-	_	-
6	666	6

Centre Number	Candidate Number
hematio	:s C4
orning es	Paper Reference 6666/01
	orning

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

Summer 2016

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4

Question		l owned b			
Number	Scheme			Notes	Mark
1.				Writes down	
T. Way 1	$\left\{\frac{1}{(2+5x)^3} = \right\} (2+5x)^{-3}$			$(2+5x)^{-3}$ or uses	M1
j				power of -3	
	$= \underline{(2)^{-3}} \left(1 + \frac{5x}{2} \right)^{-3} = \frac{1}{\underline{8}} \left(1 + \frac{5x}{2} \right)^{-3}$			$\underline{2^{-3}}$ or $\frac{1}{\underline{8}}$	<u>B1</u>
	$= \left\{\frac{1}{8}\right\} \left[1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)}{2!}(kx)^2$	$\frac{-4}{-4}(-5)$	$(x)^{3} + \dots$	see notes	M1 A1
	$= \left\{\frac{1}{8}\right\} \left[1 + (-3)\left(\frac{5x}{2}\right) + \frac{(-3)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-4)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-4)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-4)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-4)(-4)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + \frac{(-3)(-4)(-4)(-4)(-4)(-4)}{2!}\left(\frac{5x}{2}\right)^2 + (-3)(-4)(-4)(-4)(-4)(-4)(-4)(-4)(-4)(-4)(-4$	$\frac{(-4)(-5)}{3!}$	$\left(\frac{5x}{2}\right)^3 + \dots$		
	$= \frac{1}{8} \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$				
	$= \frac{1}{8} \left[1 - 7.5x + 37.5x^2 - 156.25x^3 + \dots \right]$				
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$				
	$-\frac{1}{8}-\frac{1}{16}x^{+}+\frac{1}{16}x^{-}-\frac{1}{32}x^{+}+\dots$				A1; A1
	or $\frac{1}{8} - \frac{15}{16}x; + 4\frac{11}{16}x^2 - 19\frac{17}{32}x^3 + \dots$,
			2		
Way 2	$f(x) = (2 + 5x)^{-3}$	Writes do		or uses power of -3	M1
	$f''(x) = 300(2+5x)^{-5}, f'''(x) = -7500(2+5x)^{-6}$		Corr	rect $f''(x)$ and $f'''(x)$	B1
	$S_{1}(.) = 15(25.)^{-4}$		<u>+</u>	$a(2+5x)^{-4}, a \neq \pm 1$	M1
	$f'(x) = -15(2+5x)^{-4}$			$-15(2+5x)^{-4}$	A1 oe
	$\left\{ \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = \frac{75}{8} \text{ and } f''''(0) = \frac{75}{8} \text{ and } f'''(0) = \frac{75}{8} \text{ and } f''''(0) = \frac{75}{8} \text{ and } f'''''(0) = \frac{75}{8} \text{ and } f''''''(0) = \frac{75}{8} \text{ and }$	$(0) = -\frac{187}{16}$	$\left \frac{75}{5} \right $		
	So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$			Same as in Way 1	A1; A1
Way 3	$(2+5x)^{-3}$			Same as in Way 1	M1
	$(2)^{-3} + (-2)(2)^{-4}(5) + (-3)(-4)(-2)(-5)(5) + (-3)(-4)(-5)(5) + (-3)(-5)(5)(-5)(5) + (-3)(-5)(5)(-5)(5)(-5)(5)(-5)(-5)(-5)(-5)(-$	-4)(-5)	-6(5.)3	Same as in Way 1	<u>B1</u>
	$= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^{2} + (-3)$	3! (2)	$(5x)^{-}$	Any two terms correct All four terms correct	M1 A1
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$			Same as in Way 1	A1; A1
	Note: Terms can be simplified or un			1 1 st A1	
	Note: The terms in C	need to be	evaluated		
	So ${}^{-3}C_0(2)^{-3} + {}^{-3}C_1(2)^{-4}(5x) + {}^{-3}C_1(2)^{-4}(5$				

		Question 1 Notes
1.	1 st M1	mark can be implied by a constant term of $(2)^{-3}$ or $\frac{1}{8}$.
	<u>B1</u>	$\underline{2^{-3}}$ or $\frac{1}{\underline{8}}$ outside brackets or $\frac{1}{\underline{8}}$ as candidate's constant term in their binomial expansion.
	2 nd M1	Expands $(+kx)^{-3}$, $k = a$ value $\neq 1$, to give any 2 terms out of 4 terms simplified or un- simplified, Eg: $1 + (-3)(kx)$ or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ or $1 + + \frac{(-3)(-4)}{2!}(kx)^2$
		or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ are fine for M1.
	1 st A1	A correct simplified or un-simplified $1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$
		expansion with consistent (kx) . Note that (kx) must be consistent and $k = a$ value $\neq 1$. (on the RHS, not necessarily the LHS) in a candidate's expansion.
	Note	You would award B1M1A0 for $\frac{1}{8} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} (5x)^2 + \frac{(-3)(-4)(-5)}{3!} \left(\frac{5x}{2} \right)^3 + \dots \right]$
		because (kx) is not consistent.
	Note	Incorrect bracketing: $=\left\{\frac{1}{8}\right\}\left[1+(-3)\left(\frac{5x}{2}\right)+\frac{(-3)(-4)}{2!}\left(\frac{5x^2}{2}\right)+\frac{(-3)(-4)(-5)}{3!}\left(\frac{5x^3}{2}\right)+\dots\right]$
		is M1A0 unless recovered.
	2 nd A1	For $\frac{1}{8} - \frac{15}{16}x$ (simplified) or also allow $0.125 - 0.9375x$.
	3 rd A1	Accept only $\frac{75}{16}x^2 - \frac{625}{32}x^3$ or $4\frac{11}{16}x^2 - 19\frac{17}{32}x^3$ or $4.6875x^2 - 19.53125x^3$
	SC	If a candidate <i>would otherwise score</i> 2 nd A0, 3 rd A0 then allow Special Case 2 nd A1 for either
		SC: $\frac{1}{8} \left[1 - \frac{15}{2}x; \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots + \frac{75}{2}x^2 + \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots - \frac{625}{4}x^3 + \dots \right]$
		SC: $\lambda \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$ or SC: $\left[\lambda - \frac{15\lambda}{2}x + \frac{75\lambda}{2}x^2 - \frac{625\lambda}{4}x^3 + \dots \right]$
		(where λ can be 1 or omitted), where each term in the $\left[\dots \right]$ is a simplified fraction or a decimal
	SC	Special case for the 2^{nd} M1 mark Award Special Case 2^{nd} M1 for a correct simplified or un-simplified
		$1 + n(kx) + \frac{n(n-1)}{2!}(kx)^2 + \frac{n(n-1)(n-2)}{3!}(kx)^3$ expansion with their $n \neq -3$, $n \neq positive$ integer
		and a consistent (kx) . Note that (kx) must be consistent (on the RHS, not necessarily the LHS)
		in a candidate's expansion. Note that $k \neq 1$.
	Note Note	Ignore extra terms beyond the term in x^3
	Note	You can ignore subsequent working following a correct answer.

y

0

and the line x = 2

1

0

x

y

2.

R

1

The table below shows corresponding values of x and y for $y = x^2 \ln x$

1.2

0.2625

Figure 1

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis

Figure 1 shows a sketch of part of the curve with equation $y = x^2 \ln x$, $x \ge 1$

2

Mathematics C4 6666

Leave blank

DO NOT WRITE IN THIS ARE

1.4 1.6 1.8 1.2032 1.9044 (a) Complete the table above, giving the missing value of y to 4 decimal places.

(1)

x

2

2.7726

(b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of R, giving your answer to 3 decimal places.

(3)

(c) Use integration to find the exact value for the area of *R*.

