Past Paper

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4 ~~~~

ast Paper					•						666
Centre No.			F	aper Ro	eferenc	e			Surname	Initia	al(s)
Candidate No.		6	6 6	6	/	0	1	R	Signature		
	Paper Reference(s) 66666/01]	R		•					Γ	Examiner's us	e only
	Edex	cel	G	CE						Team Leader's 1	use only
	Core M	[ath	ema	tic	s C	24					
	Advance	ed								Question	
	Wednesda	ay 18	June	e 20	14 -	- A	fte	rno	on	Number	Blank
	Time: 1 h	our 3	30 mi	nute	es					1	
										3	
										4	
	Materials requin Mathematical For			on	Item: Nil	s inclu	uded	with	question papers	5	
	Candidates may	use any	calculat	or allo	wed k	y the	regu	latio	ns of the Joint	6	
	algebra manipul	lation or	symboli	c diffe	rentia	tion/i	nteg	he fa atior	cility for symbolic 1, or have	7	
	retrievable math	iematica	1 Iormul	ae stor	ed in	tnem	•			8	
Instructions to C	Candidates										
	write your centre n e the correct question			e num	ber, y	our s	urna	me, i	nitials and signature	e.	
You must write you	ir answer for each q is used, the answer s										
Information for	Candidates										
	natical Formulae and obtained for answe				provi	ded.					
The marks for indiv There are 8 questio	vidual questions and ons in this question j in this question pap	d the par paper. T	ts of qui he total	estions mark f	or thi	s pap	er is		l brackets: e.g. (2).		
Advice to Candio		. 2	1	-							
You should show s	at your answers to pufficient working to vorking may not gain	make y	our met						r.		
										Total	
This publication may be reproduced Pearson Education Ltd copyright po ©2014 Pearson Education Ltd. Printer's Log. No. P43166A										<i>Turn</i> ARSC	

Mathematics C4

6666

This resource was created and owned by Pearson Edexcel Past Paper Leave blank (a) Find the binomial expansion of 1. $\frac{1}{\sqrt{(9-10x)}},\qquad \qquad \left|x\right| < \frac{9}{10}$ in ascending powers of x up to and including the term in x^2 . Give each coefficient as a simplified fraction. (5) (b) Hence, or otherwise, find the expansion of $\frac{3+x}{\sqrt{(9-10x)}},\qquad \qquad \left|x\right| < \frac{9}{10}$ in ascending powers of x, up to and including the term in x^2 . Give each coefficient as a simplified fraction. (3) 2 P 4 3 1 6 6 A 0 2 2 8

Question Number		Scheme		Marl	ks		
1. (a)		$\frac{1}{1-10x} = \begin{cases} (9-10x)^{-\frac{1}{2}} \end{cases}$	$(9 - 10x)^{-\frac{1}{2}}$ or uses power of $-\frac{1}{2}$	B1			
	= (9)	$\int_{-1}^{\frac{1}{2}} \left(1 - \frac{10x}{9}\right)^{-\frac{1}{2}} = \frac{1}{3} \left(1 - \frac{10x}{9}\right)^{-\frac{1}{2}}$	$(9)^{-\frac{1}{2}}$ or $\frac{1}{3}$	<u>B1</u>			
	$=\left\{\frac{1}{3}\right\}$	$\left[1 + \left(-\frac{1}{2}\right)(kx) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(kx)^2 + \dots\right]$	At least two correct terms. See notes	M1			
	$= \left\{\frac{1}{3}\right\} \left[1 + \left(-\frac{1}{2}\right)\left(\frac{-10x}{9}\right) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}\left(\frac{-10x}{9}\right)^2 + \dots\right]$						
		$1 + \frac{5}{9}x + \frac{25}{54}x^2 + \dots$					
	$=\frac{1}{3}+$	$-\frac{5}{27}x;+\frac{25}{162}x^2+\dots$		A1; A1	[5]		
(b)	$\frac{3+}{\sqrt{(9-1)^2}}$	$\frac{x}{10x} = (3+x)(9-10x)^{-\frac{1}{2}}$			[0]		
	Y ·	$= (3+x)\left(\frac{1}{3} + \frac{5}{27}x + \left\{\frac{25}{162}x^2 + \right\}\right)$	Can be implied by later work See notes	M1			
		$= 1 + \frac{1}{9}x + \frac{1}{54}x^{2} + \frac{1}{3}x + \frac{1}{27}x^{2} + \dots$	Multiplies out to give exactly constant term, exactly 2 terms in x and exactly 2 terms in x^2 . gnore terms in x^3 . Can be implied.	M1			
		$= 1 + \frac{8}{9}x + \frac{35}{54}x^2 + \dots$	-	A1	[2]		
		Question 1 No	tos		[3] 8		
(a)	B1	Writes down $(9-10x)^{-\frac{1}{2}}$ or uses power of $-\frac{1}{2}$.					
	_	Δ	¹ / ₂ 1				
		This mark can be implied by a constant term of (9)					
	<u>B1</u>	$(9)^{-\frac{1}{2}}$ or $\frac{1}{3}$ outside brackets or $\frac{1}{3}$ as candidate's con	stant term in their binomial expansi	on.			
	M1	Expands $(+kx)^{-\frac{1}{2}}$ to give any 2 terms out of 3 terms	rms simplified or an un-simplified,				
		$1 + \left(-\frac{1}{2}\right)(kx)$ or $\left(-\frac{1}{2}\right)(kx) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(kx)^2$ or	1 ++ $\frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}(kx)^2$, where	$k \neq 1$.			
	A1	$\frac{1}{3} + \frac{5}{27}x$ (simplified fractions)					
	A1	Accept only $\frac{25}{162}x^2$					

1. (a) ctd	Note	You cannot recover correct work for part (a) in part (b). i.e. if the correct answer to (a) appears						
	SC	as part of their solution in part (b), it cannot be credited in part (a). If a candidate <i>would otherwise score</i> A0A0 then allow Special Case 1 st A1 for either						
	be	SC: $\frac{1}{3} \left[1 + \frac{5}{9}x; \dots \right]$ or SC: $\lambda \left[1 + \frac{5}{9}x + \frac{25}{54}x^2 + \dots \right]$ or SC: $\left[\lambda + \frac{5\lambda}{9}x + \frac{25\lambda}{54}x^2 + \dots \right]$						
		where λ can be 1 or omitted), with each term in the [] is a simplified fraction						
	SC	Special case for the M1 mark						
		Award Special Case M1 for a correct simplified or un-simplified $1 + n(kx) + \frac{n(n-1)}{2!}(kx)^2$						
		expansion with a value of $n \neq -\frac{1}{2}$, $n \neq positive integer$ and a consistent (kx) . Note that (kx)						
		must be consistent (on the RHS, not necessarily the LHS) in a candidate's expansion. Note that $k \neq 1$.						
	Note	Candidates who write $\left\{\frac{1}{3}\right\} \left[1 + \left(-\frac{1}{2}\right)\left(\frac{10x}{9}\right) + \frac{(-\frac{1}{2})(-\frac{3}{2})}{2!}\left(\frac{10x}{9}\right)^2 + \dots\right]$						
		where $k = \frac{10}{9}$ and not $-\frac{10}{9}$ and achieve $\frac{1}{3} - \frac{5}{27}x$; $+\frac{25}{162}x^2 +$ will get B1B1M1A0A1.						
(b)								
	M1	Writes down $(3 + x)$ (their part (a) answer, at least 2 of the 3 terms.)						
	Note	$(3+x)\left(\frac{1}{4}+\frac{5}{4}x+\right)$ or $(3+x)\left(\frac{1}{3}+\frac{5}{27}x+\frac{25}{162}x^2+\right)$ are fine for M1.						
	Note	This mark can also be implied by candidate multiplying out to find two terms (or coefficients) in x.						
	M1	Multiplies out to give exactly one constant term, exactly 2 terms in x and exactly 2 terms in x^2 .						
	Note	This M1 mark can be implied. You can also ignore x^3 terms.						
	A1	$1 + \frac{8}{9}x + \frac{35}{54}x^2 + \dots$						
		native Methods for part (a)						
	(native method 1: Candidates can apply an alternative form of the binomial expansion.						
	$\left\{\frac{1}{\sqrt{9}}\right\}$	$\frac{1}{1-10x} = \begin{cases} (9-10x)^{-\frac{1}{2}} = (9)^{-\frac{1}{2}} + \left(-\frac{1}{2}\right)(9)^{-\frac{3}{2}}(-10x) + \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}(9)^{-\frac{5}{2}}(-10x)^2 \end{cases}$						
	B1	Writes down $(9-10x)^{-\frac{1}{2}}$ or uses power of $-\frac{1}{2}$.						
	B1	$9^{-\frac{1}{2}}$ or $\frac{1}{3}$						
	M1	Any two of three (un-simplified or simplified) terms correct.						
	A1	$\frac{1}{3} + \frac{5}{27}x$						
	A1	$\frac{25}{162}x^2$						
	Note	The terms in C need to be evaluated, so $-\frac{1}{2}C_0(9)^{-\frac{1}{2}} + -\frac{1}{2}C_1(9)^{-\frac{3}{2}}(-10x) + -\frac{1}{2}C_2(9)^{-\frac{5}{2}}(-10x)^2$ without further working is B1B0M0A0A0.						

