		
	NOTE: If the candidate	applies this method then	$3xy \rightarrow +3y + 3x \frac{dy}{dx}$ must be seen	n for the 2^{nd}	B1 mark.

6666

www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper Leave blank 3. Using the substitution $u = 2 + \sqrt{2x + 1}$, or other suitable substitutions, find the exact value of $\int_0^4 \frac{1}{2+\sqrt{(2x+1)}} \mathrm{d}x$ giving your answer in the form $A + 2 \ln B$, where A is an integer and B is a positive constant. (8)

Summer Past Paper	(Mark Scheme) This resource was created and owned by Pearson Edexcel	6666
Question Number	Scheme	Marks
3.	$\int_{0}^{4} \frac{1}{2 + \sqrt{(2x+1)}} \mathrm{d}x , u = 2 + \sqrt{(2x+1)}$	
	$\frac{du}{dx} = (2x+1)^{-\frac{1}{2}} \text{ or } \frac{dx}{dx} = u-2$ Either $\frac{du}{dx} = \pm K(2x+1)^{-\frac{1}{2}} \text{ or } \frac{dx}{du} = \pm \lambda(u-2)$	M1
	$\frac{dx}{du} = (2x+1)^{-\frac{1}{2}} \text{ or } \frac{dx}{du} = (u-2)$	A1
	$\left\{ \int \frac{1}{2 + \sqrt{(2x+1)}} dx \right\} = \int \frac{1}{u} (u-2) du \qquad \text{Correct substitution} $ (Ignore integral sign and du).	A1
	$= \int \left(1 - \frac{2}{u}\right) du$ An attempt to divide each term by <i>u</i> .	dM1
	$\pm Au \pm B \ln u$	ddM1
	$u - 2\ln u$	A1 ft
	$\left\{ \text{So} \left[u - 2\ln u \right]_{3}^{5} \right\} = \left(5 - 2\ln 5 \right) - \left(3 - 2\ln 3 \right) $ Applies limits of 5 and 3 in <i>u</i> or 4 and 0 in <i>x</i> in their integrated function and subtracts the correct way round.	M1
	$= 2 + 2\ln\left(\frac{3}{5}\right) \qquad 2 + 2\ln\left(\frac{3}{5}\right)$	A1 cao cso [8]
	Notes for Question 2	8
	Notes for Question 5	
	M1: Also allow $du = \pm \lambda \frac{1}{(u-2)} dx$ or $(u-2)du = \pm \lambda dx$	
	Note: The expressions must contain du and dx . They can be simplified or un-simplified	•
	A1: Also allow $du = \frac{1}{(u-2)}dx$ or $(u-2)du = \pm \lambda dx$	
	Note: The expressions must contain du and dx . They can be simplified or un-simplified	
	A1: $\int \frac{1}{u} (u-2) du$. (Ignore integral sign and du).	
	dM1: An attempt to divide each term by <i>u</i> . Note that this mark is dependent on the previous M1 mark being awarded. Note that this mark can be implied by later working	
	ddM1: $\pm Au \pm B \ln u$, $A \neq 0$, $B \neq 0$	
	Note that this mark is dependent on the two previous M1 marks being awarded. A1ft: $u - 2\ln u$ or $\pm Au \pm B\ln u$ being correctly followed through, $A \neq 0$, $B \neq 0$	
	M1: Applies limits of 5 and 3 in u or 4 and 0 in x in their integrated function and subtracts the way round.	correct
	A1: cso and cao. $2 + 2\ln\left(\frac{3}{5}\right)$ or $2 + 2\ln(0.6)$, $\left(=A + 2\ln B$, so $A = 2, B = \frac{3}{5}\right)$	
	Note: $2 - 2\ln\left(\frac{3}{5}\right)$ is A0.	

	Notes for Question 3 Continued
3. ctd	Note: $\int \frac{1}{u} (u-2) du = u - 2 \ln u$ with no working is 2^{nd} M1, 3^{rd} M1, 3^{rd} A1.
	but Note: $\int \frac{1}{u} (u-2) du = (u-2) \ln u$ with no working is 2^{nd} M0, 3^{rd} M0, 3^{rd} A0.

6666

Past Paper This resource was created and owned by Pearson Edexcel Leave blank (a) Find the binomial expansion of 4. $|x| < \frac{8}{9}$ $\sqrt[3]{(8-9x)}$, in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a simplified fraction. (6) (b) Use your expansion to estimate an approximate value for $\sqrt[3]{7100}$, giving your answer to 4 decimal places. State the value of x, which you use in your expansion, and show all your working. (3) 10 P 4 2 9 5 4 A 0 1 0 2 8