(5)

6666

Question Number					Scheme				Marks
2.	x	1	1.2	1.4	1.6	1.8	2	$y = x^2 \ln x$	
4.	y	0	0.2625	0.659485	1.2032	1.9044	2.7726	$y = x^2 \ln x$	
(a)	$\{At x =$	=1.4,} y=	= 0.6595 (4	4 dp)				0.6595	B1 cao
								Outside brackets	[1]
(b)	$\frac{1}{2} \times (0.2)$	2) × $\left[0 + \right]$	2.7726+2	2(0.2625 + the)	ir 0.6595 +	1.2032 + 1	.9044)]	$\frac{1}{2} \times (0.2) \text{ or } \frac{1}{10}$	B1 o.e.
(-)	{Note: '	The "0"	does not ha	we to be includ	ded in []}		<u>For structure of</u> []	M1
	$\begin{cases} = \frac{1}{10} ($	10.8318)	$\left.\right\} = 1.0831$.8 = 1.083 (3 d	p)		anything th	nat rounds to 1.083	A1
			([3]
(c) Way 1	$\Big\{\mathbf{I} = \int x$	$^{2}\ln x\mathrm{d}x$	$\left. \begin{array}{c} u = 1 \\ \frac{dv}{dx} = 1 \end{array} \right.$	$\ln x \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{3}$ $x^2 \Rightarrow v = \frac{1}{3}$	$\begin{bmatrix} 1 \\ x \\ x^3 \end{bmatrix}$				
	$=\frac{x^3}{3}\ln$	$x - \int \frac{x^3}{3}$	$-\left(\frac{1}{x}\right)\{dx\}$					$x - \int \mu x^{3} \left(\frac{1}{x}\right) \{dx\}$ x}, where $\lambda, \mu > 0$	M1
	5	• 3				A1			
	$=\frac{x^3}{3}\ln x - \frac{x^3}{9}$ $\frac{x^3}{3}\ln x - \frac{x^3}{9}$, simplified or un-s					ed or un-simplified ed or un-simplified	A1		
	Area (R) = $\left\{ \left[\frac{x^3}{3} \ln x - \frac{x^3}{9} \right]_1^2 \right\} = \left(\frac{8}{3} \ln 2 - \frac{8}{9} \right)$					$-\frac{1}{9}$	M mark 2 a	nt on the previous Applies limits of and 1 and subtracts correct way round	dM1
	$=\frac{8}{3}\ln 2 - \frac{7}{9} \qquad \qquad$						A1 oe cso		
					([5
(c) Way 2	$\mathbf{I} = x^2 (\mathbf{A} \cdot \mathbf{I})$	$x \ln x - x$	$(x) - \int 2x(x)$	$(\ln x - x) dx$	$\begin{cases} u = x^2 \\ \frac{\mathrm{d}v}{\mathrm{d}x} = \ln \theta \end{cases}$	$\Rightarrow \frac{di}{dt}$	$\frac{u}{x} = 2x$ $v = x \ln x - x$		
	So, 3I=	$x^2(x \ln x)$	$(x-x) + \int 2$	$2x^2 \{\mathrm{d}x\}$					
		•				A full method of applying $u = x^2$, $v' = \ln x$ to give $\pm \lambda x^2 (x \ln x - x) \pm \mu \int x^2 \{ dx \}$			
	and I = $\frac{1}{3}x^2(x\ln x - x) + \frac{1}{3}\int 2x^2 \{dx\}$						5	$(-x) + \frac{1}{3}\int 2x^2 \{dx\}$ ed or un-simplified	A1
	1		2		1	x^3	$\frac{1}{x^3}$		1
	$=\frac{1}{3}x^2$	$(x \ln x -$	$x) + \frac{2}{9}x^3$			$\frac{\pi}{3}$ ln x -	$\frac{1}{9}$, simplified	ed or un-simplified	A1
	$=\frac{1}{3}x^2$	$(x \ln x -$	$(x) + \frac{2}{9}x^3$		Then	5	/	ed or un-simplified	A1 M1 A1 [5]

	1	e) This resource was created and owned by Pearson Edexcel 666
2 (-)	D1	Question 2 Notes
2. (a)	B1	0.6595 correct answer only. Look for this on the table or in the candidate's working.
(b)	B1	Outside brackets $\frac{1}{2} \times (0.2)$ or $\frac{1}{2} \times \frac{1}{5}$ or $\frac{1}{10}$ or equivalent.For structure of trapezium rule [
	M1	
	Note	No errors are allowed [eg. an omission of a <i>y</i> -ordinate or an extra <i>y</i> -ordinate or a repeated <i>y</i> ordinate].
	A1	anything that rounds to 1.083
	Note	Working must be seen to demonstrate the use of the trapezium rule. (Actual area is 1.070614704)
	Note	Full marks can be gained in part (b) for using an incorrect part (a) answer of 0.6594
	Note	Award B1M1A1 for $\frac{1}{10}(2.7726) + \frac{1}{5}(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) = \text{awrt } 1.083$
	Brack	eting mistake: Unless the final answer implies that the calculation has been done correctly
	Award	B1M0A0 for $\frac{1}{2}(0.2) + 2(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) + 2.7726$ (answer of 10.9318)
	Award	B1M0A0 for $\frac{1}{2}(0.2)(2.7726) + 2(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044)$ (answer of 8.33646)
	Altern	ative method: Adding individual trapezia
	Area ≈	$0.2 \times \left[\frac{0+0.2625}{2} + \frac{0.2625 + "0.6595"}{2} + \frac{"0.6595" + 1.2032}{2} + \frac{1.2032 + 1.9044}{2} + \frac{1.9044 + 2.7726}{2}\right] = 1.08318$
	B1	0.2 and a divisor of 2 on all terms inside brackets
	M1	First and last ordinates once and two of the middle ordinates inside brackets ignoring the 2
	A1	anything that rounds to 1.083
(c)	A1	Exact answer needs to be a two term expression in the form $a \ln b + c$ Cive A1 e.g. $8 \ln 2$ $7 + 1 \ln 2$ 7 or $1 \ln 2 + c$
	Note	Give A1 e.g. $\frac{8}{3}\ln 2 - \frac{7}{9}$ or $\frac{1}{9}(24\ln 2 - 7)$ or $\frac{4}{3}\ln 4 - \frac{7}{9}$ or $\frac{1}{3}\ln 256 - \frac{7}{9}$ or $-\frac{7}{9} + \frac{8}{3}\ln 2$
		or $\ln 2^{\frac{3}{3}} - \frac{7}{9}$ or equivalent.
	Note	Give final A0 for a final answer of $\frac{8\ln 2 - \ln 1}{3} - \frac{7}{9}$ or $\frac{8\ln 2}{3} - \frac{1}{3}\ln 1 - \frac{7}{9}$ or $\frac{8\ln 2}{3} - \frac{8}{9} + \frac{1}{9}$
		or $\frac{8}{3}\ln 2 - \frac{7}{9} + c$
	Note	$\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2$ followed by awrt 1.07 with no correct answer seen is dM1A0
	Note	Give dM0A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \frac{1}{9}$ (adding rather than subtracting)
	Note	Allow dM1A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \left(0 + \frac{1}{9}\right)$
	SC	A candidate who uses $u = \ln x$ and $\frac{dv}{dx} = x^2$, $\frac{du}{dx} = \frac{\alpha}{x}$, $v = \beta x^3$, writes down the correct "by parts"
		formula but makes only one error when applying it can be awarded Special Case 1^{st} M1.

6666 Leave

blank

3. The curve *C* has equation

$$2x^2y + 2x + 4y - \cos{(\pi y)} = 17$$

(a) Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y.

The point *P* with coordinates $\left(3, \frac{1}{2}\right)$ lies on *C*.

The normal to C at P meets the x-axis at the point A.

(b) Find the *x* coordinate of *A*, giving your answer in the form $\frac{a\pi + b}{c\pi + d}$, where *a*, *b*, *c* and *d* are integers to be determined.