1. (a)	Alternative Method 2: Maclaurin Expansion	
	Let $f(x) = \frac{1}{\sqrt{(9-10x)}}$	
	$\{f(x) =\} (9 - 10x)^{-\frac{1}{2}} $ (9 - 10x)^{-\frac{1}{2}}	B1
	$f''(x) = 75(9-10x)^{-\frac{5}{2}}$ Correct $f''(x)$	B1 oe
	$1(x) - (\frac{1}{2})(y - 10x) + (10)$ $\pm a(y - 10x) + (10)$	M1
	$\left\{ \therefore f(0) = \frac{1}{3}, f'(0) = \frac{5}{27} \text{ and } f''(0) = \frac{75}{243} = \frac{25}{81} \right\}$	
	$f(x) = \frac{1}{3} + \frac{5}{27}x; + \frac{25}{162}x^2 + \dots$	A1; A1

Mathematics C4

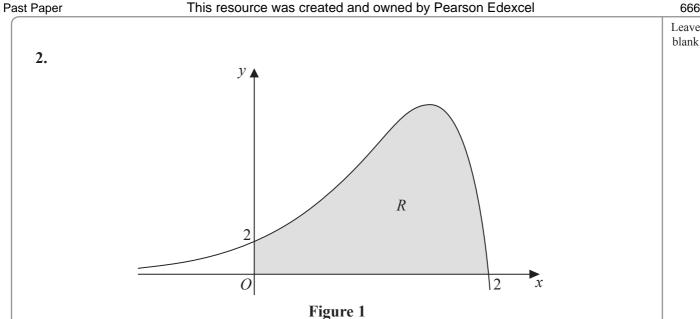


Figure 1 shows a sketch of part of the curve with equation

 $y = (2 - x)e^{2x}, \qquad x \in \mathbb{R}$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the y-axis.

The table below shows corresponding values of x and y for $y = (2 - x)e^{2x}$

x	0	0.5	1	1.5	2
У	2	4.077	7.389	10.043	0

(a) Use the trapezium rule with all the values of y in the table, to obtain an approximation for the area of R, giving your answer to 2 decimal places.

(3)

(b) Explain how the trapezium rule can be used to give a more accurate approximation for the area of *R*.

(1)

(c) Use calculus, showing each step in your working, to obtain an exact value for the area of R. Give your answer in its simplest form.

(5)

Question Number		Scheme	M	arks
2. (a)	Area ≈	$\frac{1}{2} \times 0.5; \times \left[\frac{2 + 2(4.077 + 7.389 + 10.043) + 0}{2} \right]$	B1;	<u>M1</u>
	=	$\frac{1}{4} \times 45.018 = 11.2545 = 11.25(2 \text{ dp}) $ 11.25	A1	
(b)	Any on	Increase the number of strips Use more trapezia Make <i>h</i> smaller Increase the number of <i>x</i> and/or <i>y</i> values used Shorter /smaller intervals for <i>x</i> More values of <i>y</i> .	B1	[3]
(c)	• {∫(2 -	More intervals of x Increase n $x)e^{2x} dx \Big\}, \begin{cases} u = 2 - x \implies \frac{du}{dx} = -1 \\ \frac{dv}{dx} = e^{2x} \implies v = \frac{1}{2}e^{2x} \end{cases}$		[1]
	$=\frac{1}{2}(2$	$\operatorname{Either} (2-x)e^{2x} \to \pm \lambda(2-x)e^{2x} \pm \int \mu e^{2x} \{ dx \}$ $\operatorname{or} \pm xe^{2x} \to \pm \lambda xe^{2x} \pm \int \mu e^{2x} \{ dx \}$	M1	
	2	$(2-x)e^{2x} \to \frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} \{dx\}$	A1	
	$=\frac{1}{2}(2$	$-x)e^{2x} + \frac{1}{4}e^{2x} \qquad \qquad \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$	A1	oe
	Area =	$\left\{ \left[\frac{1}{2} (2-x) e^{2x} + \frac{1}{4} e^{2x} \right]_{0}^{2} \right\}$		
	= (0 +	$\frac{1}{4}e^{4} - \left(\frac{1}{2}(2)e^{0} + \frac{1}{4}e^{0}\right)$ Applies limits of 2 and 0 <i>to all terms</i> and subtracts the correct way round.	dM1	
	$=\frac{1}{4}e^4$	$-\frac{5}{4}$ $\frac{1}{4}e^4 - \frac{5}{4}$ or $\frac{e^4 - 5}{4}$ cao	A1	oe [5]
				9
		Question 2 Notes		
(a)	B1	Outside brackets $\frac{1}{2} \times 0.5$ or $\frac{0.5}{2}$ or 0.25 or $\frac{1}{4}$.		
	M1	For structure of trapezium rule []. Condone missing 0.		
	Note A1 Note	No errors are allowed [eg. an omission of a <i>y</i> -ordinate or an extra <i>y</i> -ordinate or a repeated <i>y</i> 11.25 cao Working must be seen to demonstrate the use of the trapezium rule. The actual area is 12.39		
	Note	Award B1M1A1 for $\frac{0.5}{2}(2+0) + \frac{1}{2}(4.077+7.389+10.043) = 11.25$		

2. (a)	Brack	eting mistake: Unless the final answer implies that the calculation has been done correctly.
contd	Award	B1M0A0 for $\frac{1}{2} \times 0.5 + 2 + 2(4.077 + 7.389 + 10.043) + 0$ (nb: answer of 45.268).
	Altern	ative method for part (a): Adding individual trapezia
	Area ≈	$= 0.5 \times \left[\frac{2+4.077}{2} + \frac{4.077+7.389}{2} + \frac{7.389+10.043}{2} + \frac{10.043+0}{2} \right] = 11.2545 = 11.25 \ (2 \text{ dp}) \text{ cao}$
	B1	0.5 and a divisor of 2 on all terms inside brackets.
	M1	First and last ordinates once and the middle ordinates twice inside brackets ignoring the 2.
	A1	11.25 cao
(b)	BO	Give B0 for
		 smaller values of x and/or y. use more decimal places
(c)	M1	Either $(2-x)e^{2x} \rightarrow \pm \lambda(2-x)e^{2x} \pm \int \mu e^{2x} \{dx\}$ or $\pm xe^{2x} \rightarrow \pm \lambda xe^{2x} \pm \int \mu e^{2x} \{dx\}$
	A1	$(2-x)e^{2x} \rightarrow \frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} \{dx\}$ either un-simplified or simplified.
	A1	Correct expression, i.e. $\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$ or $\frac{5}{4}e^{2x} - xe^{2x}$ (or equivalent)
	dM1	which is dependent on the 1 st M1 mark being awarded.
		Complete method of applying limits of 2 and 0 to all terms and subtracting the correct way round.
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1. So, just subtracting zero is M0.
	A1	$\frac{1}{4}e^4 - \frac{5}{4}$ or $\frac{e^4 - 5}{4}$. Do not allow $\frac{1}{4}e^4 - \frac{5}{4}e^0$ unless simplified to give $\frac{1}{4}e^4 - \frac{5}{4}e^1$
	Note	12.39953751 without seeing $\frac{1}{4}e^4 - \frac{5}{4}$ is A0.
	Note	12.39953751 from NO working is M0A0A0M0A0.