Summer 2013R Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

666	6

Question Number	Scheme	Marks		
4. (a)	$\left\{\sqrt[3]{(8-9x)}\right\} = (8-9x)^{\frac{1}{3}}$ Power of $\frac{1}{3}$	M1		
	$= \underline{(8)^{\frac{1}{3}}} \left(1 - \frac{9x}{8}\right)^{\frac{1}{3}} = \underline{2} \left(1 - \frac{9x}{8}\right)^{\frac{1}{3}} $ $\underline{(8)^{\frac{1}{3}}} \text{ or } \underline{2}$	<u>B1</u>		
	$= \left\{2\right\} \left[1 + \left(\frac{1}{3}\right)(kx) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}(kx)^{2} + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}(kx)^{3} + \dots\right]$ see notes	M1 A1		
	$= \left\{2\right\} \left[\frac{1 + \left(\frac{1}{3}\right)\left(\frac{-9x}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{-9x}{8}\right)^2 + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(\frac{-9x}{8}\right)^3 + \dots}{3!} \right]$			
	$= 2\left[1 - \frac{3}{8}x; -\frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots\right]$ See notes below!			
	$= 2 - \frac{3}{4}x; - \frac{9}{32}x^2 - \frac{45}{256}x^3 + \dots$	A1; A1		
(b)	$\left\{\sqrt[3]{7100} = 10\sqrt[3]{71} = 10\sqrt[3]{(8-9x)}, \right\}$ so $x = 0.1$ Writes down or uses $x = 0.1$	B1		
	When $x = 0.1$, $\sqrt[3]{(8-9x)} \approx 2 - \frac{3}{4}(0.1) - \frac{9}{32}(0.1)^2 - \frac{45}{256}(0.1)^3 +$ = 2 - 0.075 - 0.0028125 - 0.00017578125	M1		
	= 2 - 0.073 - 0.0028123 - 0.00017378123 $= 1.922011719$			
	So, $\sqrt[3]{7100} = 19.220117919 = 19.2201 (4 dp)$ 19.2201 cso	A1 cao [3]		
	Notes for Question 4	9		
(a)	M1: Writes or uses $\frac{1}{3}$. This mark can be implied by a constant term of 8 ³ or 2.			
	<u>B1</u> : $(8)^{\frac{1}{3}}$ or <u>2</u> outside brackets or <u>2</u> as candidate's constant term in their binomial expansion.			
	M1: Expands $(+kx)^{\frac{1}{3}}$ to give any 2 terms out of 4 terms simplified or un-simplified,			
	Eg: $1 + \left(\frac{1}{3}\right)(kx)$ or $\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(kx)^3$ or $1 + \dots + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2$			
	or $\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(kx)^3$ where $k \neq 1$ are fine for M1.			
	A1: A correct simplified or un-simplified $1 + \left(\frac{1}{3}\right)(kx) + \frac{(\frac{1}{3})(-\frac{2}{3})}{2!}(kx)^2 + \frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}(kx)^3$			
	expansion with consistent (kx) . Note that (kx) must be consistent (on the RHS, not necessaril	y the LHS)		
	in a candidate's expansion. Note that $k \neq 1$.			
	You would award B1M1A0 for $2\left[\frac{1+\left(\frac{1}{3}\right)\left(\frac{-9x}{8}\right)+\frac{(\frac{1}{3})(-\frac{2}{3})}{2!}\left(-9x\right)^2+\frac{(\frac{1}{3})(-\frac{2}{3})(-\frac{5}{3})}{3!}\left(\frac{-9x}{8}\right)^3+\right]$			
	because (kx) is not consistent.			

www.mystudybro.com

Mathematics C4

6666

Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel **Notes for Question 4 Continued** 4. (a) ctd "Incorrect bracketing" = $\{2\} \left| 1 + \left(\frac{1}{3}\right) \left(\frac{-9x}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!} \left(\frac{-9x^2}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!} \left(\frac{-9x^3}{8}\right) + \dots \right\}$ is M1A0 unless recovered. A1: For $2 - \frac{3}{4}x$ (simplified please) or also allow 2 - 0.75x. Allow Special Case A1A0 for either SC: = $2 \begin{bmatrix} 1 - \frac{3}{8}x; \dots \end{bmatrix}$ or SC: $K \begin{bmatrix} 1 - \frac{3}{8}x - \frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots \end{bmatrix}$ (where *K* can be 1 or omitted), with each term in the [.....] either a simplified fraction or a decimal. A1: Accept only $-\frac{9}{32}x^2 - \frac{45}{256}x^3$ or $-0.28125x^2 - 0.17578125x^3$ Candidates who write = 2 $1 + \left(\frac{1}{3}\right)\left(\frac{9x}{8}\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(\frac{9x}{8}\right)^2 + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(\frac{9x}{8}\right)^3 + \dots$ where $k = \frac{9}{8}$ and not $-\frac{9}{8}$ and achieve $2 + \frac{3}{4}x; -\frac{9}{32}x^2 + \frac{45}{256}x^3 + ...$ will get B1M1A1A0A0. Note for final two mark $2\left[1 - \frac{3}{8}x; -\frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots\right] = 2 + \frac{3}{4}x - \frac{9}{32}x^2 - \frac{45}{256}x^3 + \dots \text{ scores final A0A1.}$ 2 $1 - \frac{3}{8}x; -\frac{9}{64}x^2 - \frac{45}{512}x^3 + \dots$ = $2 - \frac{3}{4} - \frac{9}{32}x^2 - \frac{45}{256}x^3 + \dots$ scores final A0A1 Alternative method: Candidates can apply an alternative form of the binomial expansion. $\left\{\sqrt[3]{(8-9x)}\right\} = \left(8-9x\right)^{\frac{1}{3}} = \left(8\right)^{\frac{1}{3}} + \left(\frac{1}{3}\right)\left(8\right)^{-\frac{2}{3}}\left(-9x\right) + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)}{2!}\left(8\right)^{-\frac{5}{3}}\left(-9x\right)^{2} + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)}{3!}\left(8\right)^{-\frac{8}{3}}\left(-9x\right)^{3}$ **B1:** $(8)^{\frac{1}{3}}$ or 2 M1: Any two of four (un-simplified or simplified) terms correct. A1: All four (un-simplified or simplified) terms correct. A1: $2 - \frac{3}{4}x$ A1: $-\frac{9}{32}x^2 - \frac{45}{256}x^3$ Note: The terms in C need to be evaluated, so $\frac{1}{3}C_{0}(8)^{\frac{1}{3}} + \frac{1}{3}C_{1}(8)^{-\frac{2}{3}}(-9x) + \frac{1}{3}C_{2}(8)^{-\frac{5}{3}}(-9x)^{2} + \frac{1}{3}C_{3}(8)^{-\frac{8}{3}}(-9x)^{3}$ without further working is B0M0A0. **B1:** Writes down or uses x = 0.1**(b)** M1: Substitutes their x, where $|x| < \frac{8}{9}$ into at least two terms of their binomial expansion. A1: 19.2201 cao Be Careful! The binomial answer is 19.22011719 and the calculated $\sqrt[3]{7100}$ is 19.21997343... which is 19.2200 to 4 decimal places.

Past Paper

Mathematics C4

Figure 1 shows part of the curve with equation $x = 4te^{-\frac{1}{3}t} + 3$. The finite region *R* shown shaded in Figure 1 is bounded by the curve, the *x*-axis, the *t*-axis and the line t = 8.

(a) Complete the table with the value of x corresponding to t = 6, giving your answer to 3 decimal places.

t	0	2	4	6	8
x	3	7.107	7.218		5.223

(b) Use the trapezium rule with all the values of x in the completed table to obtain an estimate for the area of the region R, giving your answer to 2 decimal places.

(3)

(1)

(c) Use calculus to find the exact value for the area of R.

(6)

(d) Find the difference between the values obtained in part (b) and part (c), giving your answer to 2 decimal places.