(4)

(5)

DO NOT WRITE IN THIS AREA

Summer 2016 Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

6666

ast Paper (Mar	k Scheme) This resource was created and	d owned by Pears	on Edexcel	6666
Question Number	Scheme	Notes	Marks	
3.	$2x^{2}y + 2x + 4y - \cos(\pi y) = 1$	17		
(a) Way 1	$\left\{ \underbrace{\underbrace{\underbrace{\underbrace{\underbrace{xx}}}_{\underbrace{xx}}}_{\underbrace{\underbrace{xx}}} \times \right\} \left(\underbrace{\underbrace{4xy + 2x^2 \frac{dy}{dx}}_{\underbrace{\frac{dy}{dx}}} \right) \underbrace{+ 2 + 4 \frac{dy}{dx} + \pi \sin \frac{dy}{dx}}_{\underbrace{\frac{dy}{dx}}_{x}} + \frac{1}{2} \operatorname{sin}_{\underbrace{\frac{dy}{dx}}_{x}} + \frac{1}{2} \operatorname{sin}_{\underbrace{\frac{dy}$	$n(\pi y)\frac{dy}{dx} = 0$		M1 <u>A1</u> <u>B1</u>
	$\frac{\mathrm{d}y}{\mathrm{d}x}\left(2x^2+4+\pi\sin(\pi y)\right)+4xy+2$	2=0		dM1
	$\left\{\frac{dy}{dx} = \right\} \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4x}{-2x^2 - 4x}$	$\frac{xy+2}{4-\pi\sin(\pi y)}$	Correct answer or equivalent	A1 cso [5]
(b)	At $\left(3, \frac{1}{2}\right)$, $m_{\rm T} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-4(3)(\frac{1}{2}) - 2}{2(3)^2 + 4 + \pi \sin\left(\frac{1}{2}\pi\right)} \left\{ = \frac{-8}{22 + \pi} \right\}$ into an equation involving $\frac{\mathrm{d}y}{\mathrm{d}x}$			
	$m_{\rm N} = \frac{22 + \pi}{8}$		$=\frac{-1}{m_{\rm T}}$ to find a numerical $m_{\rm N}$ be implied by later working	M1
(a) Way 2	• $y - \frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(x - 3)$ • $\frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(3) + c \Rightarrow c = \frac{1}{2} - \frac{66 + 3\pi}{8}$ $\Rightarrow y = \left(\frac{22 + \pi}{8}\right)x + \frac{1}{2} - \frac{66 + 3\pi}{8}$ Cuts x-axis $\Rightarrow y = 0$ $\Rightarrow -\frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(x - 3)$ So, $\left\{x = \frac{-4}{22 + \pi} + 3 \Rightarrow\right\} x = \frac{3\pi + 62}{\pi + 22}$ $\left\{\frac{\partial x}{\partial y} \asymp\right\} \left(\frac{4xy\frac{dx}{dy} + 2x^2}{dy}\right) + 2\frac{dx}{dy} + 4 + \pi \sin \frac{dx}{dy}(4xy + 2) + 2x^2 + 4 + \pi \sin(\pi y)$	$y = m_{N}x + c$ with a nume in ter $\frac{3\pi + 6}{\pi + 22}$ $n(\pi y) = 0$	dM1 A1 o.e. [4] 9 M1 <u>A1 B1</u> dM1	
	$\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy - 4xy}{-2x^2 - 4x^2}$		Correct answer or equivalent	A1 cso
		× 27		[5]
		uestion 3 Notes		
3. (a)	Note Writing down <i>from no working</i> • $\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)}$ or • $\frac{dy}{dx} = \frac{4xy + 2}{2x^2 + 4 + \pi \sin(\pi y)}$ see			
	Note Few candidates will write $4xydx + 2x^2dy = \frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)}$ or equivalent			

		Question 3 Notes Continued
3. (a) Way 1	M1	Differentiates implicitly to include either $2x^2 \frac{dy}{dx}$ or $4y \to 4\frac{dy}{dx}$ or $-\cos(\pi y) \to \pm \lambda \sin(\pi y)\frac{dy}{dx}$
		(Ignore $\left(\frac{dy}{dx}\right)$). λ is a constant which can be 1.
	1 st A1	$2x + 4y - \cos(\pi y) = 17 \rightarrow 2 + 4\frac{dy}{dx} + \pi \sin(\pi y)\frac{dy}{dx} = 0$
	Note	$4xy + 2x^2\frac{dy}{dx} + 2 + 4\frac{dy}{dx} + \pi\sin(\pi y)\frac{dy}{dx} \rightarrow 2x^2\frac{dy}{dx} + 4\frac{dy}{dx} + \pi\sin(\pi y)\frac{dy}{dx} = -4xy - 2$
		will get 1^{st} A1 (implied) as the "=0" can be implied by the rearrangement of their equation.
	B1	$2x^2y \to 4xy + 2x^2\frac{\mathrm{d}y}{\mathrm{d}x}$
	Note	If an extra term appears then award 1 st A0.
	dM1	Dependent on the first method mark being awarded.
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are <i>at least two terms</i> in $\frac{dy}{dx}$.
		ie. $\frac{dy}{dx}(2x^2 + 4 + \pi \sin(\pi y)) + \dots = \dots$
	Note	Writing down an extra $\frac{dy}{dx} = \dots$ and then including it in their factorisation is fine for dM1.
	Note	Final A1 cso: If the candidate's solution is not completely correct, then do not give this mark.
	Note	Final A1 isw: You can, however, ignore subsequent working following on from correct solution.
(a)	Way 2	Apply the mark scheme for Way 2 in the same way as Way 1.
(b)	1 st M1	M1 can be gained by seeing at least one example of substituting $x = 3$ and at least one example of
		substituting $y = \frac{1}{2}$. E.g. "-4xy" \rightarrow "-6" in their $\frac{dy}{dx}$ would be sufficient for M1, unless it is clear
		that they are instead applying $x = \frac{1}{2}$, $y = 3$.
	3 rd M1	is dependent on the first M1.
	Note	The 2^{nd} M1 mark can be implied by later working.
		Eg. Award 2 nd M1 3 rd M1 for $\frac{\frac{1}{2}}{3-x} = \frac{-1}{\text{their } m_T}$
	Note	We can accept $\sin \pi$ or $\sin \left(\frac{\pi}{2}\right)$ as a numerical value for the 2 nd M1 mark.
		But, $\sin \pi$ by itself or $\sin\left(\frac{\pi}{2}\right)$ by itself are not allowed as being in terms of π for the 3 rd M1 mark.
		The 3 rd M1 can be accessed for terms containing $\pi \sin\left(\frac{\pi}{2}\right)$.

6666 Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

4. The rate of decay of the mass of a particular substance is modelled by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, \qquad t \ge 0$$

where x is the mass of the substance measured in grams and t is the time measured in days.

Given that x = 60 when t = 0,

(a) solve the differential equation, giving x in terms of t. You should show all steps in your working and give your answer in its simplest form.

(4)

(b) Find the time taken for the mass of the substance to decay from 60 grams to 20 grams. Give your answer to the nearest minute.

(3)

