Summer 2015

www.mystudybro.com

Mathematics C4

Past Paper		This reso	urce w	as cre	eated	and ov	vned b	by Pea	arson	Edexcel			6666
Centre No.					Pape	er Refer	ence			Surname		Initia	ll(s)
Candidate No.			6	6	6	6	/	0	1	Signature			
· · · ·	Paper Ref	erence(s) 56/01		•		•			•		Exan	niner's us	e only
		dexc											
		uexu	cei	U							Team I	Leader's u	ise only
	Co	re M	ath	en	nat	ics	C 4						
	Ad	vance	d									Question	
	Tue	sday 1	6 Jı	ine	201	5 –	Aft	erno	oon			Number	Blank
	Tim	ne: 1 h	our	30 1	min	utes						$\frac{1}{2}$	
												3	
												4	
		ials require matical For			nation	- Ite Ni		cluded	l with	question papers		5	
				. ,	ulator			he reg	ulatio	ons of the Joint		6	
	Counc		ificatio	ons. Ca	alculat	ors m	ist not	have	the fa	cility for symbolic		7	
	retriev	vable math	ematic	al fori	mulae	stored	in the	m.	-			8	
Instructions to													
In the boxes abo Check that you I Answer ALL the	have the corre	ir centre nu ect question	imber, n pape	candi er.	idate n	umber	, your	surna	ame, i	initials and signatu	ire.		
You must write When a calculat	your answer												
Information f													
A booklet 'Math Full marks may	be obtained a	for answer	s to A	LL qu	estion	S.							
The marks for in There are 8 que There are 32 pag	stions in this	question p	aper. 7	The to	tal ma	rk for	this p	aper i		d brackets: e.g. (2)).		
Advice to Car													
You must ensure You should show Answers withou	w sufficient v	vorking to	make	your 1						r.			
This publication may be repr	oduced only in accorden	nce with										Total	
Pearson Education Ltd copyr ©2015 Pearson Education Lt	ight policy.											Turn	ove
Printer's Log. No. P44827	А									P	EAI	RSO	N
5/1/1/1/			P 4	4	∎∎∎ III 8 2	7 A		1 3	11∎ 11∎I 2				

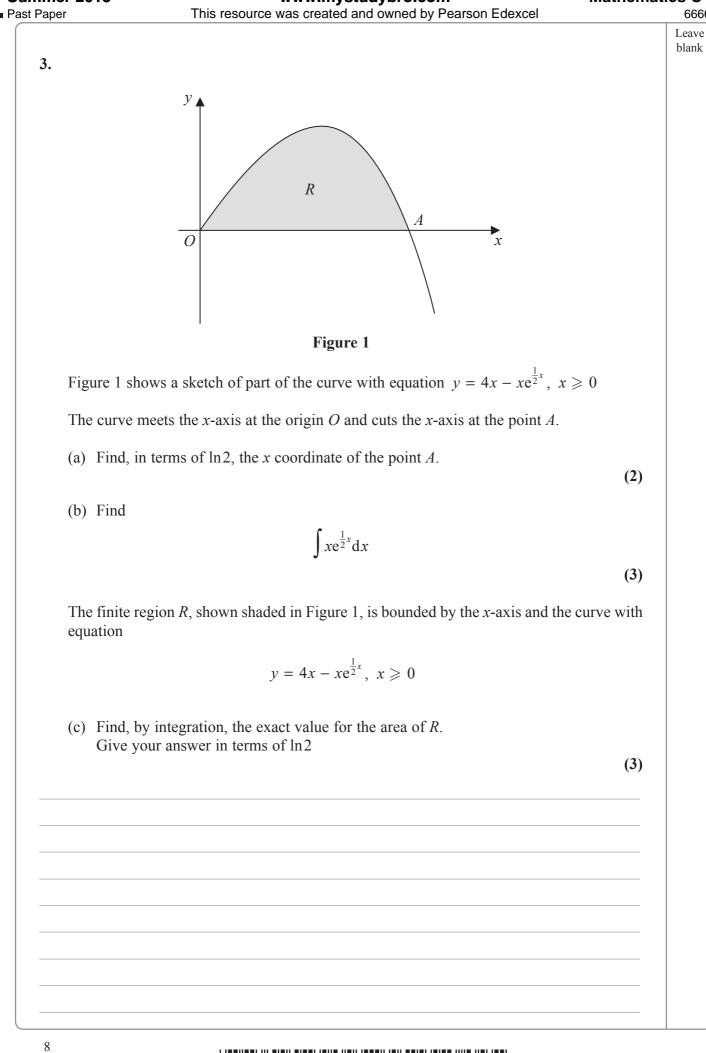
Leave blank 1. (a) Find the binomial expansion of $(4+5x)^{\frac{1}{2}}, |x| < \frac{4}{5}$ in ascending powers of x, up to and including the term in x^2 . Give each coefficient in its simplest form. (5) (b) Find the exact value of $(4 + 5x)^{\frac{1}{2}}$ when $x = \frac{1}{10}$ Give your answer in the form $k\sqrt{2}$, where k is a constant to be determined. (1) (c) Substitute $x = \frac{1}{10}$ into your binomial expansion from part (a) and hence find an approximate value for $\sqrt{2}$ Give your answer in the form $\frac{p}{q}$ where p and q are integers. (2) 2 P 4 4 8 2 7 A 0 2 3 2

June 2015 6666/01 Core Mathematics 4 Mark Scheme

Question Number		Scheme	Marks
1. (a)	(4 + 5	$x)^{\frac{1}{2}} = \underline{(4)^{\frac{1}{2}}} \left(1 + \frac{5x}{4}\right)^{\frac{1}{2}} = \underline{2} \left(1 + \frac{5x}{4}\right)^{\frac{1}{2}} \qquad \underline{(4)^{\frac{1}{2}} \text{ or } \underline{2}}$	<u>B1</u>
	= {2}	$\left[1 + \left(\frac{1}{2}\right)(kx) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(kx)^2 + \dots\right]$ see notes	M1 A1ft
	= {2}	$\left[1 + \left(\frac{1}{2}\right)\left(\frac{5x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{5x}{4}\right)^2 + \dots\right]$	
	= 2	$1 + \frac{5}{8}x - \frac{25}{128}x^2 + \dots$ See notes below!	
	= 2 +	$\frac{5}{4}x; -\frac{25}{64}x^2 + \dots$ isw	A1; A1
(b)	$\begin{cases} x = \frac{1}{2} \end{cases}$	$\frac{1}{10} \Rightarrow (4+5(0.1))^{\frac{1}{2}} = \sqrt{4.5} = \sqrt{\frac{9}{2}} = \frac{3}{\frac{\sqrt{2}}{\sqrt{2}}} = \frac{3}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} $	[5]
		$=\frac{3}{2}\sqrt{2}$ $\frac{3}{2}\sqrt{2}$ or $k=\frac{3}{2}$ or 1.5 o.e.	
(c)	$\frac{3}{2}\sqrt{2}$	or $1.5\sqrt{2}$ or $\frac{3}{\sqrt{2}} = 2 + \frac{5}{4} \left(\frac{1}{10}\right) - \frac{25}{64} \left(\frac{1}{10}\right)^2 + \dots \left\{=2.121\dots\right\}$ See notes	[1] M1
	So, $\frac{3}{2}$	$\sqrt{2} = \frac{543}{256}$ or $\frac{3}{\sqrt{2}} = \frac{543}{256}$	
	yields,	$\sqrt{2} = \frac{181}{128}$ or $\sqrt{2} = \frac{256}{181}$ $\frac{181}{128}$ or $\frac{362}{256}$ or $\frac{543}{384}$ or $\frac{256}{181}$ etc.	A1 oe
			[2] 8
1. (a)	B1	Question 1 Notes $(4)^{\frac{1}{2}}$ or 2 outside brockets or 2 as condidate's constant term in their binomial expansion	
(**)	M1	$(4)^{\overline{2}}$ or $\underline{2}$ outside brackets or $\underline{2}$ as candidate's constant term in their binomial expansion	1.
	1411	Expands $(+kx)^{\overline{2}}$ to give any 2 terms out of 3 terms simplified or un-simplified,	
		Eg: $1 + \left(\frac{1}{2}\right)(kx)$ or $\left(\frac{1}{2}\right)(kx) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(kx)^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}(kx)^2$	
		where k is a numerical value and where $k \neq 1$.	
	A1	A correct simplified or un-simplified $1 + \left(\frac{1}{2}\right)(kx) + \frac{\binom{1}{2}(-\frac{1}{2})}{2!}(kx)^2$ expansion with consis	
	Note	(<i>kx</i>), $k \neq 1$, must be consistent (on the RHS, not necessarily on the LHS) in a candidate	's expansion.

Note	Award B1M1A0 for $2\left[1+\left(\frac{1}{2}\right)\left(5x\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{5x}{4}\right)^2+\right]$ because (kx) is not consistent.						
Note	Incorrect bracketing: $2\left[1 + \left(\frac{1}{2}\right)\left(\frac{5x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{5x^2}{4}\right) + \dots\right]$ is B1M1A0 unless recovered.						
A1	$2 + \frac{5}{4}x$ (simplified fractions) or allow $2 + 1.25x$ or $2 + 1\frac{1}{4}x$						
A1	Accept only $-\frac{25}{64}x^2$ or $-0.390625x^2$						
SC	f a candidate <i>would otherwise score</i> 2 nd A0, 3 rd A0 then allow Special Case 2nd A1 for either						
	SC: $2\left[1+\frac{5}{8}x;\right]$ or SC: $2\left[1+\frac{25}{128}x^2+\right]$ or SC: $\lambda\left[1+\frac{5}{8}x-\frac{25}{128}x^2+\right]$						
	or SC: $\left[\lambda + \frac{5\lambda}{8}x - \frac{25\lambda}{128}x^2 +\right]$ (where λ can be 1 or omitted), where each term in the []						
	is a simplified fraction or a decimal,						
	OR SC: for $2 + \frac{10}{8}x - \frac{50}{128}x^2 + \dots$ (i.e. for not simplifying their correct coefficients.)						
Note	Candidates who write $2\left[1 + \left(\frac{1}{2}\right)\left(-\frac{5x}{4}\right) + \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(-\frac{5x}{4}\right)^2 + \dots\right]$, where $k = -\frac{5}{4}$ and not $\frac{5}{4}$						
	and achieve $2 - \frac{5}{4}x - \frac{25}{64}x^2 +$ will get B1M1A1A0A1						
Note	gnore extra terms beyond the term in x^2 .						
Note	You can ignore subsequent working following a correct answer. $2 - \frac{1}{2}$						
B1	$\frac{3}{2}\sqrt{2}$ or $1.5\sqrt{2}$ or $k = \frac{3}{2}$ or 1.5 o.e. (Ignore how $k = \frac{3}{2}$ is found.)						
M1	Substitutes $x = \frac{1}{10}$ or 0.1 into their binomial expansion found in part (a) which must contain both						
	an x term and an x^2 term (or even an x^3 term) and equates this to either $\frac{3}{\sqrt{2}}$ or their $k\sqrt{2}$ from (b),						
	where k is a numerical value.						
Note	M1 can be implied by $\frac{3}{2}\sqrt{2}$ or $1.5\sqrt{2}$ or $\frac{3}{\sqrt{2}}$ = awrt 2.121						
Note	M1 <i>can be implied</i> by $\frac{1}{k}$ (their $\frac{543}{256}$), with their <i>k</i> found in part (b).						
Note	M1 <i>cannot be implied</i> by (k) (their $\frac{543}{256}$), with their k found in part (b).						
A1	$\frac{181}{128}$ or any equivalent fraction, eg: $\frac{362}{256}$ or $\frac{543}{384}$. Also allow $\frac{256}{181}$ or any equivalent fraction.						
Note	Also allow A1 for $p = 181$, $q = 128$ or $p = 181\lambda$, $q = 128\lambda$						
	or $p = 256$, $q = 181$ or $p = 256\lambda$, $q = 181\lambda$, where $\lambda \in \mathbb{Z}^+$						
Note Note Note	You can recover work for part (c) in part (b). You cannot recover part (b) work in part (c). Candidates are allowed to restart and gain all 2 marks in part (c) from an incorrect part (b). Award M1 A1 for the correct answer from no working.						
	Note A1 A1 SC Note Note B1 M1 Note Note A1 A1 SC						