$x^2 + y^2 +$	w.mystudybro.co reated and owned by 10x + 2y - 4xy = 10 y simplifying your a $\frac{y}{x} = 0$		(5)
ms of x and y , fully	y simplifying your a		
ms of x and y , fully	y simplifying your a		
		nswer.	
s of y for which $\frac{dy}{dz}$	$\frac{v}{x} = 0$		(5)
			(5)

P 4 3 1 6 6 A 0 8 2 8

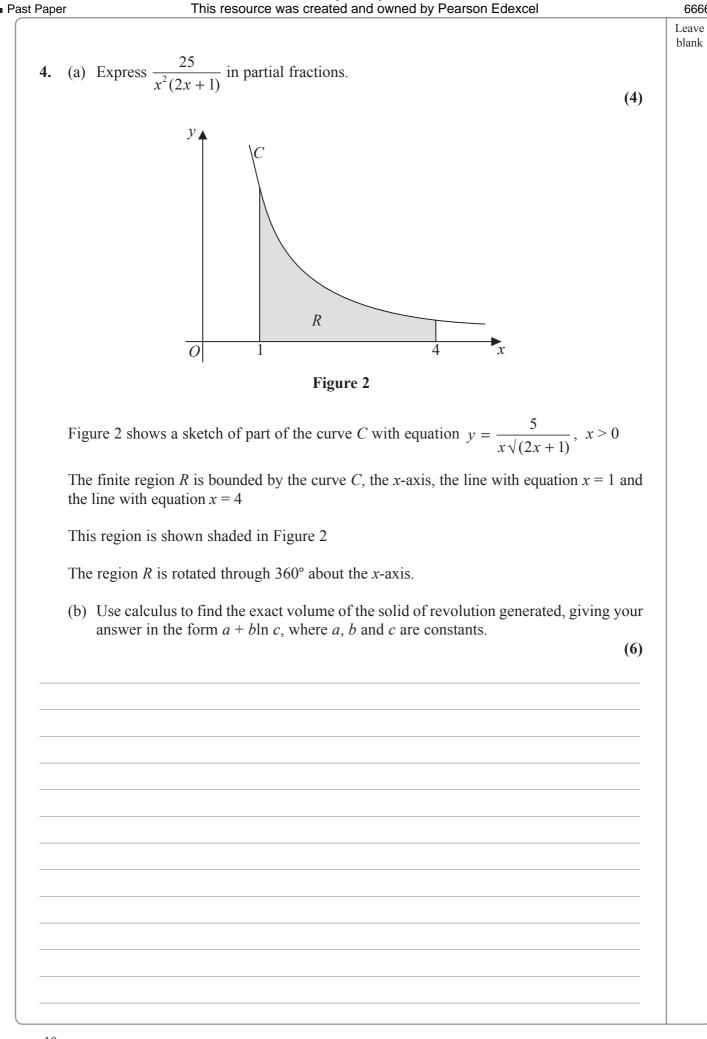
6666

Question	Scheme		Marks
Number 3.	$x^2 + y^2 + 10x + 2y - 4xy = 10$		
(a)	$\left\{ \underbrace{\underbrace{\underbrace{\underbrace{\underbrace{dy}}}_{\underline{dx}}}_{\underline{dx}} \times \right\} \underbrace{2x + 2y \frac{dy}{dx} + 10 + 2 \frac{dy}{dx}}_{\underline{dx}} - \left(\underbrace{4y + 4x \frac{dy}{dx}}_{\underline{dx}} \right) = \underbrace{0}$	See notes	M1 <u>A1</u> <u>M1</u>
	$2x + 10 - 4y + (2y + 2 - 4x)\frac{dy}{dx} = 0$ $dy = 2x + 10 - 4y$	Dependent on the first M1 mark.	dM1
	$\frac{dy}{dx} = \frac{2x + 10 - 4y}{4x - 2y - 2}$		
	Simplifying gives $\frac{dy}{dx} = \frac{x+5-2y}{2x-y-1} \left\{ = \frac{-x-5+2y}{-2x+y+1} \right\}$		A1 cso oe
(b)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies\right\} x + 5 - 2y = 0$		[5] M1
	$\begin{bmatrix} dx & 0 \\ 0 \end{bmatrix} = \begin{bmatrix} x & y \\ 0 \end{bmatrix} = \begin{bmatrix} y \\ 0 \end{bmatrix}$ So $x = 2y - 5$,		
	$(2y-5)^{2} + y^{2} + 10(2y-5) + 2y - 4(2y-5)y = 10$ $4y^{2} - 20y + 25 + y^{2} + 20y - 50 + 2y - 8y^{2} + 20y = 10$		M1
	gives $-3y^2 + 22y - 35 = 0$ or $3y^2 - 22y + 35 = 0$	$3y^2 - 22y + 35 \{= 0\}$ see notes	A1 oe
	(3y - 7)(y - 5) = 0 and $y =$	Method mark for solving a quadratic equation.	ddM1
	$y = \frac{7}{3}, 5$	$\{y=\}\frac{7}{3}, 5$	A1 cao
	Alternative method for part (b)		[5]
(b)	$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies\right\} x + 5 - 2y = 0$		M1
	So $y = \frac{x+5}{2}$,		
	$x^{2} + \left(\frac{x+5}{2}\right)^{2} + 10x + 2\left(\frac{x+5}{2}\right) - 4x\left(\frac{x+5}{2}\right) = 10$		M1
	$x^{2} + \frac{x^{2} + 10x + 25}{4} + 10x + x + 5 - 2x^{2} - 10x = 10$		
	$4x^{2} + x^{2} + 10x + 25 + 40x + 4x + 20 - 8x^{2} - 40x = 40$	- 2	
	gives $-3x^2 + 14x + 5 = 0$ or $3x^2 - 14x - 5 = 0$	$3x^2 - 14x - 5 = 0$ see notes	A1 oe
	$(3x+1)(x-5) = 0, x = \dots$ $y = \frac{-\frac{1}{3}+5}{2}, \frac{5+5}{2}$	Solves a quadratic and finds at least one value for <i>y</i> .	ddM1
	$y = \frac{7}{3}, 5$	$\{y=\}\frac{7}{3}, 5$	A1 cao
			[5]
			10

	1	
		Question 3 Notes
3. (a)	M1	Differentiates implicitly to include either $\pm 4x \frac{dy}{dx}$ or $y^2 \rightarrow 2y \frac{dy}{dx}$ or $2y \rightarrow 2\frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).
		$x^{2} + y^{2} + 10x + 2y \rightarrow 2x + 2y\frac{dy}{dx} + 10 + 2\frac{dy}{dx}$ and $10 \rightarrow 0$
		$-4xy \rightarrow \pm 4y \pm 4x \frac{\mathrm{d}y}{\mathrm{d}x}$
	Note	If an extra term appears then award 1 st A0.
	Note	$2x + 2y\frac{dy}{dx} + 10 + 2\frac{dy}{dx} - 4y - 4x\frac{dy}{dx} \rightarrow 2x + 10 - 4y = -2y\frac{dy}{dx} - 2\frac{dy}{dx} + 4x\frac{dy}{dx}$ will get 1 st A1 (implied) as the "= 0" can be implied by rearrangement of their equation.
	dM1	dependent on the first method mark being awarded.
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.
	A1	$\frac{x+5-2y}{2x-y-1} \text{ or } \frac{-x-5+2y}{-2x+y+1} \text{ (must be simplified).}$
	cso:	If the candidate's solution is not completely correct, then do not give this mark.
(b)	M1	Sets the numerator of their $\frac{dy}{dx}$ equal to zero (or the denominator of their $\frac{dx}{dy}$ equal to zero) oe.
	NOTE M1	If the numerator involves one variable only then <i>only</i> the 1^{st} M1 mark is possible in part (b). Substitutes their x or their y into the printed equation to give an equation in one variable only.
	A1	For obtaining either $-3y^2 + 22y - 35 \{= 0\}$ or $3y^2 - 22y + 35 \{= 0\}$
	Note	This mark can also awarded for a correct three term equation, eg. either $-3y^2 + 22y = 35$
		$3y^2 - 22y = -35$ or $3y^2 + 35 = 22y$ are all fine for A1.
	ddM1	Dependent on the previous 2 M marks. See notes at the beginning of the mark scheme: Method mark for solving a 3 term quadratic • $(3y - 7)(y - 5) = 0 \Rightarrow y =$
		• $y = \frac{22 \pm \sqrt{(-22)^2 - 4(3)(35)}}{2(3)}$
		• $y^2 - \frac{22}{3}y - \frac{35}{3} = 0 \implies \left(y - \frac{11}{3}\right)^2 - \frac{121}{9} + \frac{35}{3} = 0 \implies y = \dots$
		• Or writes down at least one correct <i>y</i> - root from their quadratic equation. This is usually found from their calculator.
	Note	If a candidate applies <i>the alternative method</i> then they also need to use their $y = \frac{x+5}{2}$
		in order to find at least one value for <i>y</i> in order to gain the final M1.
	A1	$y = \frac{7}{3}$, 5. cao. (2.33 or 2.3 without reference to $\frac{7}{3}$ or $2\frac{1}{3}$ is not allowed for this mark.)
	Note	It is possible for a candidate who does not achieve full marks in part (a), (but has a correct numerator
		for $\frac{dy}{dx}$) to gain all 5 marks in part (b).
		<u> </u>