6666

Question Number	Scheme	Notes	Marks
4.	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$		
(a) Way 1	$\int \frac{1}{x} \mathrm{d}x = \int -\frac{5}{2} \mathrm{d}t$	Separates variables as shown. dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.	B1
	$\ln x = -\frac{5}{2}t + c$	Integrates both sides to give either $\pm \frac{\alpha}{x} \to \pm \alpha \ln x$ or $\pm k \to \pm kt$ (with respect to <i>t</i>); $k, \alpha \neq 0$	M1
	2	$\ln x = -\frac{5}{2}t + c, \text{ including "} + c"$	A1
	$\{t=0, x=60 \Longrightarrow\} \ln 60 = c$	Finds their <i>c</i> and uses correct algebra $-\frac{5}{5}t$ 60	
	$\ln x = -\frac{5}{2}t + \ln 60 \Rightarrow x = 60e^{-\frac{5}{2}t} \text{ or } x$	$= \frac{60}{e^{\frac{5}{2}t}}$ to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$ with no incorrect working seen	A1 cso
(a) Way 2	$\frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x} \text{or} t = \int -\frac{2}{5x} \mathrm{d}x$	Either $\frac{dt}{dx} = -\frac{2}{5x}$ or $t = \int -\frac{2}{5x} dx$	[4] B1
	$t = -\frac{2}{5}\ln x + c$	Example 1 Integrates both sides to give either $t = \dots$ or $\pm \alpha \ln px; \alpha \neq 0, p > 0$	M1
	$t = -\frac{1}{5}mx + c$	$t = -\frac{2}{5}\ln x + c, \text{ including "}+c"$	A1
	$\left\{t = 0, x = 60 \Longrightarrow\right\} c = \frac{2}{5}\ln 60 \Longrightarrow t = -\frac{2}{5}$	to achieve $x = 60e^{-\frac{3}{2}t}$ or $x = \frac{60}{2}$	
	$\Rightarrow -\frac{5}{2}t = \ln x - \ln 60 \Rightarrow \underline{x = 60e^{-\frac{3}{2}t}} \text{ or }$	r $x = \frac{60}{e^{\frac{5}{2}t}}$ with no incorrect working seen	A1 cso
(a) Way 3	$\int_{60}^{x} \frac{1}{x} dx = \int_{0}^{t} -\frac{5}{2} dt$	Ignore limits	[4] B1
, uj e		Integrates both sides to give either $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$ or $\pm k \rightarrow \pm kt$ (with respect to <i>t</i>); $k, \alpha \neq 0$	M1
	$\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{x}$	$\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$ including the correct limits	A1
	$5 \qquad 5 \qquad 60^{-\frac{5}{2}t}$	60	
	$\ln x - \ln 60 = -\frac{5}{2}t \implies x = 60e^{-\frac{5}{2}t}$ or x	$= \frac{1}{\frac{e^{\frac{5}{2}t}}{2}}$ Correct algebra leading to a correct result	A1 cso
	$\ln x - \ln 60 = -\frac{1}{2}t \implies x = 600^{-2} \text{ or } x$		[4]
(b)	$\ln x - \ln 60 = -\frac{1}{2}t \implies x = 60e^{-\frac{1}{2}} \text{ or } x$ $20 = 60e^{-\frac{5}{2}t} \text{ or } \ln 20 = -\frac{5}{2}t + \ln 60$	Substitutes $x = 20$ into an equation in the form of either $x = \pm \lambda e^{\pm \mu t} \pm \beta$ or $x = \pm \lambda e^{\pm \mu t \pm \alpha \ln \delta x}$ or $\pm \alpha \ln \delta x = \pm \mu t \pm \beta$ or $t = \pm \lambda \ln \delta x \pm \beta$;	
(b)	$20 = 60e^{-\frac{5}{2}t} \text{ or } \ln 20 = -\frac{5}{2}t + \ln 60$ $t = -\frac{2}{5}\ln\left(\frac{20}{60}\right) \qquad \qquad$	Substitutes $x = 20$ into an equation in the form of either $x = \pm \lambda e^{\pm \mu t} \pm \beta$ or $x = \pm \lambda e^{\pm \mu t \pm \alpha \ln \delta x}$ or $\pm \alpha \ln \delta x = \pm \mu t \pm \beta$ or $t = \pm \lambda \ln \delta x \pm \beta$; $\alpha, \lambda, \mu, \delta \neq 0$ and β can be 0 dependent on the previous M mark ses correct algebra to achieve an equation of the form of either $t = A \ln \left(\frac{60}{20}\right)$ or $A \ln \left(\frac{20}{60}\right)$ or $A \ln 3$ or $A \ln \left(\frac{1}{3}\right)$ o.e. or $= A (\ln 20 - \ln 60)$ or $A (\ln 60 - \ln 20)$ o.e. $(A \in \Box, t > 0)$	[4]
(b)	$20 = 60e^{-\frac{5}{2}t} \text{ or } \ln 20 = -\frac{5}{2}t + \ln 60$ $t = -\frac{2}{5}\ln\left(\frac{20}{60}\right) \qquad Us$ $\left\{= 0.4394449 \text{ (days)}\right\}$ $Note: t \text{ must be greater than 0} \qquad t = 3t = 632.8006 = 633 \text{ (to the nearest)}$	Substitutes $x = 20$ into an equation in the form of either $x = \pm \lambda e^{\pm \mu t} \pm \beta$ or $x = \pm \lambda e^{\pm \mu t \pm \alpha \ln \delta x}$ or $\pm \alpha \ln \delta x = \pm \mu t \pm \beta$ or $t = \pm \lambda \ln \delta x \pm \beta$; $\alpha, \lambda, \mu, \delta \neq 0$ and β can be 0 dependent on the previous M mark ses correct algebra to achieve an equation of the form of either $t = A \ln \left(\frac{60}{20}\right)$ or $A \ln \left(\frac{20}{60}\right)$ or $A \ln 3$ or $A \ln \left(\frac{1}{3}\right)$ o.e. or $= A (\ln 20 - \ln 60)$ or $A (\ln 60 - \ln 20)$ o.e. $(A \in \Box, t > 0)$	[4] M1

Question Number		Scheme			Notes	Marks
4.	! -	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \ge 0$				
(a) Way 4	$\int \frac{2}{5x} dx = -\int dt$ Separates variables as shown. dx and dt sho be in the wrong positions, though this mark implied by later working. Ignore the integra			vrong positions, though this mark can be later working. Ignore the integral signs.	B1	
		$\frac{2}{5}\ln(5x) = -t + c$		-	tes both sides to give either $\pm \alpha \ln(px)$ <i>kt</i> (with respect to <i>t</i>); <i>k</i> , $\alpha \neq 0$; <i>p</i> > 0	M1
				$\frac{2}{5}\ln(5x) = -t + c, \text{ including "} + c"$	A1	
		$x = 60 \Rightarrow \frac{2}{5}\ln 300 = c$ $x) = -t + \frac{2}{5}\ln 300 \Rightarrow x = 60e^{-\frac{5}{2}}$	^t or		Finds their <i>c</i> and uses correct algebra to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$ with no incorrect working seen	A1 cso
			-			[4]
(a) Way 5	$\left\{\frac{\mathrm{d}t}{\mathrm{d}x} =\right.$	$-\frac{2}{5x} \Rightarrow $ $t = \int_{60}^{x} -\frac{2}{5x} dx$			Ignore limits	B1
	-]	Integra	ates both sides to give either $\pm k \rightarrow \pm kt$	
		$t = \left[-\frac{2}{5}\ln x\right]_{co}^{x}$	(with respect to t) or $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$; $k, \alpha \neq 0$			M1
		$\begin{bmatrix} 5 \\ \end{bmatrix}_{60}$		<i>t</i> =	$\left[-\frac{2}{5}\ln x\right]_{60}^{x}$ including the correct limits	A1
	$t = -\frac{2}{5}$	$\frac{1}{5}\ln x + \frac{2}{5}\ln 60 \implies -\frac{5}{2}t = \ln x - \ln x$	60			
	$\Rightarrow \underline{x} =$	$\frac{60e^{-\frac{5}{2}t}}{2} \text{ or } x = \frac{60}{e^{\frac{5}{2}t}}$		(Correct algebra leading to a correct result	A1 cso
			Ou	estion	4 Notes	[4]
4. (a)	B1	For the correct separation of vari			A	
	Note	5 2				+ <i>c</i>
	Note	B1 can also be implied by seeing			5	
	Note Allow A1 for $x = 60\sqrt{e^{-5t}}$ or $x = \frac{60}{\sqrt{e^{5t}}}$ with no incorrect working seen					
	Note	Give final A0 for $x = e^{-\frac{5}{2}t} + 60$	νc	$602^{-\frac{5}{2}t}$		
	Note		-		final answer (without seeing $x = 60e^{-\frac{5}{2}t}$)	
	Note				multiplication for the formula of t	
	Note			-	or $x = \frac{60}{2^{\frac{5}{7}t}}$ with no evidence of working of	or integration
		seen.			e ²	
(b)	A1	You can apply cso for the work of				
	Note	Give dM1(Implied) A1 for $\frac{5}{2}t =$	ln3 foll	lowed	by $t = awrt 633$ from no incorrect working	ıg.
	Note	Substitutes $x = 40$ into their equ	ation from	m par	t (a) is M0dM0A0	

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

- The point *P* lies on *C* and has coordinates $\left(4\sqrt{3}, \frac{15}{2}\right)$.
- (a) Find the exact value of $\frac{dy}{dx}$ at the point *P*. Give your answer as a simplified surd.

The point Q lies on the curve C, where $\frac{dy}{dx} = 0$

(b) Find the exact coordinates of the point Q.