	Alternative methods for part (a)							
	<u>Alternative method 1:</u> Candidates can apply an alternative form of the binomial expansion.							
	{(4 +)	$5x)^{\frac{1}{2}} = (4)^{\frac{1}{2}} + (\frac{1}{2})(4)^{-\frac{1}{2}}(5x) + \frac{(\frac{1}{2})(-\frac{1}{2})}{2!}(4)^{-\frac{3}{2}}(5x)^{2}$						
	B1	$(4)^{\frac{1}{2}}$ or 2						
	M1	Any two of three (un-simplified) terms correct.						
	A1	All three (un-simplified) terms correct.						
	A1	$2 + \frac{5}{4}x$ (simplified fractions) or allow $2 + 1.25x$ or $2 + 1\frac{1}{4}$	<i>x</i>					
	A1	Accept only $-\frac{25}{64}x^2$ or $-0.390625x^2$						
	Note	The terms in C need to be evaluated.						
		So $\frac{1}{2}C_0(4)^{\frac{1}{2}} + \frac{1}{2}C_1(4)^{-\frac{1}{2}}(5x); + \frac{1}{2}C_2(4)^{-\frac{3}{2}}(5x)^2$ without further work	ing is B0M0A0.					
		1						
A		ative Method 2: Maclaurin Expansion $f(x) = (4 + 5x)^{\overline{2}}$		1				
		$25 - \frac{3}{2}$	Correct $f''(x)$	B1				
	f"(<i>x</i>)=	$=-\frac{25}{4}(4+5x)^{-\frac{3}{2}}$	Context = (x)	DI				
		····· · ······	$\pm a(4+5x)^{-\frac{1}{2}}; a \neq \pm 1$					
		· · · · · · · · · · · · · · · · · · ·		M1				
	f'(x)=	····· · ······	$\pm a(4+5x)^{-\frac{1}{2}}; a \neq \pm 1$	M1				


This resource was created and owned by Pearson Edexcel Past Paper 6666 Leave blank 2. The curve C has equation $x^2 - 3xy - 4y^2 + 64 = 0$ (a) Find $\frac{dy}{dx}$ in terms of x and y. (5) (b) Find the coordinates of the points on C where $\frac{dy}{dx} = 0$ (Solutions based entirely on graphical or numerical methods are not acceptable.) (6) 4

Question Number		Scheme	Marks		
2.		$x^2 - 3xy - 4y^2 + 64 = 0$			
(a)	$\left\{ \frac{\cancel{2}}{\cancel{2}} \times \right\}$	$\frac{2x}{2x} - \left(\frac{3y + 3x\frac{dy}{dx}}{dx}\right) - \frac{8y\frac{dy}{dx}}{dx} = 0$	M1 <u>A1</u> <u>M1</u>		
		$2x - 3y + (-3x - 8y)\frac{dy}{dx} = 0$	dM1		
		$\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y} \text{ or } \frac{3y - 2x}{-3x - 8y}$ o.e.	A1 cso		
			[5]		
(b)		$\left\{\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Rightarrow\right\} 2x - 3y = 0$	M1		
		$y = \frac{2}{3}x \qquad \qquad x = \frac{3}{2}y$	A1ft		
		$x^{2} - 3x\left(\frac{2}{3}x\right) - 4\left(\frac{2}{3}x\right)^{2} + 64 = 0 \qquad \qquad \left(\frac{3}{2}y\right)^{2} - 3\left(\frac{3}{2}y\right)y - 4y^{2} + 64 = 0$	dM1		
	$x^2 - 2x$	$x^{2} - \frac{16}{9}x^{2} + 64 = 0 \implies -\frac{25}{9}x^{2} + 64 = 0 \qquad \frac{9}{4}y^{2} - \frac{9}{2}y^{2} - 4y^{2} + 64 = 0 \implies -\frac{25}{4}y^{2} + 64 = 0$			
	$\left\{ \Rightarrow x^2 \right\}$	$=\frac{576}{25} \Rightarrow \left\{ x = \frac{24}{5} \text{ or } -\frac{24}{5} \right\} \left\{ \Rightarrow y^2 = \frac{256}{25} \Rightarrow \right\} y = \frac{16}{5} \text{ or } -\frac{16}{5}$	A1 cso		
	When x	$x = \pm \frac{24}{5}, y = \frac{2}{3} \left(\frac{24}{5}\right) \text{ and } -\frac{2}{3} \left(\frac{24}{5}\right)$ When $y = \pm \frac{16}{5}, x = \frac{3}{2} \left(\frac{16}{5}\right)$ and $-\frac{3}{2} \left(\frac{16}{5}\right)$			
	($\left(\frac{24}{5}, \frac{16}{5}\right)$ and $\left(-\frac{24}{5}, -\frac{16}{5}\right)$ or $x = \frac{24}{5}, y = \frac{16}{5}$ and $x = -\frac{24}{5}, y = -\frac{16}{5}$	ddM1		
		$(-\frac{5}{5}, -\frac{5}{5})$ and $(-\frac{5}{5}, -\frac{5}{5})$ or $x = -\frac{5}{5}, y = -\frac{5}{5}$ and $x = -\frac{5}{5}, y = -\frac{5}{5}$ cso	A1		
			[6 1		
		ntive method for part (a)			
(a)	$\left\{\frac{\cancel{x}}{\cancel{x}}\times\right\}$	$\begin{cases} 2x\frac{dx}{dy} - \left(3y\frac{dx}{dy} + 3x\right) - 8y = 0 \\ \underline{-8y} = 0 \end{cases}$	M1 <u>A1</u> <u>M1</u>		
		$(2x-3y)\frac{\mathrm{d}x}{\mathrm{d}y} - 3x - 8y = 0$	dM1		
		$\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y} \text{ or } \frac{3y - 2x}{-3x - 8y}$ o.e.	A1 cso		
			[5]		
2 (a)		Question 2 Notes			
2. (a) General	Note	Writing down $\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y}$ or $\frac{3y - 2x}{-3x - 8y}$ from no working is full marks			
	Note Writing down $\frac{dy}{dx} = \frac{2x - 3y}{-3x - 8y}$ or $\frac{3y - 2x}{3x + 8y}$ from no working is M1A0B1M1A0				
	Note	Few candidates will write $2x dx - 3y dx - 3x dy - 8y dy = 0$ leading to $\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y}$, o.e.			
		This should get full marks.			

2. (a) M1 Differentiates implicitly to include either $\pm 3x \frac{dy}{dx}$ or $-4y^2 \rightarrow \pm ky \frac{dy}{dx}$. (Ignore A1 Both $x^2 \rightarrow \underline{2x}$ and $\dots -4y^2 + 64 = 0 \rightarrow \underline{-8y \frac{dy}{dx}} = 0$ Note If an extra term appears then award A0. M1 $-3xy \rightarrow -3x \frac{dy}{dx} - 3y$ or $-3x \frac{dy}{dx} + 3y$ or $3x \frac{dy}{dx} - 3y$ or $3x \frac{dy}{dx} + 3y$ Note $2x - 3y - 3x \frac{dy}{dx} - 8y \frac{dy}{dx} \rightarrow 2x - 3y = 3x \frac{dy}{dx} + 8y \frac{dy}{dx}$						
Note If an extra term appears then award A0. M1 $-3xy \rightarrow -3x \frac{dy}{dx} - 3y$ or $-3x \frac{dy}{dx} + 3y$ or $3x \frac{dy}{dx} - 3y$ or $3x \frac{dy}{dx} + 3y$						
$\mathbf{M1} -3xy \rightarrow -3x\frac{\mathrm{d}y}{\mathrm{d}x} - 3y \text{or} -3x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y \text{or} 3x\frac{\mathrm{d}y}{\mathrm{d}x} - 3y \text{or} 3x\frac{\mathrm{d}y}{\mathrm{d}x} + 3y$						
Note $2x - 3y - 3x \frac{dy}{dy} - 8y \frac{dy}{dy} \rightarrow 2x - 3y = 3x \frac{dy}{dy} + 8y \frac{dy}{dy}$						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
will get 1^{st} A1 (implied) as the "=0" can be implied by the rearrangement of the term of ter	heir equation.					
dM1 dependent on the FIRST method mark being awarded.	du					
An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are <i>at least two</i>	uл					
i.e + $(-3x - 8y)\frac{dy}{dx} =$ or = $(3x + 8y)\frac{dy}{dx}$. (Allow combining in 1 v	variable).					
A1 $\frac{2x-3y}{3x+8y}$ or $\frac{3y-2x}{-3x-8y}$ or equivalent.						
NotecsoIf the candidate's solution is not completely correct, then do not give this mNoteYou cannot recover work for part (a) in part (b).	cso If the candidate's solution is not completely correct, then do not give this mark. You cannot recover work for part (a) in part (b).					
2. (b) M1 Sets their numerator of their $\frac{dy}{dx}$ equal to zero (or the denominator of their $\frac{dx}{dy}$ equal to zero).	Sets their numerator of their $\frac{dy}{dx}$ equal to zero (or the denominator of their $\frac{dx}{dy}$ equal to zero) o.e.					
Note 1 st M1 can also be gained by setting $\frac{dy}{dx}$ equal to zero in their " $2x - 3y - 3x\frac{d}{dx}$	1 st M1 can also be gained by setting $\frac{dy}{dx}$ equal to zero in their " $2x - 3y - 3x\frac{dy}{dx} - 8y\frac{dy}{dx} = 0$ "					
NoteIf their numerator involves one variable only then only the 1st M1 mark is pNoteIf their numerator is a constant then no marks are available in part (b)	possible in part (b).					
Note If their numerator is in the form $\pm ax^2 \pm by = 0$ or $\pm ax \pm by^2 = 0$ then the fin	rst 3 marks are					
possible in part (b).						
Note $\frac{dy}{dx} = \frac{2x - 3y}{3x + 8y} = 0$ is not sufficient for M1.						
A1ft Either						
• Sets $2x - 3y$ to zero and obtains either $y = \frac{2}{3}x$ or $x = \frac{3}{2}y$						
• the follow through result of making either y or x the subject from setting	g their numerator					
of their $\frac{dy}{dr}$ equal to zero						
dM1 dependent on the first method mark being awarded.						
Substitutes <i>either</i> their $y = \frac{2}{3}x$ or their $x = \frac{3}{2}y$ into the original equation to give	ve an equation in					
one variable only.						
A1 Obtains either $x = \frac{24}{5}$ or $-\frac{24}{5}$ or $y = \frac{16}{5}$ or $-\frac{16}{5}$, (or equivalent) by correct	ct solution only.					
i.e. You can allow for example $x = \frac{48}{10}$ or 4.8, etc.						
Note $x = \sqrt{\frac{576}{25}}$ (not simplified) or $y = \sqrt{\frac{256}{25}}$ (not simplified) is not sufficient for A	A1.					