(1)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4

Past Paper	per (Mark Scheme) This resource was created and owned by Pearson Edexcel		
Question Number	Scheme	Mar	ks
5. (a)	6.248046798 = 6.248 (3dp) 6.248 or awrt 6.248	B1	[1]
(b)	Area $\approx \frac{1}{2} \times 2$; $\times \left[\frac{3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223}{2} \right]$	B1; <u>M</u> 1	
	= 49.369 = 49.37 (2 dp) 49.37 or awrt 49.37	A1	[3]
	$\left\{ \int (4t \mathrm{e}^{-\frac{1}{3}t} + 3) \mathrm{d}t \right\} = -12t \mathrm{e}^{-\frac{1}{3}t} - \int -12\mathrm{e}^{-\frac{1}{3}t} \left\{ \mathrm{d}t \right\} \qquad \pm At \mathrm{e}^{-\frac{1}{3}t} \pm B \int \mathrm{e}^{-\frac{1}{3}t} \left\{ \mathrm{d}t \right\}, \ A \neq 0, \ B \neq 0$	M1	
(0)	$\begin{array}{c} \textbf{J} \\ +3t \\ \textbf{See notes.} \\ 3 \rightarrow 3t \end{array}$	A1 B1	
	$= -12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t} \left\{+3t\right\} - 12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t}$	A1	
	$\left[-12t\mathrm{e}^{-\frac{1}{3}t}-36\mathrm{e}^{-\frac{1}{3}t}+3t\right]_{0}^{8}=$		
	Substitutes limits of 8 and 0 into an integrated function of the form of		
	$= \left(-12(8)e^{-\frac{1}{3}(8)} - 36e^{-\frac{1}{3}(8)} + 3(8) \right) - \left(-12(0)e^{-\frac{1}{3}(0)} - 36e^{-\frac{1}{3}(0)} + 3(0) \right) \text{either } \pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} \text{ or } $	dM1	
	$\pm \lambda t e^{-3t} \pm \mu e^{-3t} + Bt \text{ and}$ subtracts the correct way round.		
	$= \left(-96e^{-\frac{8}{3}} - 36e^{-\frac{8}{3}} + 24\right) - (0 - 36 + 0)$		
	$= 60 - 132e^{-\frac{8}{3}} $ $60 - 132e^{-\frac{8}{3}}$	A1	[6]
(b)	Difference = $ 60 - 132e^{-\frac{8}{3}} - 49.37 = 1.458184439 = 1.46 (2 dp)$ 1.46 or awrt 1.46	B1	[•]
(u)		DI	[1]
			11
(a)	B1: 6 248 or awrt 6 248 Look for this on the table or in the candidate's working		
(b)	B1 : Outside brackets $\frac{1}{-\times 2}$ or 1		
	2 M1. For structure of trapezium rule Allow one miscony of their values		
	A1: 19 37 or anything that rounds to 19 37		
	Note: It can be possible to award : (a) B0 (b) B1M1A1 (awrt 49.37)		
	<u>Note:</u> Working must be seen to demonstrate the use of the trapezium rule. <u>Note</u> : actual area is 50.8 Bracketing mistake: Unless the final answer implies that the calculation has been done correctly	328 v.	
	Award B1M0A0 for $1 + 3 + 2(7.107 + 7.218 + \text{their } 6.248) + 5.223$ (nb: answer of 50.369).	, ,	

Summer 2013Rwww.mystudybro.comPast Paper (Mark Scheme)This resource was created and owned by Pearson Edexcel

	Notes for Question 5 Continued
5. (b) ctd	Alternative method for part (b): Adding individual trapezia
	Area $\approx 2 \times \left[\frac{3+7.107}{2} + \frac{7.107+7.218}{2} + \frac{7.218+6.248}{2} + \frac{6.248+5.223}{2} \right] = 49.369$
	B1: 2 and a divisor of 2 on all terms inside brackets.
	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2.
	A1: anything that rounds to 49.37
(c)	M1: For $4t e^{-\frac{1}{3}t} \to \pm At e^{-\frac{1}{3}t} \pm B \int e^{-\frac{1}{3}t} \{dt\}, A \neq 0, B \neq 0$
	A1: For $te^{-\frac{1}{3}t} \rightarrow \left(-3te^{-\frac{1}{3}t} - \int -3e^{-\frac{1}{3}t}\right)$ (some candidates lose the 4 and this is fine for the first A1 mark).
	or $4t e^{-\frac{1}{3}t} \rightarrow 4\left(-3t e^{-\frac{1}{3}t} - \int -3e^{-\frac{1}{3}t}\right)$ or $-12t e^{-\frac{1}{3}t} - \int -12e^{-\frac{1}{3}t}$ or $12\left(-t e^{-\frac{1}{3}t} - \int -e^{-\frac{1}{3}t}\right)$
	These results can be implied. They can be simplified or un-simplified. B1: $3 \rightarrow 3t$ or $3 \rightarrow 3x$ (bod).
	Note: Award B0 for 3 integrating to $12t$ (implied), which is a common error when taking out a factor of 4.
	Be careful some candidates will factorise out 4 and have $4\left(\dots+\frac{3}{4}\right) \rightarrow 4\left(\dots+\frac{3}{4}t\right)$
	which would then be fine for B1.
	Note: Allow B1 for $\int_0^8 3 dt = 24$
	A1: For correct integration of $4t e^{-\frac{1}{3}t}$ to give $-12t e^{-\frac{1}{3}t} - 36e^{-\frac{1}{3}t}$ or $4\left(-3t e^{-\frac{1}{3}t} - 9e^{-\frac{1}{3}t}\right)$ or equivalent.
	This can be simplified or un-simplified.
	dM1: Substitutes limits of 8 and 0 into an integrated function of the form of either $\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t}$ or
	$\pm \lambda t e^{-\frac{1}{3}t} \pm \mu e^{-\frac{1}{3}t} + Bt$ and subtracts the correct way round.
	Note: Evidence of a proper consideration of the limit of 0 (as detailed in the scheme) is needed for dM1. So, just subtracting zero is M0.
	A1: An exact answer of $60 - 132e^{-\frac{3}{3}}$. A decimal answer of 50.82818444 without a correct answer is A0.
	Note: A decimal answer of 50.82818444 without a correct exact answer is A0.
	Note: If a candidate gains M1A1B1A1 and then writes down 50.8 or awrt 50.8 with no method for substituting limits of 8 and 0, then award the final M1A0.
	IMPORTANT: that is fine for candidates to work in terms of x rather than t in part (c).
. . .	Note: The " $3t$ " is needed for B1 and the final A1 mark.
(d)	B1: 1.46 or awrt 1.46 or -1.46 or awrt -1.46.
	Candidates may give correct decimal answers of 1.458184439 or 1.459184439
	Note: You can award this mark whether or not the candidate has answered part (c) correctly.