(4)

(2)

DO NOT WRITE IN THIS ARE

Summer 2016 Past Paper (Mark Scheme)

Question Number		Scheme	Notes	Marks
5.	x = 4 t	an t , $y = 5\sqrt{3}\sin 2t$, $0 \le t < \frac{\pi}{2}$		
(a) Way 1	ui	$ec^{2}t, \frac{dy}{dt} = 10\sqrt{3}\cos 2t$	Either both x and y are differentiated correctly with respect to tor their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or applies $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$	M1
	$\Rightarrow \frac{dy}{dx} = \frac{1}{2}$	$\frac{0\sqrt{3}\cos 2t}{4\sec^2 t} \left\{=\frac{5}{2}\sqrt{3}\cos 2t\cos^2 t\right\}$	$\frac{dt}{dt} = \frac{dt}{dx}$ Correct $\frac{dy}{dx}$ (Can be implied)	A1 oe
	$\left\{ \operatorname{At} P \left(4 \right) \right\}$	$\sqrt{3}, \frac{15}{2}, t = \frac{\pi}{3}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10}{2}$	$\frac{0\sqrt{3}\cos\left(\frac{2\pi}{3}\right)}{4\sec^2\left(\frac{\pi}{3}\right)}$	dependent on the previous M mark Some evidence of substituting $t = \frac{\pi}{3}$ or $t = 60^{\circ}$ into their $\frac{dy}{dx}$	dM1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{16}$	$\frac{1}{5}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only	A1 cso
(b)	$\begin{cases} 10\sqrt{3}\cos^2\theta & 0 \\ 0$	$s 2t = 0 \Longrightarrow t = \frac{\pi}{4} \bigg\}$		[4]
	So $x = 4$ ta	$\operatorname{an}\left(\frac{\pi}{4}\right), \ y = 5\sqrt{3}\sin\left(2\left(\frac{\pi}{4}\right)\right)$	At least one of either $x = 4 \tan\left(\frac{\pi}{4}\right)$ or $y = 5\sqrt{3} \sin\left(2\left(\frac{\pi}{4}\right)\right)$ or $x = 4$ or $y = 5\sqrt{3}$ or $y = awrt 8.7$	M1
	Coordinate	es are $(4, 5\sqrt{3})$	$(4, 5\sqrt{3})$ or $x = 4, y = 5\sqrt{3}$	A1 [2]
				6
5. (a)	1 st A1		estion 5 Notes $\sqrt{3}\cos 2t\cos^2 t$ or $\frac{5}{2}\sqrt{3}\cos^2 t(\cos^2 t - \sin^2 t)$	
	Note	Give the final A0 for a final answer of	of $-\frac{10}{32}\sqrt{3}$ without reference to $-\frac{5}{16}\sqrt{3}$ or $-\frac{10}{16}\sqrt{3}$	15 5√3
	Note	Give the final A0 for more than one	value stated for $\frac{dy}{dx}$	
(b)	Note	Also allow M1 for either $x = 4\tan(4x)$	5) or $y = 5\sqrt{3}\sin(2(45))$	
	Note	M1 can be gained by ignoring previo		
	Note	Give A0 for stating more than one se	t of apprdimeters for O	

Question Number	Scheme Notes			Marks
5.	$x = 4\tan t$, $y = 5\sqrt{3}\sin 2t$, $0 \le t < \frac{\pi}{2}$			
(a) Way 2	$\tan t = \frac{x}{4} \implies \sin t = \frac{x}{\sqrt{x^2 + 16}}, \ \cos t = \frac{4}{\sqrt{x^2 + 16}} \implies t$	$v = \frac{40\sqrt{3}x}{x^2 + 16}$		
	$\begin{cases} u = 40\sqrt{3}x \qquad v = x^2 + 16 \\ \frac{du}{dx} = 40\sqrt{3} \qquad \frac{dv}{dx} = 2x \end{cases}$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{40\sqrt{3}(x^2 + 16) - 2x(40\sqrt{3}x)}{(x^2 + 16)^2} \left\{ = \frac{40\sqrt{3}(16 - x^2)}{(x^2 + 16)^2} \right\}$		$\frac{\pm A(x^2+16)\pm Bx^2}{(x^2+16)^2}$	M1
	dx $(x^2 + 16)^2$ $(x^2 + 16)^2$	Correct $\frac{dy}{dx}$; simp	lified or un-simplified	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{40\sqrt{3}(48+16) - 80\sqrt{3}(48)}{(48+16)^2}$	Some ev	the previous M mark vidence of substituting $x = 4\sqrt{3}$ into their $\frac{dy}{dx}$	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$		$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	A1 cso
		from a	correct solution only	[4]
(a) Way 3	$y = 5\sqrt{3}\sin\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)$			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{2}{1+\left(\frac{x}{4}\right)^2}\right)\left(\frac{1}{4}\right)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm A\cos^2\theta$	$s\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{1}{1+x^2}\right)$	M1
	$dx \qquad (\qquad (4))(1+\left(\frac{x}{4}\right)^2)(4)$	Correct $\frac{dy}{dx}$; simpl	lified or un-simplified.	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\sqrt{3}\right)\right)\left(\frac{2}{1+3}\right)\left(\frac{1}{4}\right) \left\{=5\sqrt{3}\left(-\frac{1}{2}\right)\left(\frac{1}{2}$	$\left(\frac{1}{4}\right)$ Some ev	dependent on the previous M mark vidence of substituting $x = 4\sqrt{3}$ into their $\frac{dy}{dx}$	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	from o	$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$ correct solution only	A1 cso
			correct solution only	[4]

6. (i) Given that y > 0, find

$$\int \frac{3y - 4}{y(3y + 2)} \, \mathrm{d}y \tag{6}$$

(ii) (a) Use the substitution $x = 4\sin^2\theta$ to show that

$$\int_{0}^{3} \sqrt{\left(\frac{x}{4-x}\right)} \, \mathrm{d}x = \lambda \int_{0}^{\frac{\pi}{3}} \sin^{2}\theta \, \, \mathrm{d}\theta$$

where λ is a constant to be determined.

(b) Hence use integration to find

$$\int_0^3 \sqrt{\left(\frac{x}{4-x}\right)} \, \mathrm{d}x$$

giving your answer in the form $a\pi + b$, where a and b are exact constants.

(4)

(5)

DO NOT WRITE IN THIS ARE

Leave blank

Question Number	Scheme			N	lotes	Marks
6.	(i) $\int \frac{3y-4}{y(3y+2)} dy, \ y > 0$, (ii) $\int_{0}^{3} \sqrt{\left(\frac{x}{4-x}\right)} dx, \ x = 4\sin^{2}\theta$					
(i) Way 1	$\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y-4 = A(3y+2) + By$ $y = 0 \Rightarrow -4 = 2A \Rightarrow A = -2$ At least one of their $A = -2$ or their $B = 9$			M1 A1		
	$y = 0 \implies -4 = 2A \implies A = -2$ $y = -\frac{2}{3} \implies -6 = -\frac{2}{3}B \implies B = 9$			Both their $B = 9$ their $B = 9$	A1	
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{-2}{y} + \frac{9}{(3y+2)} \mathrm{d}y$ Integrates to give at least one of either $\frac{A}{y} \to \pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \to \pm \mu \ln(3y+2)$ $A \neq 0, B \neq 0$				M1	
		At lea	ast one term co fro		owed through r from their <i>B</i>	A1 ft
			$-3\ln(3y+2)$	with corre	ct bracketing,	A1 cao
					1	[6]
(ii) (a) Way 1	$\left\{x = 4\sin^2\theta \Longrightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta \text{or} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sin2\theta \text{or} \mathrm{d}x = 8\sin\theta\cos\theta\mathrm{d}\theta$			B1		
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ \mathrm{d}\theta \right\} \text{or} \int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 4\sin2\theta \left\{ \mathrm{d}\theta \right\}$				M1	
	$= \int \underline{\tan \theta} \cdot 8\sin \theta \cos \theta \left\{ d\theta \right\} \text{ or } \int \underline{\tan \theta} \cdot 4\sin 2\theta$	$\theta \left\{ \mathrm{d} \theta \right\}$	$\sqrt{\left(\frac{x}{4-x}\right)} \rightarrow$	$\pm K \tan \theta$ or	$\pm K\left(\frac{\sin\theta}{\cos\theta}\right)$	<u>M1</u>
	$= \int 8\sin^2\theta \mathrm{d}\theta$		$\int 8$	$\sin^2\theta\mathrm{d} heta$	including $d\theta$	A1
	$3 = 4\sin^2\theta \text{ or } \frac{3}{4} = \sin^2\theta \text{ or } \sin\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = $ $\left\{x = 0 \to \theta = 0\right\}$	5	Writes involving x = no incorrect w	= 3 leading	3	B1
						[5]
(ii) (b)	$= \left\{8\right\} \int \left(\frac{1-\cos 2\theta}{2}\right) d\theta \left\{=\int \left(4-4\cos 2\theta\right) d\theta\right\}$	$\theta \bigg\}$	-	-	$\theta = 1 - 2\sin^2\theta$ l. (See notes)	M1
			For	$\pm \alpha \theta \pm \beta \sin \theta$	$\alpha, \beta \neq 0$	M1
	$= \{8\} \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta\right) \{= 4\theta - 2\sin 2\theta\} \qquad \qquad$			A1		
	$\left\{ \int_{0}^{\frac{\pi}{3}} 8\sin^{2}\theta \mathrm{d}\theta = 8 \left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right]_{0}^{\frac{\pi}{3}} \right\} = 8 \left[\left(\frac{\pi}{6} - \frac{1}{4} \left(\frac{\sqrt{3}}{2} \right) \right) - \left(0 + 0 \right) \right]$					
	$=\frac{4}{3}\pi - \sqrt{3}$ "two term"	" exact answ	wer of e.g. $\frac{4}{3}\pi$	$-\sqrt{3}$ or $\frac{1}{3}$	$\frac{1}{3}\left(4\pi-3\sqrt{3}\right)$	A1 o.e.
	<u> </u>					[4]
						15