2. (b)	ddM1	dependent on both previous method marks being awarded in this part.				
ctd		Method 1 Either:				
		• substitutes their x into their $y = \frac{2}{3}x$ or substitutes their y into their $x = \frac{3}{2}y$, or				
		• substitutes <i>the other of</i> their $y = \frac{2}{3}x$ or their $x = \frac{3}{2}y$ into the original equation,				
		and achieves either:				
		• exactly two sets of two coordinates or				
		• exactly two distinct values for x and exactly two distinct values for y.				
		Method 2 Either:				
		• substitutes their first x-value, x_1 into $x^2 - 3xy - 4y^2 + 64 = 0$ to obtain one y-value, y_1 and				
		substitutes their second x-value, x_2 into $x^2 - 3xy - 4y^2 + 64 = 0$ to obtain 1 y-value y_2 or				
		• substitutes their first y-value, y_1 into $x^2 - 3xy - 4y^2 + 64 = 0$ to obtain one x-value x_1 and				
		substitutes their second y-value, y_2 into $x^2 - 3xy - 4y^2 + 64 = 0$ to obtain one x-value x_2 .				
	Note	Three or more sets of coordinates given (without identification of two sets of coordinates) is ddM0.				
	A1	Both $\left(\frac{24}{5}, \frac{16}{5}\right)$ and $\left(-\frac{24}{5}, -\frac{16}{5}\right)$, only by cso. Note that decimal equivalents are fine.				
	Note	Also allow $x = \frac{24}{5}$, $y = \frac{16}{5}$ and $x = -\frac{24}{5}$, $y = -\frac{16}{5}$ all seen in their working to part (b).				
	Note	Allow $x = \pm \frac{24}{5}$, $y = \pm \frac{16}{5}$ for 3 rd A1.				
	Note	$x = \pm \frac{24}{5}, y = \pm \frac{16}{5}$ followed by eg. $\left(\frac{16}{5}, \frac{24}{5}\right)$ and $\left(-\frac{16}{5}, -\frac{24}{5}\right)$				
		(eg. coordinates stated the wrong way round) is $3^{rd} A0$.				
	Note	It is possible for a candidate who does not achieve full marks in part (a), (but has a correct numerator				
		for $\frac{dy}{dx}$) to gain all 6 marks in part (b).				
	Note	Decimal equivalents to fractions are fine in part (b). i.e. $(4.8, 3.2)$ and $(-4.8, -3.2)$.				
	Note	$\left(\frac{24}{5},\frac{16}{5}\right)$ and $\left(-\frac{24}{5},-\frac{16}{5}\right)$ from no working is M0A0M0A0M0A0.				
	Note	Candidates could potentially lose the final 2 marks for setting both their numerator and denominator				
	Note	to zero. No credit in this part can be gained by only setting the denominator to zero.				
	THULE	No creat in this part can be gained by only setting the denominator to zero.				

6666

P 4 4 8 2 7 A 0 8 3 2

Question Number		Scheme	Marks				
3.	y = 4x	$-xe^{\frac{1}{2}x}, x \ge 0$					
(a)	$\begin{cases} y = 0 \end{cases}$	$\left\{ y = 0 \implies 4x - x e^{\frac{1}{2}x} = 0 \implies x(4 - e^{\frac{1}{2}x}) = 0 \implies \right\}$					
	e	Attempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ in terms of $\pm \lambda \ln \mu$ where $\mu > 0$ $4\ln 2$ cao (Ignore $x = 0$)	M1				
(b)	$\left\{\int x e^{\frac{1}{2}x}\right\}$	$dx = 2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\} \qquad \qquad$	[2] M1				
) $2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$, with or without dx	A1 (M1 on ePEN)				
		$= 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \{+c\} \qquad 2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \text{ o.e. with or without } +c$	A1				
(c)	$\left\{\int 4xd\right\}$	$x \bigg\} = 2x^2 \qquad \qquad 4x \to 2x^2 \text{ or } \frac{4x^2}{2} \text{ o.e.}$	[3] B1				
	$\left\{\int_{0}^{4\ln 2} ($	$4x - x e^{\frac{1}{2}x} dx = \left[2x^2 - \left(2x e^{\frac{1}{2}x} - 4e^{\frac{1}{2}x} \right) \right]_0^{4\ln 2 \text{ or ln 16 or their limits}}$					
	$=\left(2(4)\right)$	$\ln 2)^{2} - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 4e^{\frac{1}{2}(4\ln 2)} - \left(2(0)^{2} - 2(0)e^{\frac{1}{2}(0)} + 4e^{\frac{1}{2}(0)}\right)$ See notes	M1				
	``	$(n 2)^{2} - 32(\ln 2) + 16) - (4)$ 2) ² - 32(ln 2) + 12 32(ln 2) ² - 32(ln 2) + 12, see notes	A1 [3]				
		Question 3 Notes	8				
3. (a) (b)	M1 A1 NOT E	Attempts to solve $e^{\frac{1}{2}x} = 4$ giving $x =$ in terms of $\pm \lambda \ln \mu$ where $\mu > 0$ 4ln 2 cao stated in part (a) only (Ignore $x = 0$) Part (b) appears as M1M1A1 on ePEN, but is now marked as M1A1A1.					
	M1 Integration by parts is applied in the form $\alpha x e^{\frac{1}{2}x} - \beta \int e^{\frac{1}{2}x} \{dx\}$, where $\alpha > 0, \beta > 0$.						
	A1	(must be in this form) with or without dx $2xe^{\frac{1}{2}x} - \int 2e^{\frac{1}{2}x} \{dx\}$ or equivalent, with or without dx . Can be un-simplified.					
	A1	$2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}$ or equivalent with or without + c. Can be un-simplified.					
	Note	You can also allow $2e^{\frac{1}{2}x}(x-2)$ or $e^{\frac{1}{2}x}(2x-4)$ for the final A1.					
	isw	You can ignore subsequent working following on from a correct solution.					
	SC	<u>SPECIAL CASE</u> : A candidate who uses $u = x$, $\frac{dv}{dx} = e^{\frac{1}{2}x}$, writes down the correct "b	by parts"				
		formula, but makes only one error when applying it can be awarded Special Case M1. (Applying their v counts for one consistent error.)					

3. (c)	B1	$4x \rightarrow 2x^2 \text{ or } \frac{4x^2}{2} \text{ oe}$
	M1	Complete method of applying limits of their x_A and 0 to all terms of an expression of the form
	Note	$\pm Ax^2 \pm Bxe^{\frac{1}{2}x} \pm Ce^{\frac{1}{2}x}$ (where $A \neq 0$, $B \neq 0$ and $C \neq 0$) and subtracting the correct way round. Evidence of a proper consideration of the limit of 0 is needed for M1.
	Note	So subtracting 0 is M0.
	Note A1	ln16 or 2ln4 or equivalent is fine as an upper limit. A correct three term exact quadratic expression in ln2.
		For example allow for A1
		• $32(\ln 2)^2 - 32(\ln 2) + 12$
		• $8(2\ln 2)^2 - 8(4\ln 2) + 12$
		• $2(4\ln 2)^2 - 32(\ln 2) + 12$
		• $2(4\ln 2)^2 - 2(4\ln 2)e^{\frac{1}{2}(4\ln 2)} + 12$
	Note	Note that the constant term of 12 needs to be combined from $4e^{\frac{1}{2}(4\ln 2)} - 4e^{\frac{1}{2}(0)}$ o.e.
	Note	Also allow $32 \ln 2(\ln 2 - 1) + 12$ or $32 \ln 2 \left(\ln 2 - 1 + \frac{12}{32 \ln 2} \right)$ for A1.
	Note	Do not apply "ignore subsequent working" for incorrect simplification.
		Eg: $32(\ln 2)^2 - 32(\ln 2) + 12 \rightarrow 64(\ln 2) - 32(\ln 2) + 12$ or $32(\ln 4) - 32(\ln 2) + 12$
	Note	Bracketing error: $32 \ln 2^2 - 32(\ln 2) + 12$, unless recovered is final A0.
	Note	Notation: Allow $32(\ln^2 2) - 32(\ln 2) + 12$ for the final A1.
	Note	5.19378 without seeing $32(\ln 2)^2 - 32(\ln 2) + 12$ is A0.
	Note	5.19378 following from a correct $2x^2 - \left(2xe^{\frac{1}{2}x} - 4e^{\frac{1}{2}x}\right)$ is M1A0.
	Note	5.19378 from no working is M0A0.

6666

Leave blank With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations 4. $l_1: \mathbf{r} = \begin{pmatrix} 5\\ -3\\ p \end{pmatrix} + \lambda \begin{pmatrix} 0\\ 1\\ -3 \end{pmatrix}, \quad l_2: \mathbf{r} = \begin{pmatrix} 8\\ 5\\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3\\ 4\\ -5 \end{pmatrix}$ where λ and μ are scalar parameters and p is a constant. The lines l_1 and l_2 intersect at the point A. (a) Find the coordinates of A. (2) (b) Find the value of the constant *p*. (3) (c) Find the acute angle between l_1 and l_2 , giving your answer in degrees to 2 decimal places. (3) The point *B* lies on l_2 where $\mu = 1$ (d) Find the shortest distance from the point B to the line l_1 , giving your answer to 3 significant figures. (3)