6666

Leave blank 6. Relative to a fixed origin O, the point A has position vector $21\mathbf{i} - 17\mathbf{j} + 6\mathbf{k}$ and the point B has position vector 25i - 14j + 18k. The line *l* has vector equation $\mathbf{r} = \begin{pmatrix} a \\ b \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$ where a, b and c are constants and λ is a parameter. Given that the point *A* lies on the line *l*, (a) find the value of *a*. (3) Given also that the vector \overrightarrow{AB} is perpendicular to l, (b) find the values of b and c, (5) (c) find the distance AB. (2) The image of the point *B* after reflection in the line *l* is the point B'. (d) Find the position vector of the point B'. (2)

Question Number	Scheme	Marks
6. (a)	$l: \mathbf{r} = \begin{pmatrix} a \\ b \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}, \overrightarrow{OA} = \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix}$ A is on l, so $\begin{pmatrix} 21 \\ -17 \\ c \\ -1 \end{pmatrix} = \begin{pmatrix} a \\ b \\ 10 \\ 10 \end{pmatrix} + \lambda \begin{pmatrix} 6 \\ c \\ 1 \\ 10 \end{pmatrix}$	
(b)	$ \left\{ \overrightarrow{AB} \right\} = \begin{pmatrix} 4 \\ 3 \\ 12 \end{pmatrix} $ $ \left\{ \overrightarrow{AB} \right\} = \begin{pmatrix} 4 \\ 3 \\ 12 \end{pmatrix} $ $ \left\{ \overrightarrow{AB} \right\} = \begin{pmatrix} 4 \\ 3 \\ 12 \end{pmatrix} $ $ \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix} $ $ \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix} $ $ \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix} $ $ \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix} $ $ \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix} $ $ \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix} $ $ \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix} $ $ \left\{ \overrightarrow{BA} \right\} = \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix} $	B1 M1 A1 cao [3] M1
	$\left\{ \overrightarrow{AB} \perp l \Rightarrow \overrightarrow{AB} \bullet \mathbf{d} = 0 \right\} \Rightarrow \begin{pmatrix} 4 \\ 3 \\ 12 \end{pmatrix} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix} = 24 + 3c - 12 = 0; \Rightarrow c = -4 \qquad \text{See notes.}$	M1; A1 ft ddM1;
	$\{\mathbf{j}: \ b + c\lambda = -17 \Rightarrow \} \ b + (-4)(4) = -17; \Rightarrow b = -1$ See notes.	A1 cso cao [5]
(c)	$ AB = \sqrt{4^2 + 3^2 + 12^2}$ or $ AB = \sqrt{(-4)^2 + (-3)^2 + (-12)^2}$ See notes. So, $ AB = 13$	M1 A1 cao
(d)	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} + \overrightarrow{BA} \right\} = \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix} + \begin{pmatrix} -4 \\ -3 \\ -12 \end{pmatrix}; = \begin{pmatrix} 17 \\ -20 \\ -6 \end{pmatrix}$ See notes for alternative methods.	M1;A1 cao
		[2] 12
	Notes for Question 6	
(a)	B1: $\lambda = 4$ seen or implied. M1: Substitutes their value of λ into $a + 6\lambda = 21$ A1: $a = -3$. Note: Award B1M1A1 if the candidate states $a = -3$ from no working. <u>Alternative Method Using Simultaneous equations for part (a).</u> B1: For $60 - 6\lambda = 36$ M1: $60 - 6\lambda = 36$ and $a + 6\lambda = 21$ solved simultaneously to give $a =$	
	A1: $u = -3$, Ca0.	

Notes for Question 6 Continued 6. (b) ctd M1: Finds the difference between OA and OB. Ignore labelling. If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference. **M1:** *Applies* the formula $\overrightarrow{AB} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$ or $\overrightarrow{BA} \bullet \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$ correctly to give a linear equation in *c* which is set equal to zero. Note: The dot product can also be with $\pm k \begin{pmatrix} 6 \\ c \\ -1 \end{pmatrix}$. A1ft: c = -4 or for finding a correct follow through c. **ddM1:** Substitutes their value of λ and their value of c into $b + c\lambda = -17$ Note that this mark is dependent on the two previous method marks being awarded. **A1:** b = -1**M1:** An attempt to apply a three term Pythagoras in order to find |AB|, (c) so taking the square root is required here. A1: 13 cao Note: Don't recover work for part (b) in part (c). (**d**) M1: For a full *applied* method of finding the coordinates of B'. Note: You can give M1 for 2 out of 3 correct components of B'. A1: For either $\begin{vmatrix} -20 \\ -6 \end{vmatrix}$ or $17\mathbf{i} - 20\mathbf{j} - 6\mathbf{k}$ or (17, -20, -6) cao. Helpful diagram! 25 -1421 -17A 6 $\overrightarrow{BA} =$ - 3 B q

Summer 2013R Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel **Mathematics C4**