Mathematics C4

6666



Question	Scheme	Marks
Number		
4. (a)	$\frac{25}{x^2(2x+1)} \equiv \frac{A}{x} + \frac{B}{x^2} + \frac{C}{(2x+1)}$	
	At least one of " B " or " C " correct.	B1
	B = 25 $C = 100$ Breaks up their partial fraction correctly into	
	three terms and both " B " = 25 and " C " = 100.	B1 cso
	See notes.	
	$25 = Ax(2x + 1) + B(2x + 1) + Cx^{2}$ x = 0, 25 = B	
	$x = -\frac{1}{2}$, $25 = \frac{1}{4}C \Rightarrow C = 100$ Writes down a correct identity and attempts to find the value of either one of "A", "B" or "C".	M1
	x^2 terms: $0 = 2A + C$	1111
	$0 = 2A + 100 \implies A = -50$	
	$x^2: 0 = 2A + C, x: 0 = A + 2B,$	
	constant: $25 = B$	
	Correct value for "A" which is found using a	
	leading to $A = -50$ correct identity and follows from their partial fraction decomposition.	A1
		[4]
	$\left\{\frac{25}{x^2(2x+1)} \equiv -\frac{50}{x} + \frac{25}{x^2} + \frac{100}{(2x+1)}\right\}$	
	(
(b)	$V = \pi \int_{1}^{4} \left(\frac{5}{x\sqrt{2x+1}}\right)^2 dx \qquad \qquad \text{For } \pi \int \left(\frac{5}{x\sqrt{2x+1}}\right)^2$	B1
	$\int_{1} \left(x \sqrt{(2x+1)} \right)$ Ignore limits and dx. Can be implied.	
	For their partial fraction	
	$\left\{ \int \frac{25}{x^2(2x+1)} \mathrm{d}x = \int -\frac{50}{x} + \frac{25}{x^2} + \frac{100}{(2x+1)} \mathrm{d}x \right\}$ Either $\pm \frac{A}{x} \to \pm a \ln x$ or $\pm a \ln kx$ or	
	$\left\{ \int \frac{25}{x^2(2x+1)} \mathrm{d}x = \int -\frac{50}{x} + \frac{25}{x^2} + \frac{100}{(2x+1)} \mathrm{d}x \right\} \qquad \text{Either } \pm \frac{A}{x} \to \pm a \ln x \text{ or } \pm a \ln kx \text{ or }$	M1 🦴
	$= -50\ln x + \frac{25x^{-1}}{(-1)} + \frac{100}{2}\ln(2x+1) \{+c\} \qquad \pm \frac{B}{x^2} \to \pm bx^{-1} \text{ or } \frac{C}{(2x+1)} \to \pm c\ln(2x+1)$	
	$= -50 \text{ m } x + \frac{1}{(-1)} + \frac{1}{2} \text{ m} (2x+1) \{+2\} \qquad x^{2} \qquad (2x+1)$	A 1.64
	<i>At least</i> two terms correctly integrated <i>All three</i> terms correctly integrated.	Alft Alft
	$\left\{\int_{1}^{4} \frac{25}{x^{2}(2x+1)} \mathrm{d}x = \left[-50\ln x - \frac{25}{x} + 50\ln(2x+1)\right]_{1}^{4}\right\}$	
	(Applied limits of 4 and 1	
	$= \left -50 \ln 4 - \frac{25}{4} + 50 \ln 9 \right - (0 - 25 + 50 \ln 3)$ and subtracts the correct	dM1 —
	way round.	
	$= 50\ln 9 - 50\ln 4 - 50\ln 3 - \frac{25}{4} + 25$	
	(3) 75	
	$= 50\ln\left(\frac{3}{4}\right) + \frac{75}{4}$	
	$S_{2} = V = \frac{75}{10} = 10 = 10 = 10 = 10 = 10 = 10 = 10 =$	A 1
	So, $V = \frac{75}{4}\pi + 50\pi \ln\left(\frac{3}{4}\right)$ or allow $\pi\left(\frac{75}{4} + 50\ln\left(\frac{3}{4}\right)\right)$	A1 oe
		[6]
		10

		Question 4 Notes
4. (a)		AREFUL! Candidates will assign <i>their own</i> "A, B and C" for this question.
	B1	At least one of "B" or "C" are correct.
	B1	Breaks up their partial fraction correctly into three terms and both " B " = 25 and " C " = 100.
	Note	If a candidate does not give partial fraction decomposition then:
		• the 2 nd B1 mark can follow from a correct identity.
	M1	Writes down <i>a correct identity</i> (although this can be implied) and attempts to find the value of either one of " <i>A</i> " or " <i>B</i> " or " <i>C</i> ".
		This can be achieved by <i>either</i> substituting values into their identity <i>or</i>
	A1	comparing coefficients and solving the resulting equations simultaneously. Correct value for "A" which is found using a correct identity and follows from their partial fraction decomposition.
	Note	If a candidate does not give partial fraction decomposition then the final A1 mark can be awarded for a correct " A " if a candidate writes out their partial fractions at the end.
	Note	The correct partial fraction from no working scores B1B1M1A1.
	Note	A number of candidates will start this problem by writing out the correct identity and then attempt to find " A " or " B " or " C ". Therefore the B1 marks can be awarded from this method.
	Note	Award SC B1B0M0A0 for $\frac{25}{x^2(2x+1)} \equiv \frac{B}{x^2} + \frac{C}{(2x+1)}$ leading to "B" = 25 or "C" = 100
(b)		For a correct statement of $\pi \int \left(\frac{5}{x\sqrt{(2x+1)}}\right)^2$ or $\pi \int \frac{25}{x^2(2x+1)}$. Ignore limits and dx. Can be implied
	Note	The π can only be recovered later from a correct expression.
		For their partial fraction, (not $\sqrt{\text{their partial fraction}}$), where <i>A</i> , <i>B</i> , <i>C</i> are "their" part (a) constants
	M1	Either $\pm \frac{A}{x} \rightarrow \pm a \ln x$ or $\pm \frac{B}{x^2} \rightarrow \pm b x^{-1}$ or $\frac{C}{(2x+1)} \rightarrow \pm c \ln(2x+1)$.
	Note	$\sqrt{\frac{B}{x^2}} \rightarrow \frac{\sqrt{B}}{x}$ which integrates to $\sqrt{B} \ln x$ is not worthy of M1.
	A1ft	At least two terms from any of $\pm \frac{A}{x}$ or $\pm \frac{B}{x^2}$ or $\frac{C}{(2x+1)}$ correctly integrated. Can be un-simplified.
	A1ft	All 3 terms from $\pm \frac{A}{x}$, $\pm \frac{B}{x^2}$ and $\frac{C}{(2x+1)}$ correctly integrated. Can be un-simplified.
	Note	The 1 st A1 and 2 nd A1 marks in part (b) are both follow through accuracy marks.
	dM1	Dependent on the previous M mark. Applies limits of 4 and 1 and subtracts the correct way round.
	A1	Final correct exact answer in the form $a + b \ln c$. i.e. either $\frac{75}{4}\pi + 50\pi \ln\left(\frac{3}{4}\right)$ or $50\pi \ln\left(\frac{3}{4}\right) + \frac{75}{4}\pi$
		or $50\pi \ln\left(\frac{9}{12}\right) + \frac{75}{4}\pi$ or $\frac{75}{4}\pi - 50\pi \ln\left(\frac{4}{3}\right)$ or $\frac{75}{4}\pi + 25\pi \ln\left(\frac{9}{16}\right)$ etc.
		Also allow $\pi\left(\frac{75}{4} + 50\ln\left(\frac{3}{4}\right)\right)$ or equivalent.
	Note	A candidate who achieves full marks in (a), but then mixes up the correct constants when writing their partial fraction can only achieve a maximum of B1M1A1A0M1A0 in part (b).
	Note	The π in the volume formula is only required for the B1 mark and the final A1 mark.

4. (b)	<u>Alternative method of integration</u> $V = \pi \int_{1}^{4} \left(\frac{5}{x\sqrt{2x+1}}\right)^{2} dx$	B1	For $\pi \int \left(\frac{5}{x\sqrt{2x+1}}\right)^2$
	$\int \frac{25}{x^2(2x+1)} \mathrm{d}x \ ; \ u = \frac{1}{x} \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = -\frac{1}{x^2}$		Ignore limits and dx . Can be implied.
	$= \int \frac{-25}{\left(\frac{2}{u}+1\right)} \mathrm{d}u = \int \frac{-25}{\left(\frac{2+u}{u}\right)} \mathrm{d}u = \int \frac{-25u}{(2+u)} \mathrm{d}u =$	= -25	
	$= -25 \int 1 - \frac{2}{(2+u)} du = -25 (u - 2\ln(2+u))$	M1	Achieves $\pm \alpha \pm \frac{\beta}{(k+u)}$ and integrates to give either $\pm \alpha u$ or $\pm \beta \ln (k+u)$
	$= -25 \int 1 - \frac{1}{(2+u)} du = -25 (u - 2\ln(2+u))$	A1	Dependent on the M mark. Either $-25u$ or $50\ln(2+u)$
		A1	$-25(u-2\ln(2+u))$
	$\left\{ \int_{1}^{4} \frac{25}{x^{2}(2x+1)} dx = \left[-25u + 50\ln(2+u) \right]_{1}^{\frac{1}{4}} \right\}$ $= \left(-\frac{25}{4} + 50\ln\left(\frac{9}{4}\right) \right) - \left(-25 + 50\ln 3 \right)$ $= 50\ln\left(\frac{9}{4}\right) - 50\ln 3 - \frac{25}{4} + 25$	dM1	Applies limits of $\frac{1}{4}$ and 1 in <i>u</i> or 4 and 1 in <i>x</i> in their integrated function and subtracts the correct way round.
	$= 50\ln\left(\frac{3}{4}\right) + \frac{75}{4}$ So, $V = \frac{75}{4}\pi + 50\pi\ln\left(\frac{3}{4}\right)$	A1	$\frac{75}{4}\pi + 50\pi \ln\left(\frac{3}{4}\right) \text{ or allow } \pi\left(\frac{75}{4} + 50\ln\left(\frac{3}{4}\right)\right)$