Question Number	Scheme	Marks
4.	$l_1: \mathbf{r} = \begin{pmatrix} 5 \\ -3 \\ p \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 8 \\ 5 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}.$ Let θ = acute angle between l_1 and l_2 . Note: You can mark parts (a) and (b) together.	
(a)	$\{l_1 = l_2 \Rightarrow \mathbf{i}:\} 5 = 8 + 3\mu \Rightarrow \mu = -1$ Finds μ and substitutes their μ into l_2	M1
	So, $\left\{\overrightarrow{OA}\right\} = \begin{pmatrix} 8\\5\\-2 \end{pmatrix} - 1 \begin{pmatrix} 3\\4\\-5 \end{pmatrix} = \begin{pmatrix} 5\\1\\3 \end{pmatrix}$ $5\mathbf{i} + \mathbf{j} + 3\mathbf{k} \text{ or } \begin{pmatrix} 5\\1\\3 \end{pmatrix} \text{ or } (5, 1, 3)$	
(b)	$\{\mathbf{j}: -3 + \lambda = 5 + 4\mu \implies \} -3 + \lambda = 5 + 4(-1) \implies \lambda = 4$ Equates \mathbf{j} components, substitutes their μ and solves to give $\lambda = \dots$	[2] M1
	k : $p - 3\lambda = -2 - 5\mu \Rightarrow$ $p - 3(4) = -2 - 5(-1) \Rightarrow \underline{p} = 15$ Equates k components, substitutes their λ and their μ and solves to give $p = \dots$ or equates k components to give	M1
	or $\mathbf{k}: p - 3\lambda = 3 \Rightarrow$ $p - 3(4) = 3 \Rightarrow \underline{p = 15}$ their " $p - 3\lambda$ = the \mathbf{k} value of A found in part (a)", substitutes their λ and solves to give $p =$ p = 15	A1
		[3]
(c)	$\mathbf{d}_{1} = \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix}, \ \mathbf{d}_{2} = \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}$ Realisation that the dot product is required between $\pm A\mathbf{d}_{1}$ and $\pm B\mathbf{d}_{2}$.	M1
	$\cos \theta = \pm K \left(\frac{0(3) + (1)(4) + (-3)(-5)}{\sqrt{(0)^2 + (1)^2 + (-3)^2} \cdot \sqrt{(3)^2 + (4)^2 + (-5)^2}} \right)$ An attempt to apply the dot product formula between $\pm A\mathbf{d}_1$ and $\pm B\mathbf{d}_2$.	dM1 (A1 on ePEN)
	$\cos \theta = \frac{19}{\sqrt{10}.\sqrt{50}} \Rightarrow \theta = 31.8203116 = 31.82 \ (2 \text{ dp}) \qquad \text{anything that rounds to } 31.82$	A1
(d)	$\overrightarrow{OB} = \begin{pmatrix} 11\\9\\-7 \end{pmatrix}; \overrightarrow{AB} = \begin{pmatrix} 11\\9\\-7 \end{pmatrix} - \begin{pmatrix} 5\\1\\3 \end{pmatrix} = \begin{pmatrix} 6\\8\\-10 \end{pmatrix} \text{ or } \overrightarrow{AB} = 2\begin{pmatrix} 3\\4\\-5 \end{pmatrix} = \begin{pmatrix} 6\\8\\-10 \end{pmatrix} \text{ See notes}$ $ \overrightarrow{AB} = \sqrt{6^2 + 8^2 + (-10)^2} \left\{ = 10\sqrt{2} \right\}$	[3] M1
	$\frac{d}{10\sqrt{2}} = \sin\theta$ Writes down a correct trigonometric equation involving the shortest distance, d. Eg: $\frac{d}{\text{their } AB} = \sin\theta$, oe.	dM1
	$\left\{ d = 10\sqrt{2}\sin 31.82 \Rightarrow \right\} d = 7.456540753 = 7.46 (3sf)$ anything that rounds to 7.46	A1
		[3] 11

4 (1-)				
4. (b)	Alternative method for part (b) $\begin{cases} 3 \times \mathbf{j}: -9 + 3\lambda = 15 + 12\mu \\ \mathbf{k}: p - 3\lambda = -2 + 5\mu \end{cases} p - 9 = 13 + 7\mu$	I	Eliminates λ to write down an equation in p and μ	M1
	$p-9=13+7(-1) \implies p=15$	Substit	utes their μ and solves to give $p = \dots$	M1
	r · · · · · · · ·		p = 15	A1
4. (d)	Alternative Methods for part (d) Let X be the foot of	the perpen	-	
	$\mathbf{d}_{1} = \begin{pmatrix} 0\\1\\-3 \end{pmatrix}, \overrightarrow{OX} = \begin{pmatrix} 5\\-3\\15 \end{pmatrix} + \lambda \begin{pmatrix} 0\\1\\-3 \end{pmatrix} = \begin{pmatrix} 5\\-3+\lambda\\15-3\lambda \end{pmatrix}$			
	$\overrightarrow{BX} = \begin{pmatrix} 5 \\ -3+\lambda \\ 15-3\lambda \end{pmatrix} - \begin{pmatrix} 11 \\ 9 \\ -7 \end{pmatrix} = \begin{pmatrix} -6 \\ -12+\lambda \\ 22-3\lambda \end{pmatrix}$			
	Method 1			
			(Allow a sign slip in	
	$\overrightarrow{BX} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} -6 \\ -12 + \lambda \\ 22 - 3\lambda \end{pmatrix} \bullet \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} = -12 + \lambda - 6$	$66 + 9\lambda = 0$	copying \mathbf{d}_1)	
	$\begin{array}{c c} DA = \mathbf{u}_1 = 0 \implies 1 \qquad 1 = $	<i>i</i> - <i>i</i> - <i>i</i>	Applies $\overrightarrow{BX} \bullet \mathbf{d}_1 = 0$ and	
			solves the resulting	M1
	leading to $10\lambda - 78 = 0 \implies \lambda = \frac{39}{5}$		equation to find a value for λ .	
	$\overline{BX} = \begin{pmatrix} -6 \\ -12 + \frac{39}{5} \\ 22 - 3\left(\frac{39}{5}\right) \end{pmatrix} = \begin{pmatrix} -6 \\ -\frac{21}{5} \\ -\frac{7}{5} \end{pmatrix}$		Substitutes their value of λ into their \overline{BX} . Note: This mark is dependent upon the previous M1 mark .	dM1
	$d = BX = \sqrt{\left(-6\right)^2 + \left(-\frac{21}{5}\right)^2 + \left(-\frac{7}{5}\right)^2} = 7.456540753.$		awrt 7.46	A1
	Method 2	T		
	Let $\beta = \left \overrightarrow{BX} \right ^2 = 36 + 144 - 24\lambda + \lambda^2 + 484 - 132\lambda + 9$	λ^2	Finds $\beta = \left \overrightarrow{BX} \right ^2$ in terms of λ ,	
	$= 10\lambda^2 - 156\lambda + 664$		finds $\frac{\mathrm{d}\beta}{\mathrm{d}\lambda}$ and sets this result	M1
	So $\frac{\mathrm{d}\beta}{\mathrm{d}\lambda} = 20\lambda - 156 = 0 \implies \lambda = \frac{39}{5}$	e	$d\lambda$ equal to 0 and finds a value for λ .	
	$\left \overline{BX}\right ^2 = 10\left(\frac{39}{5}\right)^2 - 156\left(\frac{39}{5}\right) + 664 = \frac{278}{5}$ Sub		Fir value of λ into their $\left \overrightarrow{BX} \right ^2$. This mark is dependent upon the previous M1 mark.	dM1
	$d = BX = \sqrt{\frac{278}{5}} = 7.456540753$		awrt 7.46	A1

		Question 4 Notes						
4. (a)	M1	Finds μ and substitutes their μ into l_2						
		(5)						
	A1	Point of intersection of $5\mathbf{i} + \mathbf{j} + 3\mathbf{k}$. Allow 1 or (5,	1, 3).					
		Point of intersection of $5\mathbf{i} + \mathbf{j} + 3\mathbf{k}$. Allow $\begin{pmatrix} 5\\1\\3 \end{pmatrix}$ or $(5, 1, 3)$.						
	Note	You cannot recover the answer for part (a) in part (c) or part (d).						
(b)	M1	Equates j components, substitutes their μ and solves to	•					
	M1	Equates k components, substitutes their λ and their μ a	and solves to give $p = \dots$					
	or equates k components to give their " $p - 3\lambda$ = the k value of A" found in part (b).							
	$A1 \qquad p = 15$							
(c)	NOTE	Part (c) appears as M1A1A1 on ePEN, but now is ma	rked as M1M1A1.					
	M1	Realisation that the dot product is required between $\pm A$	\mathbf{d}_1 and $\pm B\mathbf{d}_2$.					
	Note	Allow one slip in candidates copying down their direction	on vectors, \mathbf{d}_1 and \mathbf{d}_2 .					
	dM1	dependent on the FIRST method mark being awarde	d.					
		An attempt to apply the dot product formula between $\pm A$						
	A1	anything that rounds to 31.82. This can also be achieved	1 by 180 – 148.1796 = awrt 31	.82				
	Note	$\theta = 0.5553^{\circ}$ is A0.						
		(0-16-60	-76					
	Note	M1A1 for $\cos \theta = \left(\frac{0 - 16 - 60}{\sqrt{(0)^2 + (4)^2 + (-12)^2}} \sqrt{(-3)^2 + (-4)^2}\right)$	$\frac{1}{(1)^2 + (5)^2} = \frac{70}{\sqrt{160}}$					
	<u>Alternative Method: Vector Cross Product</u> Only apply this scheme if it is clear that a candidate is applying a vector cross product method.							
		$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 8 \end{bmatrix} = 7; 0; 2]$	Realisation that the vector	N/1				
	$\mathbf{u}_1 \times \mathbf{u}_2 =$	$ \left\{ \begin{array}{c} 0\\1\\-3 \end{array} \right\} \times \left(\begin{array}{c} 3\\4\\-5 \end{array} \right) = \left\{ \begin{array}{c} \mathbf{i} \mathbf{j} \mathbf{k}\\0 1 -3\\3 4 -5 \end{array} \right\} = \left\{ 7\mathbf{i} - 9\mathbf{j} - 3\mathbf{k} \right\} $	between $\pm Ad$ and $\pm Bd$.	<u>M1</u>				
			$\sum_{i=1}^{n} a_{1} a_{1} a_{1} a_{1} a_{2} a_{2}$					
		$\sin \theta = \frac{\sqrt{(7)^2 + (-9)^2 + (3)^2}}{\sqrt{(0)^2 + (1)^2 + (-3)^2} \cdot \sqrt{(3)^2 + (4)^2 + (-5)^2}}$	An attempt to apply the	dM1				
		$\sin \theta = \frac{1}{\sqrt{(0)^2 + (1)^2 + (-3)^2}} \sqrt{(3)^2 + (4)^2 + (-5)^2}$	vector cross product formula	(A1 on ePEN)				
			-	ci Li ()				
	$\sin \theta = $	$\frac{\sqrt{139}}{\sqrt{10}.\sqrt{50}} \Rightarrow \theta = 31.8203116 = 31.82 \ (2 \text{ dp})$	anything that rounds to 31.82	A1				
		√ 10. √ 50						
(d)		ull method for finding <i>B</i> and for finding the magnitude of	<i>AB</i> or the magnitude of <i>BA</i> .					
		ependent on the first method mark being awarded.	1 1 [.]					
		Vrites down correct trigonometric equation involving the sl						
	E	g: $\frac{d}{\text{their } AB} = \sin\theta$ or $\frac{d}{\text{their } AB} = \cos(90 - \theta)$, o.e., wh	ere "their AB" is a value.					
		their AB their AB and $\theta =$ "their θ " or stated as θ						
		nything that rounds to 7.46						
		ing thing that rounds to 7.40						