	Notes for Question 6 Continued			
	Acceptable Methods for the Method mark in part (d			
Way 1	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} + \overrightarrow{BA} \right\} = \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} + \begin{pmatrix} -4\\ -3\\ -12 \end{pmatrix} $ (using their	\overline{BA})		
Way 2	$\overrightarrow{OB'} \left\{ = \overrightarrow{OA} - \overrightarrow{AB} \right\} = \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} - \begin{pmatrix} 4\\ 3\\ 12 \end{pmatrix} $ (using their	\overrightarrow{AB})		
Way 3	$\overrightarrow{OB'} \left\{ = \overrightarrow{OB} + 2\overrightarrow{BA} \right\} = \begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} + 2 \begin{pmatrix} -4\\ -3\\ -12 \end{pmatrix} $ (using their	\overrightarrow{BA})		
Way 4	$\overrightarrow{OB'} \left\{ = \overrightarrow{OB} - 2\overrightarrow{AB} \right\} = \begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} - 2 \begin{pmatrix} 4\\ 3\\ 12 \end{pmatrix} \text{(using their } \overrightarrow{A} = 2 \begin{pmatrix} 4\\ 3\\ 12 \end{pmatrix}$	\overrightarrow{AB})		
Way 5	$ \begin{pmatrix} 25\\ -14\\ 18 \end{pmatrix} \rightarrow \begin{pmatrix} \text{Minus } 4\\ \text{Minus } 3\\ \text{Minus } 12 \end{pmatrix} \rightarrow \begin{pmatrix} 21\\ -17\\ 6 \end{pmatrix} \rightarrow \begin{pmatrix} \text{Minus } 4\\ \text{Minus } 3\\ \text{Minus } 12 \end{pmatrix} \Biggl\{ \rightarrow \Biggl\{ \end{pmatrix} $	$ \begin{array}{c} 17 \\ -20 \\ -6 \end{array} \right\} , \text{ so } \overrightarrow{OA} + \text{their } \overrightarrow{BA} $		
Way 6	$\overrightarrow{OB'} \left\{ = 2\overrightarrow{OA} - \overrightarrow{OB} \right\} = 2 \begin{pmatrix} 21 \\ -17 \\ 6 \end{pmatrix} - \begin{pmatrix} 25 \\ -14 \\ 18 \end{pmatrix}$			
Way 7	$\overrightarrow{OB} = 25\mathbf{i} - 14\mathbf{j} + 18\mathbf{k}, \ \overrightarrow{OA} = 21\mathbf{i} - 17\mathbf{j} + 6\mathbf{k} \text{ and } \overrightarrow{OB'}$	$= p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$,		
	$(21, -17, 6) = \left(\frac{25+p}{2}, \frac{-14+q}{2}, \frac{18+r}{2}\right)$			
	p = 21(2) - 25 = 17	M1: Writing down any two equations correctly and		
	q = -17(2) + 14 = -20	an attempt to find at least two of p, q or r .		
	r = 6(2) - 18 = -6			

Figure 2 shows a sketch of the curve C with parametric equations

Figure 3

R

0

The finite region R which is bounded by the curve C, the x-axis and the line x = 125 is shown shaded in Figure 3. This region is rotated through 2π radians about the x-axis to form a solid of revolution.

x = 125

(c) Use calculus to find the exact value of the volume of the solid of revolution.

(5)

x

Summer 2013R Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel **Mathematics C4**

Question Number	Scheme		Marks
7.	$x = 27 \sec^3 t$, $y = 3 \tan t$, $0 \le t \le \frac{\pi}{3}$		
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 81 \sec^2 t \sec t \tan t , \frac{\mathrm{d}y}{\mathrm{d}t} = 3 \sec^2 t$	At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct.	B1
		Both $\frac{dt}{dt}$ and $\frac{dt}{dt}$ are correct.	B1
	$\frac{dy}{dx} = \frac{3\sec^2 t}{81\sec^3 t \tan t} \left\{ = \frac{1}{27\sec t \tan t} = \frac{\cos t}{27\tan t} = \frac{\cos^2 t}{27\sin t} \right\}$	Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	M1;
	At $t = \frac{\pi}{6}$, $\frac{dy}{dx} = \frac{3\sec^2\left(\frac{\pi}{6}\right)}{81\sec^3\left(\frac{\pi}{6}\right)\tan\left(\frac{\pi}{6}\right)} = \frac{4}{72} \left\{ = \frac{3}{54} = \frac{1}{18} \right\}$	$\frac{4}{72}$	A1 cao cso
	$2 \left(\sum^{2} \right)^{2}$		[4]
(b)	$\left\{1 + \tan^2 t = \sec^2 t\right\} \Longrightarrow 1 + \left(\frac{y}{3}\right)^2 = \left(\sqrt[3]{\left(\frac{x}{27}\right)}\right) = \left(\frac{x}{27}\right)^{\frac{3}{3}}$		M1
	$\Rightarrow 1 + \frac{y^2}{9} = \frac{x^{\frac{2}{3}}}{9} \Rightarrow 9 + y^2 = x^{\frac{2}{3}} \Rightarrow y = \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}} *$		A1 * cso
	$a = 27$ and $b = 216$ or $27 \le x \le 216$	a = 27 and $b = 216$	B1 [3]
(c)	$V = \pi \int_{27}^{125} \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^2 dx \text{ or } \pi \int_{27}^{125} \left(x^{\frac{2}{3}} - 9 \right) dx$	For $\pi \int \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^2$ or $\pi \int \left(x^{\frac{2}{3}} - 9 \right)$	B1
		Ignore limits and dx. Can be implied. $5 \qquad 3 \qquad 5$	
	$= \left\{\pi\right\} \left[\frac{3}{5}x^{\frac{5}{3}} - 9x\right]^{125}$	Either $\pm Ax^3 \pm Bx$ or $\frac{5}{5}x^3$ oe	M1
		$\frac{5}{5}x^3 - 9x \text{ oe}$	A1
	$= \left\{\pi\right\} \left(\left(\frac{3}{5}(125)^{\frac{5}{3}} - 9(125)\right) - \left(\frac{3}{5}(27)^{\frac{5}{3}} - 9(27)\right) \right)$	Substitutes limits of 125 and 27 into an integrated function and subtracts the correct way round.	dM1
	$= \{\pi\} ((1875 - 1125) - (145.8 - 243))$	1026 -	
	$=\frac{4230\pi}{5}$ or 847.2π	$\frac{4230\pi}{5}$ or 847.2π	A1
			[5] 12
	Notes for Question	n 7	
(a)	B1: At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this is	mark can be implied from their working.	
	B1: Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working.		
	M1: Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$, where both $\frac{dy}{dt}$ and $\frac{dx}{dt}$ are trigonometric functions of t.		
	A1: $\frac{4}{72}$ or any equivalent correct rational answer not involving surds.		
	Allow 0.05 with the recurring symbol.		