pe		This resource was created and owned by Pearson Edexcei
	Δt t	ime t seconds the radius of a sphere is r cm, its volume is $V \text{ cm}^3$ and its surface area
	is S	cm^2 .
	[You	<i>u</i> are given that $V = \frac{4}{3}\pi r^3$ and that $S = 4\pi r^2$]
		volume of the sphere is increasing uniformly at a constant rate of 3 cm ³ s ^{-1} .
		Find $\frac{dr}{dt}$ when the radius of the sphere is 4 cm, giving your answer to 3 significant figures.
		(4)
	(b)	Find the rate at which the surface area of the sphere is increasing when the radius is 4 cm.
		(2)
4		
		P 4 3 1 6 6 A 0 1 4 2 8

Question			
Number		Scheme	Marks
5. (a)	From que	estion, $V = \frac{4}{3}\pi r^3$, $S = 4\pi r^2$, $\frac{dV}{dt} = 3$	
	$ \begin{cases} V = \frac{4}{3}\pi \end{cases} $	$r^3 \Rightarrow \left\{ \frac{dV}{dr} = 4\pi r^2 \right\}$ $\frac{dV}{dr} = 4\pi r^2$ (Can be implied)	B1 oe
	$\left\{\frac{\mathrm{d}V}{\mathrm{d}r}\times\right\}$	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Longrightarrow \left\{ 4\pi r^2 \right) \frac{\mathrm{d}r}{\mathrm{d}t} = 3 \qquad \left(\text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}r} \right) \times \frac{\mathrm{d}r}{\mathrm{d}t} = 3$	M1 oe
	$\left\{\frac{\mathrm{d}r}{\mathrm{d}t} = -\frac{\mathrm{d}r}{\mathrm{d}t}\right\}$	$\frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}r} \Longrightarrow \left\{ \begin{array}{c} \frac{\mathrm{d}r}{\mathrm{d}t} = (3)\frac{1}{4\pi r^2}; \left\{ = \frac{3}{4\pi r^2} \right\} & \text{or } 3 \div \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}r}; \end{array} \right\}$	
	When r =	$= 4 \text{ cm}, \frac{dr}{dt} = \frac{3}{4\pi (4)^2} \left\{ = \frac{3}{64\pi} \right\}$ dependent on previous M1. see notes	dM1
	Hence,	$\frac{dr}{dt} = 0.01492077591(cm^2 s^{-1})$ anything that rounds to 0.0149	A1
		u/	[4]
(b)	$\left\{\frac{\mathrm{d}S}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t}\right\}$	$\frac{\mathrm{d}S}{\mathrm{d}r} \times \frac{\mathrm{d}r}{\mathrm{d}t} = \left\{ \Rightarrow \frac{\mathrm{d}S}{\mathrm{d}t} = 8\pi r \times \frac{3}{4\pi r^2} \left\{ \operatorname{or} \frac{6}{r} \operatorname{or} 8\pi r \times 0.0149 \right\} 8\pi r \times \text{Candidate's} \frac{\mathrm{d}r}{\mathrm{d}t} \right\}$	M1; oe
	When r	= 4 cm, $\frac{dr}{dt} = 8\pi(4) \times \frac{3}{4\pi(4)^2}$ or $\frac{6}{4}$ or $8\pi(4) \times 0.0149$	
	Hence, -	$\frac{dS}{dt} = 1.5 \text{ (cm}^2 \text{ s}^{-1}\text{)}$ anything that rounds to 1.5	A1 cso
			[2] 6
(-)		Question 5 Notes	
(a)	B1	$\frac{\mathrm{d}V}{\mathrm{d}r} = 4\pi r^2$ Can be implied by later working.	
	M1	$\left(\text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}r}\right) \times \frac{\mathrm{d}r}{\mathrm{d}t} = 3 \text{or} 3 \div \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}r}$	
	dM1	(dependent on the previous method mark)	
		Substitutes $r = 4$ into an expression which is a result of a quotient of "3" and their $\frac{dV}{dr}$.	
	A1	anything that rounds to 0.0149 (units are not required)	
(b)	M1	$8\pi r \times \text{Candidate's} \frac{\mathrm{d}r}{\mathrm{d}t}$	
	A1	anything that rounds to 1.5 (units are not required). Correct solution only.	
	Note	Using $\frac{dr}{dt} = 0.0149$ gives $\frac{dS}{dt} = 1.4979$ which is fine for A1.	

6666 Leave

blank

6. With respect to a fixed origin, the point A with position vector $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ lies on the line l_1 with equation

$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}, \quad \text{where } \lambda \text{ is a scalar parameter,}$$

and the point *B* with position vector $4\mathbf{i} + p\mathbf{j} + 3\mathbf{k}$, where *p* is a constant, lies on the line l_2 with equation

$$\mathbf{r} = \begin{pmatrix} 7\\0\\7 \end{pmatrix} + \mu \begin{pmatrix} 3\\-5\\4 \end{pmatrix}, \text{ where } \mu \text{ is a scalar parameter.}$$

(a) Find the value of the constant *p*.

(1)

(4)

- (b) Show that l_1 and l_2 intersect and find the position vector of their point of intersection, *C*.
- (c) Find the size of the angle ACB, giving your answer in degrees to 3 significant figures. (3)
- (d) Find the area of the triangle *ABC*, giving your answer to 3 significant figures.

(2)

Question Number	Scheme	Ma	rks
	$l_1 : \mathbf{r} = \begin{pmatrix} 1\\2\\3 \end{pmatrix} + \lambda \begin{pmatrix} 0\\2\\-1 \end{pmatrix}, l_2 : \mathbf{r} = \begin{pmatrix} 7\\0\\7 \end{pmatrix} + \mu \begin{pmatrix} 3\\-5\\4 \end{pmatrix} \overrightarrow{OA} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 4\\p\\3 \end{pmatrix} A \text{ lies on } l_1 \text{ and}$ $B \text{ lies on } l_2$		
(a)	{ <i>B</i> lies on $l_2 \Rightarrow \mu = -1 \Rightarrow$ } $p = 5$ $p = 5$	B1	
(b)	$ \{l_1 = l_2 \implies \} \begin{cases} \mathbf{i}: & 1 = 7 + 3\mu \\ \mathbf{j}: & 2 + 2\lambda = -5\mu \\ \mathbf{k}: & 3 - \lambda = 7 + 4\mu \end{cases} $		[1]
	e.g. i: $7+3\mu=1$ Writes down an equation involving only one parameter.	M1	
	So, $\mu = -2$ $\mu = -2$	A1	
	Point of intersection is $\overrightarrow{OC} = \mathbf{i} + 10\mathbf{j} - \mathbf{k}$ $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$	B1	
	 Finds λ = 4 and either checks λ = 4 and μ = -2 is true for the third component. substitutes μ = -2 into l₁ to give i + 10j - k and substitutes λ = 4 into l₂ to give i + 10j - k 	B1	
(b)	<u>Alternative Method:</u> Solving j and k simultaneously gives		[4]
	$8 = 14 + 3\mu \text{or} 23 + 3\lambda = 35$ Writes down an equation involving only one parameter.	M 1	
	So, $\mu = -2$ or $\lambda = 4$ Either $\mu = -2$ or $\lambda = 4$	A1	
	Point of intersection is $\overrightarrow{OC} = \mathbf{i} + 10\mathbf{j} - \mathbf{k}$ $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$	B1	
	 Finds λ = 4 and either checks μ = -2 is true for the i component. substitutes μ = -2 into l₁ to give i + 10j - k and substitutes λ = 4 into l₂ to give i + 10j - k 	B1	[4]
(c)	$\overline{AC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 0\\8\\-4 \end{pmatrix} \text{ and } \overline{BC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 4\\5\\3 \end{pmatrix} = \begin{pmatrix} -3\\5\\-4 \end{pmatrix} $ An attempt to find both the vectors $(\overline{AC} \text{ or } \overline{CA})$ and $(\overline{BC} \text{ or } \overline{CB}).$	M1	
	$\cos ACB = \frac{\overrightarrow{AC} \cdot \overrightarrow{BC}}{\left \overrightarrow{AC}\right \cdot \left \overrightarrow{BC}\right } = \frac{\pm \left(\begin{pmatrix} 0\\8\\-4 \end{pmatrix} \cdot \begin{pmatrix} -3\\5\\-4 \end{pmatrix}\right)}{\sqrt{(0)^2 + (8)^2 + (-4)^2} \cdot \sqrt{(-3)^2 + (5)^2 + (-4)^2}} $ Applies dot product formula between their $\left(\overrightarrow{AC} \text{ or } \overrightarrow{CA}\right)$ and their $\left(\overrightarrow{BC} \text{ or } \overrightarrow{CB}\right).$	M1	
	$\left\{\cos ACB = \frac{0+40+16}{\sqrt{80}.\sqrt{50}} = \frac{56}{\sqrt{4000}} \Rightarrow \right\} ACB = 27.69446 = 27.7 (3 \text{ sf})$ Anything that rounds to 27.7	A1	
(d)	Area $ACB = \frac{1}{2} (\sqrt{80}) (\sqrt{50}) \sin 27.69446^{\circ} = 14.696888$ See notes Anything that rounds to 14.7	M1 A1	[3]
			[2] 10