6666 Leave

blank

5. A curve *C* has parametric equations

$$x = 4t + 3$$
, $y = 4t + 8 + \frac{5}{2t}$, $t \neq 0$

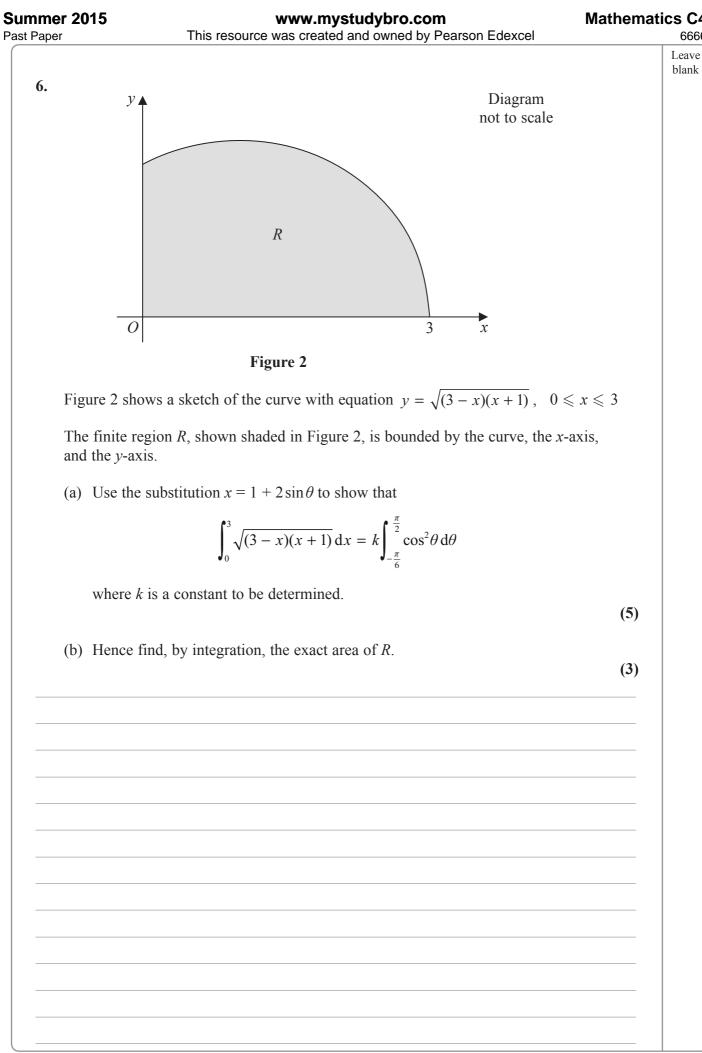
- (a) Find the value of $\frac{dy}{dx}$ at the point on *C* where t = 2, giving your answer as a fraction in its simplest form.
- (b) Show that the cartesian equation of the curve C can be written in the form

$$y = \frac{x^2 + ax + b}{x - 3}, \quad x \neq 3$$

where a and b are integers to be determined.

(3)

(3)


P	' 4	4	8	2	7	Α	0	1	6	3	2	

uestion umber	Scheme	Mark
5.	Note: You can mark parts (a) and (b) together.	
(a)	$x = 4t + 3, y = 4t + 8 + \frac{5}{2t}$	
	$\frac{dx}{dt} = 4, \frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$ Both $\frac{dx}{dt} = 4$ or $\frac{dt}{dx} = \frac{1}{4}$ and $\frac{dy}{dt} = 4 - \frac{5}{2}t^{-2}$	B1
	So, $\frac{dy}{dx} = \frac{4 - \frac{5}{2}t^{-2}}{4} \left\{ = 1 - \frac{5}{8}t^{-2} = 1 - \frac{5}{8t^2} \right\}$ Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$	M1 o.e.
	{When $t = 2$, } $\frac{dy}{dx} = \frac{27}{32}$ $\frac{27}{32}$ or 0.84375 cao	A1
	Way 2. Contaging Mathed	[:
	Way 2: Cartesian Method $\frac{dy}{dx} = 1 - \frac{10}{(x-3)^2}$, simplified or un-simplified.	B1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 - \frac{10}{(x-3)^2} \qquad \qquad$	M1
	{When $t = 2, x = 11$ } $\frac{dy}{dx} = \frac{27}{32}$ $\frac{27}{32}$ or 0.84375 cao	A1
	Way 2: Contagion Mathad	[.
	Way 3: Cartesian Method $\frac{dy}{dx} = \frac{(2x+2)(x-3) - (x^2 + 2x - 5)}{(x-3)^2}$ Correct expression for $\frac{dy}{dx}$, simplified or un-simplified.	B1
	$\left\{ = \frac{x^2 - 6x - 1}{(x - 3)^2} \right\} \qquad $	M1
	$\left\{\text{When } t = 2, x = 11\right\} \frac{dy}{dx} = \frac{27}{32} \qquad \qquad \frac{27}{32} \text{ or } 0.84375 \text{ cao}$	A1
		[3
(b)	$\left\{ t = \frac{x-3}{4} \Rightarrow \right\} \ y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates <i>t</i> to achieve an equation in only <i>x</i> and <i>y</i>	M1
	$y = x - 3 + 8 + \frac{10}{x - 3}$	
	$y = \frac{(x-3)(x-3) + 8(x-3) + 10}{x-3} or y(x-3) = (x-3)(x-3) + 8(x-3) + 10$ or $y = \frac{(x+5)(x-3) + 10}{x-3} or y = \frac{(x+5)(x-3)}{x-3} + \frac{10}{x-3}$ See notes	dM1
	Correct algebra leading to	
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3}, \ \{a = 2 \text{ and } b = -5\} \qquad \qquad y = \frac{x^2 + 2x - 5}{x - 3} \text{ or } a = 2 \text{ and } b = -5$	A1 cso
		[.

Question Number	Scheme	Marks
5. (b)	Alternative Method 1 of Equating Coefficients	
	$y = \frac{x^2 + ax + b}{x - 3} \implies y(x - 3) = x^2 + ax + b$	
	$y(x-3) = (4t+3)^2 + 2(4t+3) - 5 = 16t^2 + 32t + 10$	
	$x^{2} + ax + b = (4t + 3)^{2} + a(4t + 3) + b$	
	$(4t+3)^{2} + a(4t+3) + b = 16t^{2} + 32t + 10$ Correct method of obtaining an equation in only <i>t</i> , <i>a</i> and <i>b</i>	N/L I
	t: $24+4a=32 \implies a=2$ finds both $a=$ and $b=$	
	constant: $9 + 3a + b = 10 \implies b = -5$ a = 2 and b = -5	A1
		[3]
5. (b)	Alternative Method 2 of Equating Coefficients	
l	$\left\{t = \frac{x-3}{4} \Rightarrow\right\} y = 4\left(\frac{x-3}{4}\right) + 8 + \frac{5}{2\left(\frac{x-3}{4}\right)}$ Eliminates <i>t</i> to achieve an equation in only <i>x</i> and <i>y</i>	MI
	$y = x - 3 + 8 + \frac{10}{x - 3} \Rightarrow y = x + 5 + \frac{10}{(x - 3)}$	
	$\underline{y(x-3)} = (x+5)(x-3) + 10 \implies x^2 + ax + b = \underline{(x+5)(x-3) + 10}$	dM1
	$x^{2} + 2x - 5$ or equating coefficients to Correct algebra leading to	
	$\Rightarrow y = \frac{x^2 + 2x - 5}{x - 3} \qquad \text{or equating coefficients to} \\ \text{give } a = 2 \text{ and } b = -5 \qquad y = \frac{x^2 + 2x - 5}{x - 3} \text{ or } a = 2 \text{ and } b = -5$	A1 cso
		[3]

		Question 5 Notes
5. (a)	B1	$\frac{dx}{dt} = 4 \text{ and } \frac{dy}{dt} = 4 - \frac{5}{2}t^{-2} \text{ or } \frac{dy}{dt} = \frac{8t^2 - 5}{2t^2} \text{ or } \frac{dy}{dt} = 4 - 5(2t)^{-2}(2), \text{ etc.}$
	Note	$\frac{dy}{dt}$ can be simplified or un-simplified.
	Note	You can imply the B1 mark by later working.
	M1	Candidate's $\frac{dy}{dt}$ divided by a candidate's $\frac{dx}{dt}$ or $\frac{dy}{dt}$ multiplied by a candidate's $\frac{dt}{dx}$
	Note	M1 can be also be obtained by substituting $t = 2$ into both their $\frac{dy}{dt}$ and their $\frac{dx}{dt}$ and then
		dividing their values the correct way round.
	A1	$\frac{27}{32}$ or 0.84375 cao
(b)	<u>M1</u>	Eliminates <i>t</i> to achieve an equation in only <i>x</i> and <i>y</i> .
	dM1	dependent on the first method mark being awarded.
		Either: (ignoring sign slips or constant slips, noting that k can be 1)
		• Combining all three parts of their $\underline{x-3} + \overline{\overline{8}} + (\underline{10})$ to form a single fraction with a
		common denominator of $\pm k(x-3)$. Accept three separate fractions with the same denominator.
		• Combining both parts of their $\underline{x+5} + (\underline{\frac{10}{x-3}})$, (where $\underline{x+5}$ is their $4(\underline{x-3}) + 8$),
		to form a single fraction with a common denominator of $\pm k(x-3)$. Accept two separate fractions with the same denominator.
		• Multiplies both sides of their $y = \underline{x-3} + \overline{8} + (\underline{10})$ or their $y = \underline{x+5} + (\underline{10})$ by
	Note	$\pm k(x-3)$. Note that all terms in their equation must be multiplied by $\pm k(x-3)$. Condone "invisible" brackets for dM1.
	A1	Correct algebra with no incorrect working leading to $y = \frac{x^2 + 2x - 5}{x - 3}$ or $a = 2$ and $b = -5$
	Note	Some examples for the award of dM1 in (b):
		dM0 for $y = x - 3 + 8 + \frac{10}{x - 3} \rightarrow y = \frac{(x - 3)(x - 3) + 8 + 10}{x - 3}$. Should be+8(x - 3) +
		dM0 for $y = x - 3 + \frac{10}{x - 3} \rightarrow y = \frac{(x - 3)(x - 3) + 10}{x - 3}$. The "8" part has been omitted.
		dM0 for $y = x + 5 + \frac{10}{x - 3} \rightarrow y = \frac{x(x - 3) + 5 + 10}{x - 3}$. Should be + 5(x - 3) +
		dM0 for $y = x + 5 + \frac{10}{x - 3} \rightarrow y(x - 3) = x(x - 3) + 5(x - 3) + 10(x - 3)$. Should be just 10.
	Note	$y = x + 5 + \frac{10}{x - 3} \rightarrow y = \frac{x^2 + 2x - 5}{x - 3}$ with no intermediate working is dM1A1.

6666

Question Number	Scheme	Marks
6. (a)	$A = \int_0^3 \sqrt{(3-x)(x+1)} \mathrm{d}x \ , \ x = 1 + 2\sin\theta$	
	$\frac{dx}{d\theta} = 2\cos\theta \qquad \qquad \frac{dx}{d\theta} = 2\cos\theta \text{ or } 2\cos\theta \text{ used correctly} \\ \text{in their working. Can be implied}$	
	$\left\{ \int \sqrt{(3-x)(x+1)} \mathrm{d}x \mathrm{or} \int \sqrt{(3+2x-x^2)} \mathrm{d}x \right\}$	
	$= \int \sqrt{(3 - (1 + 2\sin\theta))((1 + 2\sin\theta) + 1)} 2\cos\theta \{d\theta\}$ Substitutes for both x and dx where $dx \neq \lambda d\theta$. Ignore $d\theta$	M1
	$= \int \sqrt{(2 - 2\sin\theta)(2 + 2\sin\theta)} \ 2\cos\theta \left\{ d\theta \right\}$ $= \int \sqrt{(4 - 4\sin^2\theta)} \ 2\cos\theta \left\{ d\theta \right\}$	
	$= \int \sqrt{\left(4 - 4(1 - \cos^2 \theta)\right)} 2\cos \theta \left\{ d\theta \right\} \text{ or } \int \sqrt{4\cos^2 \theta} 2\cos \theta \left\{ d\theta \right\} $ Applies $\cos^2 \theta = 1 - \sin^2 \theta$ see note	IVI I
	$= 4 \int \cos^2 \theta d\theta, \ \{k = 4\}$ $4 \int \cos^2 \theta d\theta \text{ or } \int 4 \cos^2 \theta d\theta$ Note: $d\theta$ is required here	AI
	$0 = 1 + 2\sin\theta \text{ or } -1 = 2\sin\theta \text{ or } \sin\theta = -\frac{1}{2} \Rightarrow \frac{\theta = -\frac{\pi}{6}}{6}$ and $3 = 1 + 2\sin\theta$ or $2 = 2\sin\theta$ or $\sin\theta = 1 \Rightarrow \frac{\theta = \frac{\pi}{2}}{2}$ See note	s B1
(b)	$\left\{k\int\cos^2\theta\left\{\mathrm{d}\theta\right\}\right\} = \left\{k\right\}\int\left(\frac{1+\cos 2\theta}{2}\right)\left\{\mathrm{d}\theta\right\}$ Applies $\cos 2\theta = 2\cos^2\theta - 1$ to their integra	N/L I
	$= \left\{k\right\} \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right)$ Integrates to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0, \beta \neq 0$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$	1,111
	$\left\{ \operatorname{So} 4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta \mathrm{d}\theta = \left[2\theta + \sin 2\theta \right]_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \right\}$	
	$= \left(2\left(\frac{\pi}{2}\right) + \sin\left(\frac{2\pi}{2}\right)\right) - \left(2\left(-\frac{\pi}{6}\right) + \sin\left(-\frac{2\pi}{6}\right)\right)$	
	$\left\{ = \left(\pi\right) - \left(-\frac{\pi}{3} - \frac{\sqrt{3}}{2}\right) \right\} = \frac{4\pi}{3} + \frac{\sqrt{3}}{2} \qquad \qquad$	A1 cao cso
		[3]