6. (i)

6. (ii)(a)

(ii)(b)

k Scheme)	This resource was created and owned by Fearson Edexcer 6000
	Question 6 Notes
1 st M1	Writing $\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)}$ and a complete method for finding the value of at least one of their <i>A</i> or their <i>B</i> .
Note	M1A1 can be implied <i>for writing down</i> either $\frac{3y-4}{y(3y+2)} \equiv \frac{-2}{y} + \frac{\text{their } B}{(3y+2)}$
	or $\frac{3y-4}{y(3y+2)} \equiv \frac{\text{their } A}{y} + \frac{9}{(3y+2)}$ with no working. Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)
Note	Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)
Note	Give 2^{nd} M0 for $\frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$
Note	but allow 2 nd M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ Substitutes $x = 4\sin^2\theta$ and their dx (from their correctly rearranged $\frac{dx}{d\theta}$) into $\sqrt{\left(\frac{x}{4-x}\right)} dx$
1 st M1	Substitutes $x = 4\sin^2\theta$ and their $dx \left(\text{from their correctly rearranged } \frac{dx}{d\theta}\right)$ into $\sqrt{\left(\frac{x}{4-x}\right)}dx$
Note	$dx \neq \lambda d\theta$. For example $dx \neq d\theta$
Note	Allow substituting $dx = 4\sin 2\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 4\sin 2\theta$ or $dx = 4\sin 2\theta d\theta$
2 nd M1	Applying $x = 4\sin^2\theta$ to $\sqrt{\left(\frac{x}{4-x}\right)}$ to give $\pm K\tan\theta$ or $\pm K\left(\frac{\sin\theta}{\cos\theta}\right)$
Note	Integral sign is not needed for this mark.
1 st A1	Simplifies to give $\int 8\sin^2\theta d\theta$ including $d\theta$
2 nd B1	Writes down a correct equation involving $x = 3$ leading to $\theta = \frac{\pi}{3}$ and no incorrect work seen
	regarding limits
Note	Allow 2 nd B1 for $x = 4\sin^2\left(\frac{\pi}{3}\right) = 3$ and $x = 4\sin^2 0 = 0$
Note	Allow 2 nd B1 for $\theta = \sin^{-1}\left(\sqrt{\frac{x}{4}}\right)$ followed by $x = 3, \theta = \frac{\pi}{3}; x = 0, \theta = 0$
M1	Writes down a correct equation involving $\cos 2\theta$ and $\sin^2 \theta$
	E.g.: $\cos 2\theta = 1 - 2\sin^2 \theta$ or $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$ or $K \sin^2 \theta = K \left(\frac{1 - \cos 2\theta}{2} \right)$
	and <i>applies</i> it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral.
M1	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$, $\alpha \neq 0, \beta \neq 0$ (can be simplified or un-simplified).
1 st A1	Integrating $\sin^2 \theta$ to give $\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta$, un-simplified or simplified. Correct solution only.
	Can be implied by $k\sin^2\theta$ giving $\frac{k}{2}\theta - \frac{k}{4}\sin 2\theta$ or $\frac{k}{4}(2\theta - \sin 2\theta)$ un-simplified or simplified.
2 nd A1	A correct solution in part (ii) leading to a "two term" exact answer of
	e.g. $\frac{4}{3}\pi - \sqrt{3}$ or $\frac{8}{6}\pi - \sqrt{3}$ or $\frac{4}{3}\pi - \frac{2\sqrt{3}}{2}$ or $\frac{1}{3}(4\pi - 3\sqrt{3})$
Note	A decimal answer of 2.456739397 (without a correct exact answer) is A0.
Note	Candidates can work in terms of λ (note that λ is not given in (ii)) and gain the 1 st three marks (i.e. M1M1A1) in part (b).
Note	If they incorrectly obtain $\int_{0}^{\frac{\pi}{3}} 8\sin^{2}\theta d\theta$ in part (i)(a) (or correctly guess that $\lambda = 8$)
	then the final A1 is available for a correct solution in part (ii)(b)

then the final A1 is available for a correct solution in part (ii)(b).