	Question & Alternative Methods for	Dout (a)	
6. (c)	Question 6: Alternative Methods for Alternative Method 1: Using the direction vectors of Line 1 and Lin		
	$\mathbf{d}_{1} = \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}, \mathbf{d}_{2} = \begin{pmatrix} 3 \\ -5 \\ 4 \end{pmatrix}$		
	$\cos \theta = \frac{\mathbf{d}_1 \cdot \mathbf{d}_1}{ \mathbf{d}_1 \cdot \mathbf{d}_2 } = \frac{\begin{pmatrix} 0\\ 2\\ -1 \end{pmatrix} \cdot \begin{pmatrix} 3\\ -5\\ 4 \end{pmatrix}}{\sqrt{(0)^2 + (2)^2 + (-1)^2} \cdot \sqrt{(3)^2 + (-5)^2 + (4)^2}} \\ \left\{ \cos \theta = \frac{0 - 10 - 4}{\sqrt{5} \cdot \sqrt{50}} = \frac{-7\sqrt{10}}{25} \Rightarrow \right\} \theta = 152.3054385$	Applies dot product formula between their \mathbf{d}_1 and \mathbf{d}_2	M2
	$\int \cos \theta = \frac{1}{\sqrt{5} \cdot \sqrt{50}} = \frac{1}{25} = \int \theta = 132.3054385$ Angle $ACB = 180 - 152.3054385 = 27.69446145 = 27.7 (3 sf)$	Anything that rounds to 27.7	A1 [3]
	<u>Alternative Method 2: The Cosine Rule</u> $\overline{AC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 0\\8\\-4 \end{pmatrix} \text{ and } \overline{BC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 4\\5\\3 \end{pmatrix} = \begin{pmatrix} -3\\5\\-4 \end{pmatrix}$	An attempt to find both the vectors $\left(\overrightarrow{AC} \text{ or } \overrightarrow{CA}\right)$ and $\left(\overrightarrow{BC} \text{ or } \overrightarrow{CB}\right)$.	
	Also $\overrightarrow{AB} = \begin{pmatrix} 4\\5\\3 \end{pmatrix} - \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 3\\3\\0 \end{pmatrix}$ Note $ \overrightarrow{AC} = \sqrt{80}$, $ \overrightarrow{BC} = \sqrt{50}$ and $ \overrightarrow{AB} = \sqrt{18}$		
	$(\sqrt{18})^2 = (\sqrt{80})^2 + (\sqrt{50})^2 - 2(\sqrt{80})(\sqrt{50})\cos\theta$	Applies the cosine rule the correct way round.	M1 oe
	$\left\{\cos\theta = \frac{7\sqrt{10}}{25}\right\} \Rightarrow \theta = 27.69446145 = 27.7 \ (3 \text{ sf})$	Anything that rounds to 27.7	A1
	Alternative Method 2: Vector Crease Product		[3]
	Alternative Method 3: Vector Cross Product Only apply this scheme if it is clear that a candidate is applying a vector $\overrightarrow{AC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 1\\2\\3 \end{pmatrix} = \begin{pmatrix} 0\\8\\-4 \end{pmatrix}$ and $\overrightarrow{BC} = \begin{pmatrix} 1\\10\\-1 \end{pmatrix} - \begin{pmatrix} 4\\5\\3 \end{pmatrix} = \begin{pmatrix} -3\\5\\-4 \end{pmatrix}$	ctor cross product method. An attempt to find both the vectors $\left(\overrightarrow{AC} \text{ or } \overrightarrow{CA}\right)$ and $\left(\overrightarrow{BC} \text{ or } \overrightarrow{CB}\right)$.	
	$\overrightarrow{AC} \times \overrightarrow{BC} = \begin{pmatrix} 0\\ 8\\ -4 \end{pmatrix} \times \begin{pmatrix} -3\\ 5\\ -4 \end{pmatrix} = \begin{cases} \mathbf{i} \ \mathbf{j} \ \mathbf{k} \\ 0 \ 8 \ -4 \\ -3 \ 5 \ -4 \end{pmatrix} = 24\mathbf{i} + 12\mathbf{j} + 24\mathbf{k} \end{cases}$ sin $ACB = \frac{\sqrt{(24)^2 + (12)^2 + (12)^2}}{\sqrt{(0)^2 + (8)^2 + (-4)^2}} \cdot \sqrt{(-3)^2 + (5)^2 + (-4)^2}$	Full method for applying the vector cross product formula between their $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$ and their $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$.	M1
	$\sqrt{(0)^2 + (8)^2 + (-4)^2} \cdot \sqrt{(-3)^2 + (5)^2 + (-4)^2}$ $\left\{ \sin ACB = \frac{\sqrt{864}}{\sqrt{80} \cdot \sqrt{50}} = \frac{3\sqrt{15}}{25} \Rightarrow \right\} \theta = 27.69446145 = 27.7 \ (3 \text{ sf})$	· · · · · · · · · · · · · · · · · · ·	A1 [3]

		Question 6 Notes			
6. (a)	B1	p = 5 (Ignore working.)			
(b)		Method 1			
	M1	Writes down an equation involving only one parameter.			
		This equation will usually be $7 + 3\mu = 1$ which is found from equating the i components of l_1 and l_2 .			
	A1	Finds $\mu = -2$			
		$\begin{pmatrix} 1 \end{pmatrix}$			
	B1	Point of intersection of $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$. Allow $(1, 10, -1)$ or $\begin{pmatrix} 1\\ 10\\ -1 \end{pmatrix}$.			
		(-1)			
	B1	Finds $\lambda = 4$ and either			
		• checks $\lambda = 4$ and $\mu = -2$ is true for the third component.			
		• substitutes $\mu = -2$ into l_1 to give $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$ and substitutes $\lambda = 4$ into l_2 to give			
		i + 10j - k			
(b)		Alternative Method			
	M1 Writes down an equation involving only one parameter. Solving the j and k components simultaneously will usually give either $8 = 14 + 3\mu$ or $23 + 3\lambda = 35$				
	A 1	Finds either $\mu = -2$ or $\lambda = 4$			
	A1				
	D1	Point of intersection of $\mathbf{i} + 10\mathbf{j} - \mathbf{k}$. Allow $(1, 10, -1)$ or $\begin{pmatrix} 1\\ 10\\ -1 \end{pmatrix}$.			
	B 1	$1 \text{ ont of intersection of } \mathbf{i} + 10\mathbf{j} - \mathbf{k}$. Anow $(1, 10, -1) \text{ of } 10$.			
		Finds $\lambda = 4$ and either			
 B1 checks μ = -2 is true for the i component. substitutes μ = -2 into l₁ to give i + 10j - k and substitutes λ = 4 into l₂ to give i + 10j - k 					
(c)	M1	An attempt to find both the vectors $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$ and $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$ by subtracting.			
(-)					
	M1	Applies dot product formula between their $(\overrightarrow{AC} \text{ or } \overrightarrow{CA})$ and their $(\overrightarrow{BC} \text{ or } \overrightarrow{CB})$.			
	A1 Note	anything that rounds to 27.7			
	Note Note	An answer of 0.48336 in radians without the correct answer in degrees is A0. Some candidates will apply the dot product formula between vectors which are the wrong way			
	1,000	round and achieve 152.3054385°. If they give the acute equivalent of awrt 27.7 then award A1.			
(d)	M1	$\frac{1}{2}$ (their length AC) (their length BC) sin (their 27.7° from part (c))			
	A1	anything that rounds to 14.7. Also allow $6\sqrt{6}$.			
	Note	Area $ACB = \frac{1}{2} (\sqrt{80}) (\sqrt{50}) \sin(152.3054385^{\circ}) = \text{awrt } 14.7 \text{ is } M1A1.$			