		Question 6 Notes
6. (a)	B1	$\frac{dx}{d\theta} = 2\cos\theta$. Also allow $dx = 2\cos\theta d\theta$. This mark can be implied by later working.
	Note	$d\theta$ You can give B1 for $2\cos\theta$ used correctly in their working.
	M1	Substitutes $x = 1 + 2\sin\theta$ and their $dx \left(\text{from their rearranged} \frac{dx}{d\theta} \right)$ into $\sqrt{(3-x)(x+1)} dx$.
	Note Note	Condone bracketing errors here. $dx \neq \lambda d\theta$. For example $dx \neq d\theta$.
	Note	Condone substituting $dx = \cos\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 2\cos\theta$ or $dx = 2\cos\theta d\theta$
	M1	Applies either • $1 - \sin^2 \theta = \cos^2 \theta$ • $\lambda - \lambda \sin^2 \theta$ or $\lambda(1 - \sin^2 \theta) = \lambda \cos^2 \theta$ • $4 - 4\sin^2 \theta = 4 + 2\cos 2\theta - 2 = 2 + 2\cos 2\theta = 4\cos^2 \theta$ to their expression where λ is a numerical value.
	A1	Correctly proves that $\int \sqrt{(3-x)(x+1)} dx$ is equal to $4 \int \cos^2 \theta d\theta$ or $\int 4\cos^2 \theta d\theta$
	Note Note	All three previous marks must have been awarded before A1 can be awarded. Their final answer must include $d\theta$.
	Note B1	You can ignore limits for the final A1 mark.
		Evidence of a correct equation in $\sin \theta$ or $\sin^{-1} \theta$ for both <i>x</i> -values leading to both θ values. Eg: • $0 = 1 + 2\sin\theta$ or $-1 = 2\sin\theta$ or $\sin\theta = -\frac{1}{2}$ which then leads to $\theta = -\frac{\pi}{6}$, and
		• $3 = 1 + 2\sin\theta$ or $2 = 2\sin\theta$ or $\sin\theta = 1$ which then leads to $\theta = \frac{\pi}{2}$
	Note	Allow B1 for $x = 1 + 2\sin\left(-\frac{\pi}{6}\right) = 0$ and $x = 1 + 2\sin\left(\frac{\pi}{2}\right) = 3$
	Note	Allow B1 for $\sin \theta = \left(\frac{x-1}{2}\right)$ or $\theta = \sin^{-1}\left(\frac{x-1}{2}\right)$ followed by $x = 0, \ \theta = -\frac{\pi}{6}; \ x = 3, \ \theta = \frac{\pi}{2}$
(b)	NOTE	Part (b) appears as M1A1A1 on ePEN, but is now marked as M1M1A1.
	M1	Writes down a correct equation involving $\cos 2\theta$ and $\cos^2 \theta$ Eg: $\cos 2\theta = 2\cos^2 \theta - 1$ or $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$ or $\lambda \cos^2 \theta = \lambda \left(\frac{1 + \cos 2\theta}{2}\right)$
	M1 A1	and <i>applies</i> it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral. Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$, $\alpha \neq 0$, $\beta \neq 0$ (can be simplified or un-simplified). A <i>correct solution in part (b)</i> leading to a "two term" exact answer.
	Note Note	Eg: $\frac{4\pi}{3} + \frac{\sqrt{3}}{2}$ or $\frac{8\pi}{6} + \frac{\sqrt{3}}{2}$ or $\frac{1}{6}(8\pi + 3\sqrt{3})$ 5.054815 from no working is M0M0A0. Candidates can work in terms of <i>k</i> (note that <i>k</i> is not given in (a)) for the M1M1 marks in part (b).
	Note	If they incorrectly obtain $4 \int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} \cos^2 \theta d\theta$ in part (a) (or guess $k = 4$) then the final A1 is available
		for a correct solution in part (b) only.

(3)

6666 Leave

blank

7. (a) Express $\frac{2}{P(P-2)}$ in partial fractions.

A team of biologists is studying a population of a particular species of animal.

The population is modelled by the differential equation

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{2}P(P-2)\cos 2t, \ t \ge 0$$

where P is the population in thousands, and t is the time measured in years since the start of the study.

Given that P = 3 when t = 0,

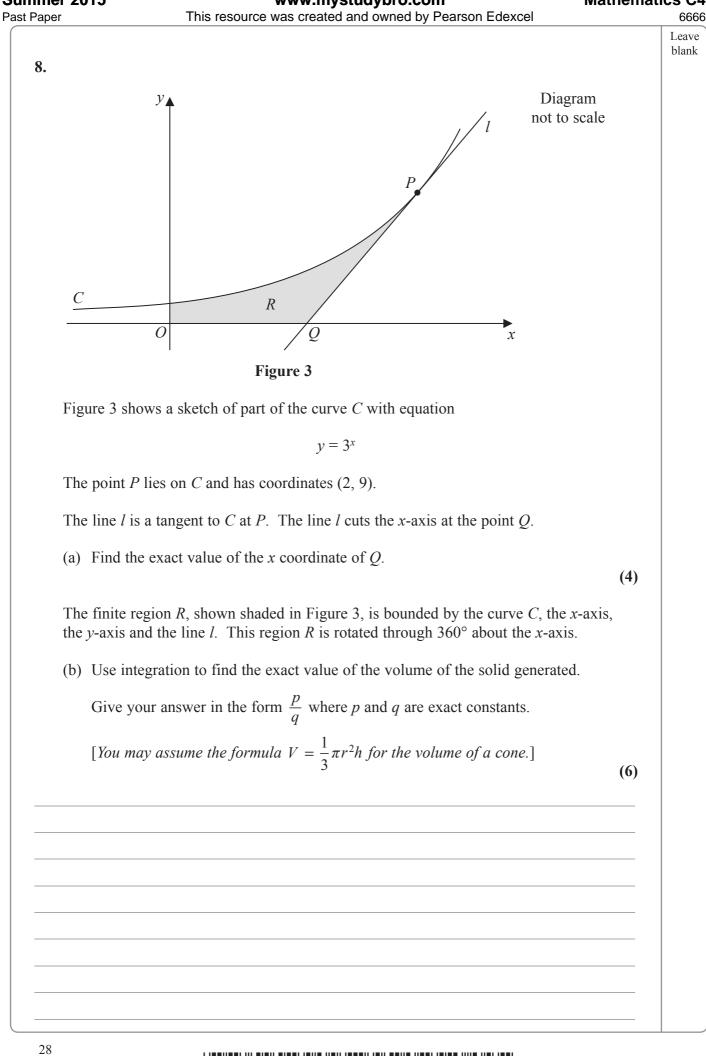
(b) solve this differential equation to show that

$$P = \frac{6}{3 - \mathrm{e}^{\frac{1}{2}\mathrm{sin}\,2t}}$$

(7)

(c) find the time taken for the population to reach 4000 for the first time. Give your answer in years to 3 significant figures.

(3)



Question Number	Scheme	Marks
7. (a)	$\frac{2}{P(P-2)} = \frac{A}{P} + \frac{B}{(P-2)}$	
	$2 \equiv A(P-2) + BP$ Can be implied.	M1
	A = -1, B = 1 Either one.	A1
	giving $\frac{1}{(P-2)} - \frac{1}{P}$ See notes. cao, aef	A1
(b)	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{2}P(P-2)\cos 2t$	[3
	$\int \frac{2}{P(P-2)} dP = \int \cos 2t dt \qquad \text{can be implied by later working}$	B1 oe
	$\pm \lambda \ln(P-2) \pm \mu \ln P,$ $\ln(P-2) - \ln P = \frac{1}{2} \sin 2t \ (+c)$ $\lambda \neq 0, \ \mu \neq 0$	M1
	$\ln (P-2) - \ln P = \frac{1}{2} \sin 2t$	A1
	$\left\{t = 0, P = 3 \Longrightarrow\right\} \ln 1 - \ln 3 = 0 + c \left\{\Rightarrow \ c = -\ln 3 \text{ or } \ln(\frac{1}{3})\right\}$ See notes	M1
	$\ln (P-2) - \ln P = \frac{1}{2} \sin 2t - \ln 3$ $\ln \left(\frac{3(P-2)}{P}\right) = \frac{1}{2} \sin 2t$	
	Starting from an equation of the form $ \frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} $ $ \frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} $ $ \lambda, \mu, \beta, K, \delta \neq 0, \text{ applies a fully correct method to eliminate their logarithms.} $ Must have a constant of integration that need not be evaluated (see note)	M1
	$3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P - 6 = Pe^{\frac{1}{2}\sin 2t}$ A complete method of rearranging to make P the subject. Since $3P - Pe^{\frac{1}{2}\sin 2t} = 6 \Rightarrow P(3 - e^{\frac{1}{2}\sin 2t}) = 6$ Must have a constant of integration	dM1
	$P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})} *$ that need not be evaluated (see note) Correct proof.	A1 * csc
(c)	{population = $4000 \Rightarrow$ } $P = 4$ States $P = 4$ or applies $P = 4$	[7] M1
	$\frac{1}{2}\sin 2t = \ln\left(\frac{3(4-2)}{4}\right) \left\{ = \ln\left(\frac{3}{2}\right) \right\}$ Obtains $\pm \lambda \sin 2t = \ln k$ or $\pm \lambda \sin t = \ln k$, $\lambda \neq 0, k > 0$ where λ and k are numerical values and λ can be 1	M1
	t = 0.4728700467 anything that rounds to 0.473 Do not apply isw here	
		[3] 13