Notes for Question 7 Continued						
	Note: Please check that their $\frac{dx}{dt}$ is differentiated correct	tly.				
	Eg. Note that $x = 27 \sec^3 t = 27 (\cos t)^{-3} \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = -81 (\cos t)^{-2} (-\sin t)$ is correct.					
(b)	 M1: Either: Applying a correct trigonometric identity (usually 1 + tan² t = sec² t) to give a Cartesian equation in r and v only 					
	• Starting from the RHS and goes on to achieve $\sqrt{9\tan^2 t}$ by using a correct trigonometric identity.					
	• Starts from the LHS and goes on to achieve $\sqrt{9 \sec^2 t - 9}$ by using a correct trigonometric identity.					
	A1*: For a correct proof of $y = \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}}$.		·			
	Note this result is printed on the Question Paper, B1: Both $a = 27$ and $b = 216$. Note that $27 \le x \le 216$	so no incorrect working is allowed. 6 is also fine for B1.				
(c)	B1: For a correct statement of $\pi \int \left(\left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \right)^2$ or π	$\int \left(x^{\frac{2}{3}} - 9\right)$. Ignore limits and dx.	Can be implied.			
	M1: Either integrates to give $\pm Ax^{\frac{5}{3}} \pm Bx$, $A \neq 0$, $B \neq 0$	or integrates $x^{\frac{2}{3}}$ correctly to give \cdot	$\frac{3}{5}x^{\frac{5}{3}}$ oe			
	A1: $\frac{3}{5}x^{\frac{5}{3}} - 9x$ or. $\frac{x^{\frac{5}{3}}}{\left(\frac{5}{3}\right)} - 9x$ oe.					
	dM1: Substitutes limits of 125 and 27 into an integrated Note: that this mark is dependent upon the previo	function and subtracts the correct ous method mark being awarded.	way round.			
	A1: A correct exact answer of $\frac{4236\pi}{5}$ or 847.2π .					
	Note: The π in the volume formula is only required for the B1 mark and the final A1 mark. Note: A decimal answer of 2661.557 without a correct exact answer is A0. Note: If a candidate gains the first B1M1A1 and then writes down 2661 or awrt 2662 with no method for what training limits of 125 and 27, then around the final M1A0.					
(a)	Alternative response using the Cartesian equation in pe	urt (a)				
Way 2	$\left\{ y = \left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} \implies \right\} \frac{dy}{dx} = \frac{1}{2} \left(x^{\frac{2}{3}} - 9 \right)^{-\frac{1}{2}} \left(\frac{2}{3} x^{-\frac{1}{3}} \right)$	$\frac{dy}{dx} = \pm K x^{-\frac{1}{3}} \left(x^{\frac{2}{3}} - \frac{1}{3} \left(x^{\frac{2}{3}} - \frac{1}{3} \left(x^{\frac{2}{3}} - \frac{1}{3} \left(x^{\frac{2}{3}} - 9 \right)^{-\frac{1}{2}} \left(\frac{2}{3} x^{-\frac{1}{3}} - \frac{1}{3} \left(x^{\frac{2}{3}} - \frac{1}{3} \right)^{-\frac{1}{3}} \left(\frac{2}{3} x^{-\frac{1}{3}} - \frac{1}{3} x^{-\frac{1}{3}} \right)^{-\frac{1}{3$	$9)^{-\frac{1}{2}} M1$ $b oe A1$			
	At $t = \frac{\pi}{6}$, $x = 27 \sec^3\left(\frac{\pi}{6}\right) = 24\sqrt{3}$	Uses $t = \frac{\pi}{6}$ to find x and subs	titutes dM1			
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2} \left(\left(24\sqrt{3} \right)^{\frac{2}{3}} - 9 \right)^{-\frac{1}{2}} \left(\frac{2}{3} \left(24\sqrt{3} \right)^{-\frac{1}{3}} \right)$	their x into an expression for	$r \frac{dy}{dx}$.			
	So, $\Rightarrow \frac{dy}{dx} = \frac{1}{2} \left(\frac{1}{\sqrt{3}} \right) \left(\frac{1}{3\sqrt{3}} \right) = \frac{1}{18}$		$\frac{1}{18}$ A1 cao cso			
	Note: Way 2 is marked as M1 A1 dM1 A1					

Note: For way 2 the second M1 mark is dependent on the first M1 being gained.

www.mystudybro.com This resource was created and owned by Pearson Edexcel **Mathematics C4**

	Notes for Question 7 Continued				
7. (b)	Alternative responses for M1A1 in part (b): STARTING FROM THE RHS				
Way 2	$\left\{ \text{RHS} = \right\} \left(x^{\frac{2}{3}} - 9 \right)^{\frac{1}{2}} = \sqrt{\left(27 \sec^3 t \right)^{\frac{2}{3}} - 9} = \sqrt{9 \sec^2 t - 9} = \sqrt{9 \tan^2}$	$ \begin{array}{c c} \hline t \\ t \\$	$\frac{1}{t}$ M1		
	$=3\tan t = y \{= LHS\} cso$	Correct proof from $\left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}}$ to	y. A1*		
	M1: Starts from the RHS and goes on to achieve $\sqrt{9\tan^2 t}$ by u	sing a correct trigonometric identity.			
7. (b)	Alternative responses for M1A1 in part (b): STARTING FRO	M THE LHS			
Way 3	{LHS =} $y = 3\tan t = \sqrt{(9\tan^2 t)} = \sqrt{9\sec^2 t - 9}$	For applying $1 + \tan^2 t = \sec^2 t$ of to achieve $\sqrt{9\sec^2 t - t}$	$\frac{1}{9}$ M1		
	$= \sqrt{9\left(\frac{x}{27}\right)^{\frac{2}{3}}} - 9 = \sqrt{9\left(\frac{x^{\frac{2}{3}}}{9}\right)} - 9 = \left(x^{\frac{2}{3}} - 9\right)^{\frac{1}{2}} $ cso	Correct proof from y to $\left(x^{\frac{2}{3}}-9\right)^{\frac{3}{2}}$	¹ / ₂ . A1*		
	M1: Starts from the LHS and goes on to achieve $\sqrt{9 \sec^2 t - 9}$	by using a correct trigonometric identit	y.		
7. (c)	Alternative response for part (c) using parametric integration				
Way 2		$\pi \int 3\tan t (81 \sec^2 t \sec t \tan t) dt$			
	$V = \pi \int 9 \tan^2 t (81 \sec^2 t \sec t \tan t) dt$		B1		
	Ιε	gnore limits and dx . Can be implied.			
	$= \{\pi\} \int 729 \sec^2 t \tan^2 t \sec t \tan t \mathrm{d}t$				
	$= \{\pi\} \int 729 \sec^2 t \left(\sec^2 t - 1\right) \sec t \tan t \mathrm{d}t$				
	$= \{\pi\} \int 729 \left(\sec^4 t - \sec^2 t\right) \sec t \tan t \mathrm{d}t$				
	$= \{\pi\} \int 729 \left(\sec^4 t - \sec^2 t\right) \sec t \tan t \mathrm{d}t$				
		$\pm A \sec^5 t \pm B \sec^3 t$	M1		
	$= \left\{\pi\right\} \left[729 \left(\frac{1}{5}\sec^5 t - \frac{1}{3}\sec^3 t\right)\right]$	$729\left(\frac{1}{5}\sec^5 t - \frac{1}{3}\sec^3 t\right)$	A1		
	$V = \left\{\pi\right\} \left[729 \left(\frac{1}{5} \left(\frac{5}{3}\right)^5 - \frac{1}{3} \left(\frac{5}{3}\right)^3\right) - 729 \left(\frac{1}{5} 1^5 - \frac{1}{3} 1^3\right)\right] $ Substituting substitutions integrated as a statement of the second	titutes $\sec t = \frac{5}{3}$ and $\sec t = 1$ into an ted function and subtracts the correct way round	dM1		
	$= 729\pi \left[\left(\frac{250}{243} \right) - \left(-\frac{2}{15} \right) \right]$				
	$=\frac{4236\pi}{5}$ or 847.2π	$\frac{4236\pi}{5}$ or 847.2π	A1 [5]		