Leave blank 7. The rate of increase of the number, N, of fish in a lake is modelled by the differential equation $\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{(kt-1)(5000-N)}{t}$ $t > 0, \quad 0 < N < 5000$ In the given equation, the time t is measured in years from the start of January 2000 and *k* is a positive constant. (a) By solving the differential equation, show that $N = 5000 - Ate^{-kt}$ where A is a positive constant. (5) After one year, at the start of January 2001, there are 1200 fish in the lake. After two years, at the start of January 2002, there are 1800 fish in the lake. (b) Find the exact value of the constant A and the exact value of the constant k. (4) (c) Hence find the number of fish in the lake after five years. Give your answer to the nearest hundred fish. (1)

Question Number	Scheme	Marks		
7.	$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{(kt-1)(5000-N)}{t}, t > 0, \ 0 < N < 5000$			
(a)	$\int \frac{dt}{5000 - N} \frac{t}{dN} = \int \frac{(kt - 1)}{t} dt \left\{ \text{or} = \int \left(k - \frac{1}{t} \right) dt \right\}$ See notes			
	$-\ln(5000 - N) = kt - \ln t; + c$ See no			
	then eg either or or $-kt + c = \ln(5000 - N) - \ln t$ $kt + c = \ln t - \ln(5000 - N)$ $\ln(5000 - N) = -kt + \ln t + c$	_		
	$-kt + c = \ln\left(\frac{5000 - N}{t}\right) \qquad kt + c = \ln\left(\frac{t}{5000 - N}\right) \qquad 5000 - N = e^{-kt + \ln t + c}$			
	$e^{-kt+c} = \frac{5000-N}{t}$ $e^{kt+c} = \frac{t}{5000-N}$ $5000-N = t e^{-kt+c}$			
	leading to $N = 5000 - Ate^{-kt}$ with no incorrect working/statements . See notes	A1 * cso		
(b)	$ \{t = 1, N = 1200 \Rightarrow \} 1200 = 5000 - Ae^{-k} $ $ \{t = 2, N = 1800 \Rightarrow \} 1800 = 5000 - 2Ae^{-2k} $ So $Ae^{-k} = 3800 $ At least one correct statement written down using the boundary conditions	[5] B1		
	and $2Ae^{-2k} = 3200$ or $Ae^{-2k} = 1600$ Eg. $\frac{e^{-k}}{2e^{-2k}} = \frac{3800}{3200}$ or $\frac{2e^{-2k}}{e^{-k}} = \frac{3200}{3800}$ An attempt to eliminate A by producing an equation in only k. So $\frac{1}{2}e^{k} = \frac{3800}{3200}$ or $2e^{-k} = \frac{3200}{3800}$	M1		
	$k = \ln\left(\frac{7600}{3200}\right) \text{ or equivalent } \left\{ \text{eg } k = \ln\left(\frac{19}{8}\right) \right\} $ At least one of $A = 9025 \text{ cao}$ or $k = \ln\left(\frac{7600}{3200}\right)$ or exact equivalent	A1		
	Both $A = 9025$ cao			
	$\left\{A = 3800(e^k) = 3800\left(\frac{19}{8}\right) \Rightarrow \right\} A = 9025 $ or $k = \ln\left(\frac{7600}{3200}\right)$ or exact equivalent	A1		
	Alternative Method for the M1 mark in (b)	[4]		
	$e^{-k} = \frac{3800}{A}$			
	$2A\left(\frac{3800}{A}\right)^2 = 3200$ An attempt to eliminate k by producing an equation in only A	M1		
(c)	$\left\{ t = 5, \ N = 5000 - 9025(5)e^{-5\ln\left(\frac{19}{8}\right)} \right\}$ N = 4402.828401 = 4400 (fish) (nearest 100) anything that rounds to 4400	B1		
		[1] 10		

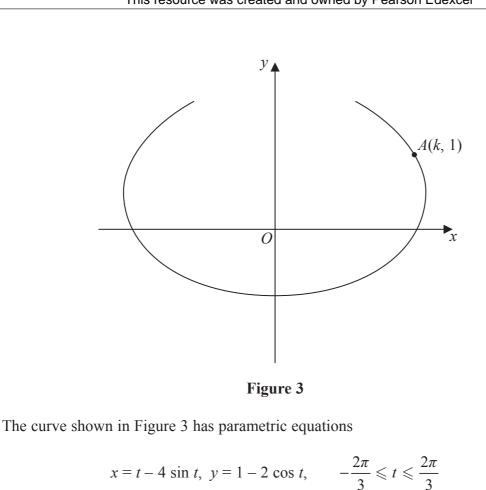
		Question 7 Notes					
7. (a)							
	B1	Separates variables as shown. dN and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.					
	M1	Either $\pm \lambda \ln (5000 - N)$ or $\pm \lambda \ln (N - 5000)$ or $kt - \ln t$ where $\lambda \neq 0$ is a constant.					
	A1	For $-\ln(5000 - N) = kt - \ln t$ or $\ln(5000 - N) = -kt + \ln t$ or $-\frac{1}{k}\ln(5000 - N) = t - \frac{1}{k}\ln t$ oe					
	A1	which is dependent on the 1 st M1 mark being awarded.					
		For applying a constant of integration, eg. $+ c$ or $+ \ln e^{c}$ or $+ \ln c$ or A to their integrated equation					
	Note	+ c can be on either side of their equation for the 2^{nd} A1 mark.					
	A1	Uses a constant of integration eg. "c" or " $\ln e^{c}$ " " $\ln c$ " or and applies a fully correct method to					
		prove the result $N = 5000 - Ate^{-kt}$ with no incorrect working seen. (Correct solution only.)					
	NOTE	IMPORTANT					
		There needs to be an intermediate stage of justifying the A and the e^{-kt} in Ate^{-kt} by for example					
		• either $5000 - N = e^{\ln t - kt + c}$					
		• or $5000 - N = t e^{-kt + c}$					
		• or $5000 - N = t e^{-kt} e^{c}$					
		or equivalent needs to be stated before achieving $N = 5000 - Ate^{-kt}$					
(b)	B1	At least one of either $1200 = 5000 - Ae^{-k}$ (or equivalent) or $1800 = 5000 - 2Ae^{-2k}$ (or equivalent)					
	M1	• Either an attempt to eliminate <i>A</i> by producing an equation in only <i>k</i> .					
		• or an attempt to eliminate k by producing an equation in only A (7600)					
	A1	At least one of $A = 9025 \operatorname{cao}$ or $k = \ln\left(\frac{7600}{3200}\right)$ or equivalent					
	A1	Both $A = 9025$ cao or $k = \ln\left(\frac{7600}{3200}\right)$ or equivalent					
	Note	Alternative correct values for k are $k = \ln\left(\frac{19}{8}\right)$ or $k = -\ln\left(\frac{8}{19}\right)$ or $k = \ln 7600 - \ln 3200$					
		or $k = -\ln\left(\frac{3800}{9025}\right)$ or equivalent.					
	Note	k = 0.8649 without a correct exact equivalent is A0.					
(c)	B1	anything that rounds to 4400					

Summer 2014R Past Paper

Mathematics C4

6666 Leave

blank



The point A, with coordinates (k, 1), lies on the curve.

Given that k > 0

- (a) find the exact value of k,
- (b) find the gradient of the curve at the point A.

There is one point on the curve where the gradient is equal to $-\frac{1}{2}$

(c) Find the value of *t* at this point, showing each step in your working and giving your answer to 4 decimal places.

[Solutions based entirely on graphical or numerical methods are not acceptable.]

(6)

(2)

(4)