Question Number		Scheme		Marks
	Method	<u>2 for Q7(b)</u>		
7. (b)	ln (F	$P-2) - \ln P = \frac{1}{2}\sin 2t (+c)$	As before for	B1M1A1
	lr	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c$		
	$\frac{(P-1)}{P}$	$\frac{2}{2} = e^{\frac{1}{2}\sin 2t + c}$ or $\frac{(P-2)}{P} = Ae^{\frac{1}{2}\sin 2t}$	Starting from an equation of the form $\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + c$, $\lambda, \mu, \beta, K, \delta \neq 0$, applies a fully correct method to eliminate their logarithms. Must have a constant of integration that need not be evaluated (see note)	3 rd M1
		$= APe^{\frac{1}{2}\sin 2t} \Rightarrow P - APe^{\frac{1}{2}\sin 2t} = 2$ $- Ae^{\frac{1}{2}\sin 2t} = 2 \Rightarrow P = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2t})}$	A complete method of rearranging to make P the subject. Condone sign slips or constant errors. Must have a constant of integration that need not be evaluated (see note)	4 th dM1
	${t=0, I}$	$P = 3 \Longrightarrow$ $3 = \frac{2}{(1 - Ae^{\frac{1}{2}\sin 2(0)})}$	See notes (Allocate this mark as the 2 nd M1 mark on ePEN).	2 nd M1
	$\left\{ \Rightarrow 3 = \right.$	$= \frac{2}{(1-A)} \Longrightarrow A = \frac{1}{3}$		
	$\Rightarrow P =$	$\frac{2}{\left(1-\frac{1}{3}e^{\frac{1}{2}\sin 2t}\right)} \Rightarrow P = \frac{6}{(3-e^{\frac{1}{2}\sin 2t})} *$	Correct proof.	A1 * cso
		Questi	on 7 Notes	
7. (a)	M1	Forming a correct identity. For example,	$2 \equiv A(P-2) + BP$ from $\frac{2}{P(P-2)} = \frac{A}{P} +$	$\frac{B}{(P-2)}$
	Note A1	A and B are not referred to in question. Either one of $A = -1$ or $B = 1$.		
	A1	$\frac{1}{(P-2)} - \frac{1}{P}$ or any equivalent form. The	nis answer <i>cannot</i> be recovered from part (b).
	Note		we who finds both $A = -1$ and $B = 1$ and $\frac{A}{P}$	
		is seen in their working.		
	Note	Candidates can use 'cover-up' rule to write	te down $\frac{1}{(P-2)} - \frac{1}{P}$, so as to gain all thre	e marks.
	Note		+ <i>BP</i> gives $A + B = 2, -2A = 2 \Longrightarrow A = -1,$	

7 (h)	D1	Concretes veriables as shown on the Mark Scheme Joand dt should be in the correct positions				
7. (b)	B1	Separates variables as shown on the Mark Scheme. dP and dt should be in the correct positions, though this mark can be implied by later working. Ignore the integral signs.				
	Note	Eg: $\int \frac{2}{P^2 - 2P} dP = \int \cos 2t dt \text{or} \int \frac{1}{P(P-2)} dP = \frac{1}{2} \int \cos 2t dt \text{ o.e. are also fine for B1.}$				
	1 st M1	$\pm \lambda \ln(P-2) \pm \mu \ln P, \ \lambda \neq 0, \ \mu \neq 0.$ Also allow $\pm \lambda \ln(M(P-2)) \pm \mu \ln NP; \ M, N$ can be 1.				
	Note	Condone $2\ln(P-2) + 2\ln P$ or $2\ln(P(P-2))$ or $2\ln(P^2 - 2P)$ or $\ln(P^2 - 2P)$				
	1 st A1 Correct result of $\ln(P-2) - \ln P = \frac{1}{2}\sin 2t$ or $2\ln(P-2) - 2\ln P = \sin 2t$					
		o.e. with or without $+c$				
	2 nd M1	Some evidence of using both $t = 0$ and $P = 3$ in an integrated equation containing a constant of integration. Eq: <i>c</i> or <i>A</i> , etc.				
	3 rd M1	Starting from an equation of the form $\pm \lambda \ln(P - \beta) \pm \mu \ln P = \pm K \sin \delta t + c$, $\lambda, \mu, \beta, K, \delta \neq 0$,				
	4 th M1	applies a fully correct method to eliminate their logarithms. dependent on the third method mark being awarded.				
		A complete method of rearranging to make <i>P</i> the subject. Condone sign slips or constant errors.				
	Note	For the 3^{rd} M1 and 4^{th} M1 marks, a candidate needs to have included a constant of integration, in their working. eg. <i>c</i> , <i>A</i> , ln <i>A</i> or an evaluated constant of integration.				
	2 nd A1	Correct proof of $P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$. Note: This answer is given in the question.				
	Note	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \text{ followed by } \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^c \text{ is } 3^{\text{rd}} \text{ M0, } 4^{\text{th}} \text{ M0, } 2^{\text{rd}} \text{ A0.}$				
	Note	$\ln\left(\frac{(P-2)}{P}\right) = \frac{1}{2}\sin 2t + c \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t + c} \rightarrow \frac{(P-2)}{P} = e^{\frac{1}{2}\sin 2t} + e^{c} \text{ is final M1M0A0}$				
	4 th M1 for making <i>P</i> the subject					
	Note there are three type of manipulations here which are considered acceptable for making <i>P</i> the subject.					
		for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3(P-2) = Pe^{\frac{1}{2}\sin 2t} \Rightarrow 3P-6 = Pe^{\frac{1}{2}\sin 2t} \Rightarrow P(3-e^{\frac{1}{2}\sin 2t}) = 6$				
	$\Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$					
	(2) M1	for $\frac{3(P-2)}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - \frac{6}{P} = e^{\frac{1}{2}\sin 2t} \Rightarrow 3 - e^{\frac{1}{2}\sin 2t} = \frac{6}{P} \Rightarrow P = \frac{6}{(3 - e^{\frac{1}{2}\sin 2t})}$				
	(3) M1	for $\left\{ \ln(P-2) + \ln P = \frac{1}{2} \sin 2t + \ln 3 \Rightarrow \right\} P(P-2) = 3e^{\frac{1}{2}\sin 2t} \Rightarrow P^2 - 2P = 3e^{\frac{1}{2}\sin 2t}$				
		$\Rightarrow (P-1)^2 - 1 = 3e^{\frac{1}{2}\sin 2t}$ leading to $P =$				
(c)	M1	States $P = 4$ or applies $P = 4$				
	M1	Obtains $\pm \lambda \sin 2t = \ln k$ or $\pm \lambda \sin t = \ln k$, where λ and k are numerical values and λ can be 1				
	A1	anything that rounds to 0.473. (Do not apply isw here)				
	Note	Do not apply ignore subsequent working for A1. (Eg: 0.473 followed by 473 years is A0.)				
	Note	<u>Use of $P = 4000$</u> : Without the mention of $P = 4$, $\frac{1}{2}\sin 2t = \ln 2.9985$ or $\sin 2t = 2\ln 2.9985$				
		or $\sin 2t = 2.1912$ will usually imply M0M1A0				
	Note	<u>Use of Degrees:</u> $t = awrt 27.1$ will usually imply M1M1A0				

Question Number	Scheme	Marks
8. (a)	$\left\{y = 3^x \Longrightarrow\right\} \frac{dy}{dx} = 3^x \ln 3 \qquad \qquad \frac{dy}{dx} = 3^x \ln 3 \text{ or } \ln 3\left(e^{x\ln 3}\right) \text{ or } y\ln 3$	B1
	Either T : $y - 9 = 3^2 \ln 3(x - 2)$	
	or T: $y = (3^2 \ln 3)x + 9 - 18 \ln 3$, where $9 = (3^2 \ln 3)(2) + c$ See notes	M1
	$\{\text{Cuts } x\text{-axis} \Rightarrow y = 0 \Rightarrow \}$	
	$-9 = 9 \ln 3(x-2)$ or $0 = (3^2 \ln 3)x + 9 - 18 \ln 3$, Sets $y = 0$ in their tangent equation and progresses to $x =$	M1
	So, $x = 2 - \frac{1}{\ln 3}$ or $\frac{2\ln 3 - 1}{\ln 3}$ o.e.	A1 cso
		[4
(b)	$V = \pi \int (3^x)^2 \{ dx \} \text{ or } \pi \int 3^{2x} \{ dx \} \text{ or } \pi \int 9^x \{ dx \} \qquad \qquad V = \pi \int (3^x)^2 \text{ with or without } dx,$	B1 o.e.
	which can be implied	
	Eg: either $3^{2x} \rightarrow \frac{3^{2x}}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3)3^{2x}$	M1
	$= \left\{\pi\right\} \left(\frac{3^{2x}}{2\ln 3}\right) \text{or} = \left\{\pi\right\} \left(\frac{9^x}{\ln 9}\right) \text{or} 9^x \to \frac{9^x}{\pm \alpha (\ln 9)} \text{ or } \pm \alpha (\ln 9)9^x, \ \underline{\alpha \in \mathbb{C}}$	
	$3^{2x} \to \frac{3^{2x}}{2\ln 3}$ or $9^x \to \frac{9^x}{\ln 9}$ or $e^{2x\ln 3} \to \frac{1}{2\ln 3} (e^{2x\ln 3})$	A1 o.e.
	$\begin{cases} V = \pi \int_0^2 3^{2x} dx = \left\{\pi\right\} \left[\frac{3^{2x}}{2\ln 3}\right]_0^2 \\ = \left\{\pi\right\} \left(\frac{3^4}{2\ln 3} - \frac{1}{2\ln 3}\right) \\ = \left\{\pi\right\} \left(\frac{3^4}{2\ln 3} - \frac{1}{2\ln 3}\right) \\ = \left\{\frac{40\pi}{\ln 3}\right\} \end{cases}$ Dependent on the previous method mark. Substitutes $x = 2$ and $x = 0$ and subtracts the correct way round.	dM1
	$V_{\text{cone}} = \frac{1}{3}\pi(9)^2 \left(\frac{1}{\ln 3}\right) \left\{ = \frac{27\pi}{\ln 3} \right\}$ $V_{\text{cone}} = \frac{1}{3}\pi(9)^2 \left(2 - \text{their } (a)\right). \text{ See notes.}$	B1ft
	$\left\{ \text{Vol}(S) = \frac{40\pi}{\ln 3} - \frac{27\pi}{\ln 3} \right\} = \frac{13\pi}{\ln 3}$ $\frac{13\pi}{\ln 3} \text{ or } \frac{26\pi}{\ln 9} \text{ or } \frac{26\pi}{2\ln 3} \text{ etc., isw}$	A1 o.e.
	$\left\{ \text{Eg: } p = 13\pi, \ q = \ln 3 \right\}$	[6
		1
(b)	Alternative Method 1: Use of a substitution $\int (ax)^2 (x)^2$	
	$V = \pi \int \left(3^x\right)^2 \left\{\mathrm{d}x\right\}$	B1 o.e.
	$\left\{ u = 3^x \Longrightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 3^x \ln 3 = u \ln 3 \right\} V = \left\{ \pi \right\} \int \frac{u^2}{u \ln 3} \left\{ \mathrm{d}u \right\} = \left\{ \pi \right\} \int \frac{u}{\ln 3} \left\{ \mathrm{d}u \right\}$	
	$= \left\{\pi\right\} \left(\frac{u^2}{2\ln 3}\right) \qquad \qquad$	M1
	$= \{\pi\} \left(\frac{1}{2\ln 3}\right) \qquad \qquad$	A1
	$\left\{ V = \pi \int_{0}^{2} (3^{x})^{2} dx = \left\{\pi\right\} \left[\frac{u^{2}}{2\ln 3}\right]_{1}^{9} \right\} = \left\{\pi\right\} \left(\frac{9^{2}}{2\ln 3} - \frac{1}{2\ln 3}\right) \left\{=\frac{40\pi}{\ln 3}\right\}$ Substitutes limits of 9 and 1 in <i>u</i> (or 2 and 0 in <i>x</i>) and subtracts the correct way round.	dM1
-	then apply the main scheme.	