- 6666 Leave blank
- 8. In an experiment testing solid rocket fuel, some fuel is burned and the waste products are collected. Throughout the experiment the sum of the masses of the unburned fuel and waste products remains constant.

Let x be the mass of waste products, in kg, at time t minutes after the start of the experiment. It is known that at time t minutes, the rate of increase of the mass of waste products, in kg per minute, is k times the mass of unburned fuel remaining, where k is a positive constant.

The differential equation connecting x and t may be written in the form

 $\frac{\mathrm{d}x}{\mathrm{d}t} = k(M-x)$, where *M* is a constant.

(a) Explain, in the context of the problem, what $\frac{dx}{dt}$ and *M* represent.

(2)

Given that initially the mass of waste products is zero,

(b) solve the differential equation, expressing x in terms of k, M and t.

(6)

- Given also that $x = \frac{1}{2}M$ when $t = \ln 4$,
- (c) find the value of x when $t = \ln 9$, expressing x in terms of M, in its simplest form.

www.mystudybro.com This resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics C4

Question Number	Scheme				
8.	$\frac{\mathrm{d}x}{\mathrm{d}t} = k(M-x)$, where <i>M</i> is a constant				
(a)	$\frac{dx}{dt}$ is the <u>rate of increase</u> of the <u>mass of waste</u> products. Any one correct explanation				
	M is the total mass of unburned fuel and waste fuel (or the initial mass of unburned fuel) Both explanations	are correct. E	31 [2]		
(b)	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t \qquad \text{or} \int \frac{1}{k(M-x)} \mathrm{d}x = \int \mathrm{d}t$	P	31		
	$-\ln(M-x) = kt \{+c\} \text{or} -\frac{1}{k}\ln(M-x) = t \{+c\}$	See notes N	M1 A1		
	$\{t=0, x=0 \Longrightarrow\} -\ln(M-0) = k(0) + c$	See notes N	М1		
	$c = -\ln M \implies -\ln(M - x) = kt - \ln M$				
	then either or				
	$-kt = \ln(M - x) - \ln M \qquad \qquad kt = \ln M - \ln(M - x)$				
	$-kt = \ln\left(\frac{M-x}{M}\right)$ $kt = \ln\left(\frac{M}{M-x}\right)$				
	$e^{-kt} = \frac{M-x}{M}$ $e^{kt} = \frac{M}{M-x}$	d	ldM1		
	$Me^{-kt} = M - x$ $\begin{pmatrix} (M - x)e^{kt} = M \\ M - x = Me^{-kt} \end{pmatrix}$	A	41 * cso		
	leading to $x = M - Me^{-\kappa t}$ or $x = M(1 - e^{-\kappa t})$ oe				
			[6]		
(c)	$\left\{ x = \frac{1}{2}M, t = \ln 4 \Longrightarrow \right\} \frac{1}{2}M = M(1 - e^{-k \ln 4})$	Ν	M 1		
	$\Rightarrow \frac{1}{2} = 1 - e^{-k\ln 4} \Rightarrow e^{-k\ln 4} = \frac{1}{2} \Rightarrow -k\ln 4 = -\ln 2$				
	So $k = \frac{1}{2}$	A	A 1		
	$x = M\left(1 - e^{-\frac{1}{2}\ln 9}\right)$	d	IM1		
	$x = \frac{2}{3}M$	$x = \frac{2}{3}M A$	41 cso		
			[4] 12		

	Notes for Question 8 Continued				
8. (a)	B1: At least one explanation correct.				
	B1: Both explanations are correct.				
	$\frac{dx}{dt}$ is the <u>rate of increase</u> of the <u>mass of waste</u> products.				
	dt				
	or the <u>rate of change</u> of the <u>mass of waste</u> products.				
	M is the total mass of unburned fuel and wester fuel				
	or the initial mass of unburned fuel				
	or the total mass of rocket fuel and waste fuel				
	or the initial mass of rocket fuel				
	or the initial mass of fuel				
	or the total mass of waste and unburned products.				
(b)					
	B1: Separates variables as shown. dx and dt should be in the correct positions, though this mark can be				
	implied by later working. Ignore the integral signs.				
	M1: Both $\pm \lambda \ln(M-x)$ or $\pm \lambda \ln(x-M)$ and $\pm \mu t$ where λ and μ are any constants.				
	A1: For $-\ln(M - r) = kt$ or $-\ln(r - M) = kt$ or $-\frac{1}{2}\ln(M - r) = t$ or $-\frac{1}{2}\ln(r - M) = t$				
	$ \begin{array}{c} \mathbf{M} \\ \mathbf$				
	or $-\frac{1}{2}\ln(kM - kx) = t$ or $-\frac{1}{2}\ln(kx - kM) = t$				
	k k k k k				
	Note: $+c$ is not needed for this mark.				
	IMPORTANT: $+c$ can be on either side of their equation for the 1 st A1 mark.				
	M1: Substitutes $t = 0$ AND $x = 0$ in an integrated or changed equation containing c (or A or $\ln A$, etc.)				
	Note that this mark can be implied by the correct value of <i>c</i> .				
	ddM1: Uses their value of <i>c</i> which must be a ln term, and uses fully correct method to eliminate their				
	logarithms. Note: This mark is dependent on both previous method marks being awarded.				
	A1: $x = M - Me^{-kt}$ or $x = M(1 - e^{-kt})$ or $x = \frac{M(e^{-kt} - 1)}{kt}$ or equivalent where x is the subject.				
	e^{α}				
	Note: Flease check their working as incorrect working can lead to a correct answer.				
	Note: $\left\{\frac{dx}{dt} = k(M-x) \Rightarrow \frac{dx}{dt} = \frac{1}{kM-k} \Rightarrow \right\} x = -\frac{1}{k}\ln(kM-kx) \left\{+c\right\}$ is B1(Implied) M1A1.				
	$\begin{bmatrix} dt & & dt & kM - kx \end{bmatrix} $ k				
(c)	M1: Substitutes $x = \frac{1}{M}$ and $t = \ln 4$ into one of their earlier equations connecting x and t.				
(•)					
	A1: $k = \frac{1}{2}$, which can be an un-simplified equivalent numerical value. i.e. $k = \frac{\ln 2}{2}$ is fine for A1.				
	dM1: Substitutes $t = \ln 4$ and their evaluated k (which must be a numerical value) into one of their earlier				
	equations connecting x and t.				
	Note: that the $2^{}$ Method mark is dependent on the $1^{}$ Method mark being awarded in part (c).				
	A1: $x = \frac{2}{3}M$ cso.				
	Note: Please check their working as incorrect working can lead to a correct answer.				