$\begin{array}{ c c c c c c c } \hline 6. (i) \\ \mathbf{Way 2} \hline & \begin{array}{c} & \displaystyle \int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{6y+2}{3y^2+2y} \mathrm{d}y - \int \frac{3y+6}{y(3y+2)} \mathrm{d}y \\ \hline & \displaystyle \frac{3y+6}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y+6 = A(3y+2) + By \\ \hline & & At least one of \\ y=0 \Rightarrow 6=2A \Rightarrow A=3 \\ y=-\frac{2}{3} \Rightarrow 4=-\frac{2}{3}B \Rightarrow B=-6 \\ \hline & & Both their A=3 \text{ and their } B=-6 \\ \hline & & \int \frac{3y-4}{y(3y+2)} \mathrm{d}y \\ = \int \frac{6y+2}{3y^2+2y} \mathrm{d}y - \int \frac{3}{y} \mathrm{d}y + \int \frac{6}{(3y+2)} \mathrm{d}y \\ = \ln(3y^2+2y) - 3\ln y + 2\ln(3y+2) \left\{ + c \right\} \\ \hline & & \ln(3y^2+2y) - 3\ln y + 2\ln(3y+2) \left\{ + c \right\} \\ \hline & & & \ln(3y^2+2y) - 3\ln y + 2\ln(3y+2) \left\{ + c \right\} \\ \hline & & & & \\ \hline & & \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline $	Marks M1 A1 A1 M1 A1
$\frac{3y+6}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y+6 = A(3y+2) + By$ $\frac{3y+6}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y+6 = A(3y+2) + By$ $\frac{At least one of their A = 3 or their B = -6 Al}{At least one of their A = 3 or their B = -6 Al}$ $\frac{y=-\frac{2}{3} \Rightarrow 4 = -\frac{2}{3}B \Rightarrow B = -6$ $\frac{1}{3y^2+2y} dy = \frac{3y+4}{y^2+2y} dy = \frac{6}{(3y+2)} dy$ $= \int \frac{6y+2}{3y^2+2y} dy = \int \frac{3}{y} dy + \int \frac{6}{(3y+2)} dy$ $= \ln(3y^2+2y) - 3\ln y + 2\ln(3y+2) \left\{ + c \right\}$ $\frac{1}{y(3y+2)} dy = \int \frac{3y+1}{3y^2+2y} dy = \int \frac{5}{y(3y+2)} dy$ $\frac{5}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) + By$ $\frac{3y+6}{At least one term correctly} for the form the f$	A1 A1 M1 A1 ft
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A1 A1 M1 A1 ft
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A1 M1 A1 ft
$\frac{1}{y = -\frac{2}{3} \Rightarrow 4 = -\frac{2}{3}B \Rightarrow B = -6}$ Both their $A = 3$ and their $B = -6$ $\int \frac{3y - 4}{y(3y + 2)} dy$ $= \int \frac{6y + 2}{3y^2 + 2y} dy - \int \frac{3}{y} dy + \int \frac{6}{(3y + 2)} dy$ $= \ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \left\{ + c \right\}$ Both their $A = 3$ and their $B = -6$ Alternative integrates to give at least one of either $\frac{M(6y + 2)}{3y^2 + 2y} \rightarrow \pm \alpha \ln(3y^2 + 2y)$ M $\frac{M \neq 0, A \neq 0, B \neq 0}{M \neq 0, A \neq 0, B \neq 0}$ At least one term correctly followed through At $\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \left\{ + c \right\}$ $\frac{6. (i)}{Way 3}$ $\frac{3y - 4}{y(3y + 2)} dy = \int \frac{3y + 1}{3y^2 + 2y} dy - \int \frac{5}{y(3y + 2)} dy$ $\frac{5}{y(3y + 2)} = \frac{A}{y} + \frac{B}{(3y + 2)} \Rightarrow 5 = A(3y + 2) + By$ At least one of their $A = \frac{5}{2}$	M1 A1 ft
$\int \frac{3y-4}{y(3y+2)} dy$ $= \int \frac{6y+2}{3y^2+2y} dy - \int \frac{3}{y} dy + \int \frac{6}{(3y+2)} dy$ $= \ln(3y^2+2y) - 3\ln y + 2\ln(3y+2) \left\{ + c \right\}$ Integrates to give at least one of either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{A}{y} \rightarrow \pm \lambda \ln y$ or $\frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ M $\frac{M \neq 0, A \neq 0, B \neq 0}{M \neq 0, A \neq 0, B \neq 0}$ At least one term correctly followed through At least one term correct bracketing, simplified or un-simplified or	A1 ft
$\int y(3y+2) = y$ $= \int \frac{6y+2}{3y^2+2y} dy - \int \frac{3}{y} dy + \int \frac{6}{(3y+2)} dy$ $= \ln(3y^2+2y) - 3\ln y + 2\ln(3y+2) \left\{ + c \right\}$ $\int \frac{3y-4}{y(3y+2)} dy = \int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{y(3y+2)} dy$ $\int \frac{3y-4}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) + By$ $\int \frac{3y+12y}{At \text{ least one term correctly followed through At least one term correct bracketing, simplified or un-simplified}}{At \text{ least one term correct bracketing, simplified or un-simplified}}$	A1 ft
$\int \frac{6y+2}{3y^2+2y} dy - \int \frac{3}{y} dy + \int \frac{6}{(3y+2)} dy$ $= \ln(3y^2+2y) - 3\ln y + 2\ln(3y+2) \left\{ + c \right\}$ $\int \frac{3y-4}{y(3y+2)} dy = \int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{y(3y+2)} dy$ $\int \frac{3y-4}{y(3y+2)} dy = \int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{y(3y+2)} dy$ $\int \frac{5}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) + By$ $\int \frac{A}{y} \Rightarrow \pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $\int \frac{M \neq 0, A \neq 0, B \neq 0}{At \text{ least one term correctly followed through } A = \frac{1}{2}$	A1 ft
$\frac{1}{y(3y^2+2y)-3\ln y+2\ln(3y+2)\left\{+c\right\}}$ $\frac{\ln(3y^2+2y)-3\ln y+2\ln(3y+2)}{\ln(3y^2+2y)-3\ln y+2\ln(3y+2)}$ $\frac{\ln(3y^2+2y)-3\ln y+2\ln(3y+2)}{\sinh correct bracketing, simplified or un-simplified}$ $\frac{6. (i)}{Way 3}$ $\frac{\int \frac{3y-4}{y(3y+2)} dy = \int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{y(3y+2)} dy$ $\frac{5}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) + By$ $\frac{5}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) + By$ $\frac{5}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) + By$	
$\frac{1}{y} = \ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \left\{ + c \right\}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}{\ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln(3y + 2)}{\ln(3y^2 + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln(3y + 2)}{\ln(3y^2 + 2)}$ $\frac{\ln(3y^2 + 2y) - 3\ln(3y + 2)}{$	
$ = \ln(3y + 2y) - 5\ln y + 2\ln(3y + 2) \{+ c\} $ with correct bracketing, simplified or un-simplified $ \frac{6. (i)}{Way 3} = \int \frac{3y - 4}{y(3y + 2)} dy = \int \frac{3y + 1}{3y^2 + 2y} dy - \int \frac{5}{y(3y + 2)} dy$ $ \frac{5}{y(3y + 2)} = \frac{A}{y} + \frac{B}{(3y + 2)} \Rightarrow 5 = A(3y + 2) + By$ At least one of their $A = \frac{5}{2}$	A1 cao
6. (i) Way 3 $\int \frac{3y-4}{y(3y+2)} dy = \int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{y(3y+2)} dy$ $\frac{5}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) + By$ At least one of their $A = \frac{5}{3}$	
$\frac{5}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) + By$ At least one of their $A = \frac{5}{2}$	[6]
At least one of their $A = \frac{5}{2}$	[0]
At least one of their $A = \frac{5}{2}$	M1
$y = 0 \implies 5 = 2A \implies A = \frac{5}{2}$ or their $B = -\frac{15}{2}$	A1
$y = -\frac{2}{3} \implies 5 = -\frac{2}{3}B \implies B = -\frac{15}{2}$ Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$	A1
Integrates to give at least one of either	
$\left[\frac{3y-4}{y(3y+2)} dy - \frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)\right] M$	N / 1
or $\frac{A}{y} \rightarrow \pm \lambda \ln y$ or $\frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$	M1
$= \int \frac{3y+1}{3y^2+2y} \mathrm{d}y - \int \frac{5}{2} \frac{15}{y} \mathrm{d}y + \int \frac{15}{(3y+2)} \mathrm{d}y \qquad M \neq 0, A \neq 0, B \neq 0$ At least one term correctly followed through At	
	A1 ft
$= \frac{1}{2}\ln(3y^{2} + 2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y + 2) \{+c\}$ $\frac{1}{2}\ln(3y^{2} + 2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y + 2)$ with correct bracketing, simplified or un-simplified	
	A1 cao

	0.1				
	$\frac{\text{Scheme}}{3y - 4} \int \frac{3y}{4} \int \frac{4}{3y} \int \frac{4}{3y}$		Notes		
6. (i) Way 4		$\frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y}{y(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y$			
	$= \int \frac{3}{(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+1)} \mathrm{d}y = \int \frac{4}{y(3y+1)}$	$\frac{1}{2}$ dy			
	$\frac{4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \implies 4 = A(3y+2) + C(3y+2)$	- By		See notes	M1
	$y = 0 \implies 4 = 2A \implies A = 2$		their $A = 2$ or	At least one of their $B = -6$	A1
	$y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Both their $A = 2$ and	their $B = -6$	A1
			Integrates to give at leas	st one of either	
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y$	$\frac{C}{(3y+2)}$	$\rightarrow \pm \alpha \ln(3y+2)$ or $\frac{A}{y}$	$\rightarrow \pm \lambda \ln y$ or	M1
			$\frac{B}{(2n+2)} \rightarrow$	$\pm \mu \ln(3y+2),$	1111
	$= \int \frac{3}{3y+2} \mathrm{d}y - \int \frac{2}{y} \mathrm{d}y + \int \frac{6}{(3y+2)} \mathrm{d}y$		(-)	$, B \neq 0, C \neq 0$	
	J $3y + 2$ J y J $(3y + 2)$	At lea	ast one term correctly fo		A1 ft
			$\frac{\ln(3y+2) - 2\ln y}{\ln(3y+2) - 2\ln y}$		
	$= \ln(3y+2) - 2\ln y + 2\ln(3y+2) \{+c\}$ with correct bracketin simplified or un-simplified			A1 cao	
	$\mathbf{A}_{\mathbf{b}} = \mathbf{a}_{\mathbf{b}} \mathbf{a}_{\mathbf{b}} \mathbf{b}_{\mathbf{b}} $			[6]	
(ii)(a) Way 2	Alternative methods for B1M1M1A1 in (ii)(a) $\left\{x = 4\sin^2\theta \Longrightarrow\right\} \frac{dx}{d\theta} = 8\sin\theta\cos\theta$		As in Way 1		
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \{\mathrm{d}\theta\}$				M1
	$= \int \sqrt{\frac{\sin^2 \theta}{(1-\sin^2 \theta)}} \cdot 8\cos \theta \sin \theta \left\{ \mathrm{d}\theta \right\}$				
	$= \int \frac{\sin\theta}{\sqrt{(1-\sin^2\theta)}} \cdot 8\sqrt{(1-\sin^2\theta)}\sin\theta \left\{ d\theta \right\}$				
	$= \int \sin\theta \cdot 8\sin\theta \left\{ \mathrm{d}\theta \right\}$				M1
	$= \int 8\sin^2\theta \mathrm{d}\theta \qquad \qquad \qquad \int 8\sin^2\theta \mathrm{d}\theta \text{including}$		including $\mathrm{d}\theta$	A1 cso	
(ii)(a) Way 3	$\left\{x = 4\sin^2\theta \Longrightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sin 2\theta$ As in Way 1			B1	
	$x = 4\sin^2\theta = 2 - 2\cos 2\theta$, $4 - x = 2 + 2\cos 2\theta$				
	$\int \sqrt{\frac{2-2\cos 2\theta}{2+2\cos 2\theta}} \cdot 4\sin 2\theta \left\{ \mathrm{d}\theta \right\}$			M1	
	$= \int \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 + 2\cos 2\theta}} \cdot \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 - 2\cos 2\theta}} 4\sin 2\theta \left\{ d\theta \right\} = \int \frac{2 - 2\cos 2\theta}{\sqrt{4 - 4\cos^2 2\theta}} \cdot 4\sin 2\theta \left\{ d\theta \right\}$				
	$= \int \frac{2 - 2\cos 2\theta}{2\sin 2\theta} \cdot 4\sin 2\theta \left\{ d\theta \right\} = \int 2(2 - 2\cos 2\theta) \cdot \left\{ d\theta \right\}$ Correct method lead $\sin 2\theta$ being cancell			-	M1
	$= \int 8\sin^2\theta \mathrm{d}\theta$		$\int 8\sin^2\theta \mathrm{d}\theta$	including $d\theta$	A1 cso