Question Number	Scheme		Marks	
8.	$x = t - 4\sin t$, $y = 1 - 2\cos t$, $-\frac{2\pi}{3} \le t \le \frac{2\pi}{3}$ $A(k, 1)$ lies on	the curve, $k > 0$		
(a)	{When $y = 1$,} $1 = 1 - 2\cos t \Rightarrow t = -\frac{\pi}{2}, \frac{\pi}{2}$ $k \text{ (or } x) = \frac{\pi}{2} - 4\sin\left(\frac{\pi}{2}\right) \text{ or } x = -\frac{\pi}{2} - 4\sin\left(-\frac{\pi}{2}\right)$	Sets $y = 1$ to find t and uses their t to find x .	M1	
	$\left\{ \text{When } t = -\frac{\pi}{2}, k > 0, \right\} \text{ so } k = 4 - \frac{\pi}{2} \text{ or } \frac{8 - \pi}{2}$	<i>x</i> or $k = 4 - \frac{\pi}{2}$	A1 [2]	
(b)		ast one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct.	B1	
	dt dt E	Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct.	B1	
		their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$	M1;	
	$2\sin\left(-\frac{\pi}{2}\right)$ and sub	postitutes their t into their $\frac{dy}{dx}$.		
	At $t = -\frac{\pi}{2}$, $\frac{dy}{dx} = \frac{2\sin\left(-\frac{\pi}{2}\right)}{1 - 4\cos\left(-\frac{\pi}{2}\right)}$; $= -2$	Correct value for $\frac{dy}{dx}$ of -2	A1 cao cso	
(c)	$\frac{2\sin t}{1 - 4\cos t} = -\frac{1}{2}$	Sets their $\frac{dy}{dx} = -\frac{1}{2}$		
	gives $4\sin t - 4\cos t = -1$ So $4\sqrt{2}\sin\left(t - \frac{\pi}{4}\right); = -1$ or $-4\sqrt{2}\cos\left(t + \frac{\pi}{4}\right); = -1$	See notes See notes	A1 M1; A1	
		See notes	WI1, A1	
	$t = \sin^{-1}\left(\frac{-1}{4\sqrt{2}}\right) + \frac{\pi}{4}$ or $t = \cos^{-1}\left(\frac{1}{4\sqrt{2}}\right) - \frac{\pi}{4}$	See notes	dM1	
	t = 0.6076875626 = 0.6077 (4 dp) and	ything that rounds to 0.6077	A1 [6] 12	
	Question 8 Notes		12	
	VERY IMPORTANT NOTE FOR PART (c)		1	
(c)	NOTE Candidates who state $t = 0.6077$ with no intermediate working from $4\sin t - 4\cos t =$ will get 2^{nd} M0, 2^{nd} A0, 3^{rd} M0, 3^{rd} A0.			
	They will not express $4\sin t - 4\cos t$ as either $4\sqrt{2}\sin\left(t - \frac{\pi}{4}\right)$ or $-4\sqrt{2}\cos\left(t + \frac{\pi}{4}\right)$.			
	OR use any acceptable alternative method to achieve $t = 0.6077$			
	NOTE Alternative methods for part (c) are given on the next page.			

	Question 8: Alternative Methods for Part (c)		
8. (c)	Alternative Method 1:		
	$\frac{2\sin t}{1 - 4\cos t} = -\frac{1}{2}$ Sets their $\frac{dy}{dx} = -\frac{1}{2}$	M1	
	eg. $\left(\frac{2\sin t}{1-4\cos t}\right)^2 = \frac{1}{4}$ or $(4\sin t)^2 = (4\cos t - 1)^2$ or $(4\sin t + 1)^2 = (4\cos t)^2$ etc. Squaring to give a correct equation. This mark can be implied by a "squared" correct equation.	A1	
	Note: You can also give 1^{st} A1 in this method for $4\sin t - 4\cos t = -1$ as in the main scheme.		
	Squares their equation, applies $\sin^2 t + \cos^2 t = 1$ and achieves a		
	three term quadratic equation of the form $\pm a \cos^2 t \pm b \cos t \pm c = 0$	M1	
	or $\pm a \sin^2 t \pm b \sin t \pm c = 0$ or eg. $\pm a \cos^2 t \pm b \cos t = \pm c$ where $a \neq 0, b \neq 0$ and $c \neq 0$.		
	• Either $32\cos^2 t - 8\cos t - 15 = 0$ • or $32\sin^2 t + 8\sin t - 15 = 0$ For a correct three term quadratic equation.	A1	
	• Either $\cos t = \frac{8 \pm \sqrt{1984}}{64} = \frac{1 + \sqrt{31}}{8} \Rightarrow t = \cos^{-1}()$ which is dependent on the 2 nd M1 mark.	dM1	
	• or $\sin t = \frac{-8 \pm \sqrt{1984}}{64} = \frac{-1 \pm \sqrt{31}}{8} \Rightarrow t = \sin^{-1}()$ Uses correct algebraic processes to give $t =$	GIVII	
	t = 0.6076875626 = 0.6077 (4 dp) anything that rounds to 0.6077	A1	[6]
8. (c)	Alternative Method 2:		
	$\frac{2\sin t}{1 - 4\cos t} = -\frac{1}{2}$ Sets their $\frac{dy}{dx} = -\frac{1}{2}$	M1	
	eg. $(4\sin t - 4\cos t)^2 = (-1)^2$ Note: You can also give 1 st A1 in this method for $4\sin t - 4\cos t = -1$ as in the main scheme.	A1	
	So $16\sin^2 t - 32\sin t\cos t + 16\cos^2 t = 1$		
	Squares their equation, applies both $\sin^2 t + \cos^2 t = 1$ and $\sin 2t = 2\sin t \cos t$ and then achieves an equation of the form	M1	
	the teaching to $16 - 16 \sin 2t = 1$ $\pm a \pm b \sin 2t = \pm c$ $16 - 16 \sin 2t = 1$ or equivalent.	A1	
	$\begin{cases} \sin 2t = \frac{15}{16} \Rightarrow \\ t = \frac{\sin^{-1}()}{2} \end{cases}$ which is dependent on the 2 nd M1 mark. Uses correct algebraic processes to give $t =$	dM1	
	t = 0.6076875626 = 0.6077 (4 dp) Uses correct algebraic processes to give $t =anything that rounds to 0.6077$	A1	
			[6]

[Question 9 Notes
8. (a)	M1	Question 8 Notes Sets $y = 1$ to find t and uses their t to find x.
	Note	M1 can be implied by either x or $k = 4 - \frac{\pi}{2}$ or 2.429 or $\frac{\pi}{2} - 4$ or -2.429
	A1	$x \text{ or } k = 4 - \frac{\pi}{2} \text{ or } \frac{8 - \pi}{2}$
	Note	A decimal answer of 2.429 (without a correct exact answer) is A0.
	Note	Allow A1 for a candidate using $t = \frac{\pi}{2}$ to find $x = \frac{\pi}{2} - 4$ and then stating that k must be $4 - \frac{\pi}{2}$ o.e.
(b)	B1	At least one of $\frac{dx}{dt}$ or $\frac{dy}{dt}$ correct. Note: that this mark can be implied from their working.
	B 1	Both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are correct. Note: that this mark can be implied from their working.
	M1	Applies their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ and attempts to substitute their <i>t</i> into their expression for $\frac{dy}{dx}$.
	Note	This mark may be implied by their final answer.
		i.e. $\frac{dy}{dx} = \frac{2\sin t}{1 - 4\cos t}$ followed by an answer of -2 (from $t = -\frac{\pi}{2}$) or 2 (from $t = \frac{\pi}{2}$)
	Note	Applying $\frac{dx}{dt}$ divided by their $\frac{dy}{dt}$ is M0, even if they state $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$.
	A1	Using $t = -\frac{\pi}{2} \left(\text{and not } t = \frac{3\pi}{2} \right)$ to find a correct $\frac{dy}{dx}$ of -2 by correct solution only.
(c)		
	NOTE	If a candidate uses an incorrect $\frac{dy}{dx}$ expression in part (c) then the accuracy marks are not obtainable.
	1 st M1	Sets their $\frac{dy}{dr} = -\frac{1}{2}$
	1 st A1	Rearranges to give the correct equation with $\sin t$ and $\cos t$ on the same side.
		eg. $4\sin t - 4\cos t = -1$ or $4\cos t - 4\sin t = 1$ or $\sin t - \cos t = -\frac{1}{4}$ or $\cos t - \sin t = \frac{1}{4}$
		or $4\sin t - 4\cos t + 1 = 0$ or $4\cos t - 4\sin t - 1 = 0$ or $\sin t - \cos t + \frac{1}{4} = 0$ etc. are fine for A1.
	2 nd M1	Rewrites $\pm \lambda \sin t \pm \mu \cos t$ in the form of either $R \cos(t \pm \alpha)$ or $R \sin(t \pm \alpha)$ where $R \neq 1$ or 0 and $\alpha \neq 0$
	2 nd A1	Correct equation. Eg. $4\sqrt{2}\sin\left(t-\frac{\pi}{4}\right) = -1$ or $-4\sqrt{2}\cos\left(t+\frac{\pi}{4}\right) = -1$
		or $\sqrt{2}\sin\left(t-\frac{\pi}{4}\right) = -\frac{1}{4}$ or $\sqrt{2}\cos\left(t+\frac{\pi}{4}\right) = \frac{1}{4}$, etc.
	Note	Unless recovered, give A0 for $4\sqrt{2}\sin(t-45^\circ) = -1$ or $-4\sqrt{2}\cos(t+45^\circ) = -1$, etc.
	3 rd M1	which is dependent on the 2^{nd} M1 mark. Uses correct algebraic processes to give $t =$
	4 th A1	anything that rounds to 0.6077
		$\gamma_{\pi} \gamma_{\pi}$
	Note	Do not give the final A1 mark in (c) if there any extra solutions given in the range $-\frac{2\pi}{3} \le t \le \frac{2\pi}{3}$.
	Note	You can give the final A1 mark in (c) if extra solutions are given outside of $-\frac{2\pi}{3} \le t \le \frac{2\pi}{3}$.