ſ

6	6	6	6
v	v	v	v

Notes for Question 8 Continued				
Aliter 8. (b) Way 2	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t$	B1		
	$-\ln(M - x) = kt \{+c\}$ See notes	M1 A1		
	$\ln(M-x) = -kt + c$			
	$M - x = A \mathrm{e}^{-kt}$			
	$\{t=0, x=0 \Rightarrow\} M - 0 = A \mathrm{e}^{-k(0)}$	M1		
	$\Rightarrow M = A$			
	$M - x = M e^{-kt}$	ddM1		
	So, $x = M - Me^{-kt}$	A1		
(b)	B1M1A1: Mark as in the original scheme.	[6]		
	M1: Substitutes $t = 0$ AND $x = 0$ in an integrated equation containing their constant of integrated	gration which		
	could be c or A . Note that this mark can be implied by the correct value of c or A . ddM1: Uses a fully correct method to eliminate their logarithms and writes down an equation containing			
	Note: This mark is dependent on both previous method marks being awarded.			
	Note: $\ln(M-x) = -kt + c$ leading to $\ln(M-x) = e^{-kt} + e^c$ or $\ln(M-x) = e^{-kt} + A$ we	ould be dddM0.		
	A1: Same as the original scheme.			
Aliter				
8. (b) Way 3	$\int_{0} \frac{1}{M-x} \mathrm{d}x = \int_{0}^{1} k \mathrm{d}t$	B1		
	$\left[-\ln(M-x)\right]_0^x = \left[kt\right]_0^t$	M1 A1		
	$-\ln(M-x)-(-\ln M) = kt$ Applies limits of	M1		
	$-\ln(M-x) + \ln M = kt$			
	and then follows the original scheme.			
(a)	B1M1A1: Mark as in the original scheme (ignoring the limits). ddM1: Applies limits 0 and x on their integrated LHS and limits of 0 and t .			
	M1A1: Same as the original scheme.			

Summer 2013Rwww.mystudybro.comPast Paper (Mark Scheme)This resource was created and owned by Pearson Edexcel

Mathematics C4

Notes for Question 8 Continued					
Aliter 8. (b) Way 4	$\int \frac{1}{M-x} \mathrm{d}x = \int k \mathrm{d}t \left\{ \Rightarrow \int \frac{-1}{x-M} \mathrm{d}x = \int k \mathrm{d}t \right\}$				
	$-\ln \left x - M \right = kt + c$	Modulus not required for 1 st A1.	M1 A1		
	$\left\{t=0, x=0 \Longrightarrow\right\} -\ln\left 0-M\right = k(0) + c$		<i>Modulus</i> not required here!	M1	
	$\Rightarrow c = -\ln M \Rightarrow -\ln x - M = kt - \ln M$				
	then either or				
	$\begin{vmatrix} -kt &= \ln x - M - \ln M \\ -kt &= \ln \left \frac{x - M}{M} \right \\ kt = kt = kt$	$\ln M - \ln x - M $ $\ln \left \frac{M}{ x - M } \right $			
	$-kt = \ln\left(\frac{M-x}{M}\right) \qquad \qquad$	$\ln\!\left(\frac{M}{M-x}\right)$	Understanding of modulus is required	ddM1	
	$e^{-kt} = \frac{M - x}{M} \qquad e^{kt} =$	$= \frac{M}{M-x}$	here!		
	$Me^{-kt} = M - x \qquad \qquad$	$(-x)e^{kt} = M$ $x = Me^{-kt}$			
	leading to $x = M - Me^{-kt}$ or x	$= M(1 - e^{-kt})$ oe		A1 * cso	
				[6]	
	B1: Mark as in the original scheme. M1A1M1: Mark as in the original scheme ddM1: Mark as in the original scheme AN $\ln x - M $ to $\ln (M - x)$ in their w Note: This mark is dependent on b A1: Mark as in the original scheme.	ignoring the modulus. (D) the candidate must demony porking. poth the previous method ma	nstrate that they have conv	verted	
Aliter 8. (b)	Use of an integrating factor (I.F.)				
Way 5	$\frac{\mathrm{d}x}{\mathrm{d}t} = k\left(M - x\right) \implies \frac{\mathrm{d}x}{\mathrm{d}t} + kx = kM$ I.F. = e ^{kt}	B1			
	$\frac{\mathrm{d}}{\mathrm{d}t} \left(\mathrm{e}^{kt} x \right) = k M \mathrm{e}^{kt} ,$ $\mathrm{e}^{kt} x = M \mathrm{e}^{kt} + c$	M1A1			
	$ \begin{cases} x = M + c e^{-kt} \\ \{t = 0, x = 0 \Longrightarrow\} 0 = M + c e^{-k(0)} \\ \Rightarrow c = -M \end{cases} $	M1			
	$x = M - M e^{-kt}$	ddM1A1			