		Question 8 Notes
8. (a)	B 1	$\frac{dy}{dx} = 3^x \ln 3$ or $\ln 3(e^{x \ln 3})$ or $y \ln 3$. Can be implied by later working.
	M1	Substitutes either $x = 2$ or $y = 9$ into their $\frac{dy}{dx}$ which is a function of x or y to find m_T and
		• either applies $y - 9 = (\text{their } m_T)(x - 2)$, where m_T is a numerical value.
		• or applies $y = (\text{their } m_T)x + \text{their } c$, where m_T is a numerical value and c is found
		by solving $9 = (\text{their } m_T)(2) + c$
	Note	The first M1 mark can be implied from later working.
	M1	Sets $y = 0$ in their <i>tangent</i> equation, where m_T is a numerical value, (seen or implied)
		and progresses to $x = \dots$
	A1	An exact value of $2 - \frac{1}{\ln 3}$ or $\frac{2\ln 3 - 1}{\ln 3}$ or $\frac{\ln 9 - 1}{\ln 3}$ by a correct solution only.
	Note	Allow A1 for $2 - \frac{\lambda}{\lambda \ln 3}$ or $\frac{\lambda(2\ln 3 - 1)}{\lambda \ln 3}$ or $\frac{\lambda(\ln 9 - 1)}{\lambda \ln 3}$ or $2 - \frac{\lambda}{\lambda \ln 3}$, where λ is an integer, and ignore subsequent working.
	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$) is M0 M0 in part (a).
	Note	Candidates who invent a value for m_{τ} (which bears no resemblance to their gradient function)
		cannot gain the 1^{st} M1 and 2^{nd} M1 mark in part (a).
9 (b)	Note D1	A decimal answer of 1.089760773 (without a correct exact answer) is A0.
8. (b)	B1	A correct expression for the volume with or without dx
	Note	Eg: Allow B1 for $\pi \int (3^x)^2 \{ dx \}$ or $\pi \int 3^{2x} \{ dx \}$ or $\pi \int 9^x \{ dx \}$ or $\pi \int (e^{x \ln 3})^2 \{ dx \}$
		or $\pi \int (e^{2x \ln 3}) \{ dx \}$ or $\pi \int e^{x \ln 9} \{ dx \}$ with or without dx
	M1	Either $3^{2x} \rightarrow \frac{3^{2x}}{\pm \alpha (\ln 3)}$ or $\pm \alpha (\ln 3) 3^{2x}$ or $9^x \rightarrow \frac{9^x}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9) 9^x$
		$e^{2x\ln 3} \rightarrow \frac{e^{2x\ln 3}}{\pm \alpha(\ln 3)}$ or $\pm \alpha(\ln 3)e^{2x\ln 3}$ or $e^{x\ln 9} \rightarrow \frac{e^{x\ln 9}}{\pm \alpha(\ln 9)}$ or $\pm \alpha(\ln 9)e^{x\ln 9}$, etc where $\alpha \in \mathbb{C}$
	Note	$3^{2x} \rightarrow \frac{3^{2x+1}}{\pm \alpha (\ln 3)}$ or $9^x \rightarrow \frac{9^{x+1}}{\pm \alpha (\ln 3)}$ are allowed for M1
	Note	$3^{2x} \to \frac{3^{2x+1}}{2x+1}$ or $9^x \to \frac{9^{x+1}}{x+1}$ are both M0
	Note	M1 can be given for $9^{2x} \rightarrow \frac{9^{2x}}{\pm \alpha (\ln 9)}$ or $\pm \alpha (\ln 9)9^{2x}$
	A1	Correct integration of 3^{2x} . Eg: $3^{2x} \rightarrow \frac{3^{2x}}{2\ln 3}$ or $\frac{3^{2x}}{\ln 9}$ or $9^x \rightarrow \frac{9^x}{\ln 9}$ or $e^{2x\ln 3} \rightarrow \frac{1}{2\ln 3} (e^{2x\ln 3})$
	dM1	dependent on the previous method mark being awarded.
	NT -	Attempts to apply $x = 2$ and $x = 0$ to integrated expression and subtracts the correct way round.
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0.

		т		
	dM1	dependent on the previous method mark being awarded.		
	N-4-	Attempts to apply $x = 2$ and $x = 0$ to integrated expression and subtracts the correct way round.		
	Note	Evidence of a proper consideration of the limit of 0 is needed for M1. So subtracting 0 is M0. 1		
	B1ft $V_{\text{cone}} = \frac{1}{3}\pi (9)^2 (2 - \text{their answer to part } (a)).$			
	Sight of $\frac{27\pi}{\ln 3}$ implies the B1 mark.			
	Note	ln 3 Alternatively they can apply the volume formula to the line segment. They need to achieve the result highlighted by **** on either page 29 or page 30 in order to obtain the B1ft mark.		
	A1	$\frac{13\pi}{\ln 3}$ or $\frac{26\pi}{\ln 9}$ or $\frac{26\pi}{2\ln 3}$, etc., where their answer is in the form $\frac{p}{q}$		
	Note Note	The π in the volume formula is only needed for the 1 st B1 mark and the final A1 mark. A decimal answer of 37.17481128 (without a correct exact answer) is A0.		
	Note	A candidate who applies $\int 3^x dx$ will either get B0 M0 A0 M0 B0 A0 or B0 M0 A0 M0 B1 A0		
	Note	$\pi \int 3^{x^2} dx$ unless recovered is B0.		
	Note	Be careful! A correct answer may follow from incorrect working		
		$V = \pi \int_0^2 3^{x^2} dx - \frac{1}{3} \pi (9)^2 \left(\frac{1}{\ln 3}\right) = \pi \left[\frac{3^{x^2}}{2\ln 3}\right]_0^2 - \frac{27\pi}{\ln 3} = \frac{\pi 3^4}{2\ln 3} - \frac{\pi}{2\ln 3} - \frac{27\pi}{\ln 3} = \frac{13\pi}{\ln 3}$		
		would score B0 M0 A0 dM0 M1 A0.		
8. (b)	2nd B1ft	mark for finding the Volume of a Cone		
	$V_{\rm cone} = \pi$	$\int_{2-\frac{1}{\ln 3}}^{2} (9x \ln 3 - 18 \ln 3 + 9)^2 dx$		
	$=\pi$	$\left[\frac{\left(9x\ln 3 - 18\ln 3 + 9\right)^3}{27\ln 3}\right]_{2-\frac{1}{\ln 3} \text{ or their part (a) answer}}^2 **** \qquad \text{Award B1ft here where their lower limit is } 2 - \frac{1}{\ln 3} \text{ or their part (a) answer.}$		
	= π	$\left(\left(\frac{\left(18\ln 3 - 18\ln 3 + 9\right)^{3}}{27\ln 3}\right) - \left(\frac{\left(9\left(2 - \frac{1}{\ln 3}\right)\ln 3 - 18\ln 3 + 9\right)^{3}}{27\ln 3}\right)\right)$		
		$\left(\left(\frac{729}{27\ln 3}\right) - \left(\frac{\left(18\ln 3 - 9 - 18\ln 3 + 9\right)^3}{27\ln 3}\right)\right)$		
	$=\frac{27}{\mathrm{lr}}$	$\frac{7\pi}{13}$		

0 (1)	2 nd B1ft mark for finding the Volume of a Cone
8. (b)	Alternative method 2:
	$V_{\text{cone}} = \pi \int_{2-\frac{1}{\ln 3}}^{2} (9x \ln 3 - 18 \ln 3 + 9)^2 dx$
	$= \pi \int_{2-\frac{1}{\ln 3}}^{2} \left(81x^2 \left(\ln 3 \right)^2 - 324x \left(\ln 3 \right)^2 + 162x \ln 3 - 324 \ln 3 + 324 (\ln 3)^2 + 81 \right) dx$
	$=\pi \Big[27x^3 (\ln 3)^2 - 162x^2 (\ln 3)^2 + 81x^2 \ln 3 - 324x \ln 3 + 324x (\ln 3)^2 + 81x \Big]_{2-\frac{1}{\ln 3}}^2 $ Award B1ft here where their lower limit is $2 - \frac{1}{\ln 3}$
	**** or their part (a) answer.
	$\left(\left(216(\ln 3)^2 - 648(\ln 3)^2 + 324\ln 3 - 648\ln 3 + 648(\ln 3)^2 + 162\right)\right)$
	$= \pi \left[- \left(27 \left(2 - \frac{1}{\ln 3} \right)^3 (\ln 3)^2 - 162 \left(2 - \frac{1}{\ln 3} \right)^2 (\ln 3)^2 + 81 \left(2 - \frac{1}{\ln 3} \right)^2 \ln 3 \right) - 324 \left(2 - \frac{1}{\ln 3} \right) \ln 3 + 324 \left(2 - \frac{1}{\ln 3} \right) (\ln 3)^2 + 81 \left(2 - \frac{1}{\ln 3} \right) \right) \right]$
	$\left(-324 \left(2 - \frac{1}{\ln 3} \right) \ln 3 + 324 \left(2 - \frac{1}{\ln 3} \right) (\ln 3)^2 + 81 \left(2 - \frac{1}{\ln 3} \right) \right) \right)$
	$\left(27\left(8 - \frac{12}{\ln 3} + \frac{6}{(\ln 3)^2} - \frac{1}{(\ln 3)^3}\right)(\ln 3)^2 - 162\left(4 - \frac{4}{\ln 3} + \frac{1}{(\ln 3)^2}\right)(\ln 3)^2\right)\right)$
	$=\pi \left[\left(216(\ln 3)^2 - 324\ln 3 + 162 \right) - \right] + 81 \left(4 - \frac{4}{\ln 3} + \frac{1}{(\ln 3)^2} \right) \ln 3 - 324 \left(2 - \frac{1}{\ln 3} \right) \ln 3 - 324 \left(2 - \frac{1}{\ln 3} \right) \ln 3 - \frac{1}{\ln 3} \ln 3 + \frac{1}{\ln$
	$\left(+ 324 \left(2 - \frac{1}{\ln 3} \right) (\ln 3)^2 + 81 \left(2 - \frac{1}{\ln 3} \right) \right) \right)$
	$\left(216(\ln 3)^2 - 324\ln 3 + 162 - \frac{27}{\ln 3} - 648(\ln 3)^2 + 648\ln 3 - 162\right)\right)$
	$= \pi \left(216(\ln 3)^2 - 324\ln 3 + 162 \right) - \left(+324\ln 3 - 324 + \frac{81}{\ln 3} - 648\ln 3 + 324 \right)$
	$\left(+ 648(\ln 3)^2 - 324\ln 3 + 162 - \frac{81}{\ln 3} \right) \right)$
	$=\pi\left(\left(216(\ln 3)^2 - 324\ln 3 + 162\right) - \left(216(\ln 3)^2 - 324\ln 3 + 162 - \frac{27}{\ln 3}\right)\right)$
	$=\frac{27\pi}{\ln 3}$
	$-\frac{1}{\ln 3}$