(2)

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7. (a) Find

$$\int (2x-1)^{\frac{3}{2}} \, \mathrm{d}x$$

Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$y = (2x - 1)^{\frac{3}{4}}, \qquad x \ge \frac{1}{2}$$

The curve C cuts the line y = 8 at the point P with coordinates (k, 8), where k is a constant.

(b) Find the value of *k*.

The finite region *S*, shown shaded in Figure 3, is bounded by the curve *C*, the *x*-axis, the *y*-axis and the line y = 8. This region is rotated through 2π radians about the *x*-axis to form a solid of revolution.

(c) Find the exact value of the volume of the solid generated.

(2)

DO NOT WRITE IN THIS AREA

Question Number	Scheme			Notes		Marks
7.	$y = (2x - 1)^{\frac{3}{4}}, x \ge \frac{1}{2}$ passes though $P(k, 8)$					
(a)	$\left\{ \int (2x-1)^{\frac{3}{2}} dx \right\} = \frac{1}{5}(2x-1)^{\frac{5}{2}} \left\{ + c \right\}$		$(2x \pm 1)^{\frac{3}{2}}$	$\rightarrow \pm \lambda (2x \pm 1)$ where $u = 2$		M1
		$\frac{1}{5}(2x-1)^{\frac{5}{2}}$	with or without $+ c$. Must be simplified.		A1	
	4			3	3	[2]
(b)	$\left\{P(k,8) \Longrightarrow\right\} 8 = (2k-1)^{\frac{3}{4}} \Longrightarrow k = \frac{8^{\overline{3}}+1}{2}$			$(-1)^{\frac{3}{4}}$ or $8 = (2)^{\frac{3}{4}}$ or $x=$ (a nume		M1
	So, $k = \frac{17}{2}$			<i>k</i> (or <i>x</i>) =	$=\frac{17}{2}$ or 8.5	A1
				2	• 2	[2]
(c)	$\pi \int \left((2x-1)^{\frac{3}{4}} \right)^2 \mathrm{d}x$		For $\pi \int \left((2 + 1)^{2} \right) dx$	$(2x-1)^{\frac{3}{4}} \Big)^2$ or π	$\tau \int (2x-1)^{\frac{3}{2}}$	B1
			Ignore lim	its and dx. Can	be implied.	
	$\left\{\int_{\frac{1}{2}}^{\frac{17}{2}} y^2 \mathrm{d}x\right\} = \left[\frac{(2x-1)^{\frac{5}{2}}}{5}\right]_{\frac{1}{2}}^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5}\right) - (0)^{\frac{5}{2}}\right)$	$\left\{ = \frac{1024}{5} \right\}$	to part (b))	limits of "8.5" (for an expansion of the second se	xpression of	M1
	Note: It is not necessary to write the " -0 "		subt	racts the correct	way round.	
	$\left\{ V_{\text{cylinder}} \right\} = \pi(8)^2 \left(\frac{17}{2} \right) \left\{ = 544\pi \right\}$		$\pi($	$(1)^2$ (their answer	to part (b)	B1 ft
			$V_{ m cyline}$	$_{der} = 544\pi$ implie	es this mark	
	$\left\{ \operatorname{Vol}(S) = 544\pi - \frac{1024\pi}{5} \right\} \Longrightarrow \operatorname{Vol}(S) = \frac{1}{5}$	$\frac{696}{5}\pi$		rrect answer in t $\frac{1696}{5}\pi, \frac{3392}{10}\pi$		A1
					2	[4]
Alt. (c)	$\operatorname{Vol}(S) = \pi(8)^2 \left(\frac{1}{2}\right) + \underline{\pi} \int_{-5}^{8.5} \left(8^2 - \underline{(2x-1)^3}\right)^2$	dx		For <u><i>π</i></u>	$\dots \underline{(2x-1)^{\frac{3}{2}}}$	B1
		/		Ignore lin	mits and dx.	
	$= \pi(8)^2 \left(\frac{1}{2}\right) + \pi \left[64x - \frac{1}{5}(2x-1)^{\frac{5}{2}} \right]$	8.5				
	L				M1	
	$= \pi(8)^{2} \left(\frac{1}{2}\right) + \underline{\pi} \left(\left(\underbrace{\underline{64("8.5")}}_{\underline{-1}} - \frac{1}{5}(2(8.5) - 1)^{\frac{5}{2}} \right) - \left(\underbrace{\underline{64(0.5)}}_{\underline{-1}} - \frac{1}{5}(2(0.5) - 1)^{\frac{5}{2}} \right) \right) \qquad \text{as above}$				<u>B1</u>	
	$\boxed{\left\{=32\pi + \pi\left(\left(544 - \frac{1024}{5}\right) - \left(32 - 0\right)\right)\right\}} \Rightarrow \operatorname{Vol}(S) = \frac{1696}{5}\pi$			A1		
		-				[4]
						8

			Question	n 7 Notes			
7. (b)	SC			e who sets $8 = (2k - 1)^{\frac{3}{2}}$ or $8 = (2x - 1)^{\frac{3}{2}}$	and		
			rearranges to give $k = (\text{or } x =)$ a numerical value.				
7. (c)	M1	Can also be given for applying <i>u</i> -limits of "16" (2("part (<i>b</i>)") – 1) and 0 to an expression of the $\frac{5}{5}$					
		form $\pm \beta u^{\frac{3}{2}}$; $\beta \neq 0$ and subtracts the correct way round.					
	Note	You can give M1 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5}\right]_{\frac{1}{2}}^{\frac{1}{2}} = \frac{1024}{5}$					
	Note	Give M0 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5}\right]_{0}^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5}\right) - (0)\right)$					
	B1ft	Correct expression for the volum	ne of a cyl	linder with radius 8 and their (part (b)) heig	ht <i>k</i> .		
	Note	_	If a candidate uses integration to find the volume of this cylinder they need to apply their limits to give a correct expression for its volume.				
		So $\pi \int_{0}^{8.5} 8^2 dx = \pi \left[64x \right]_{0}^{8.5}$ is not sufficient for B1 but $\pi(64(8.5) - 0)$ is sufficient for B1.					
7.	MISREA	DING IN BOTH PARTS (B) AN					
	Apply the	misread rule (MR) for candidates	who apply	$y = (2x - 1)^{\frac{3}{2}}$ to both parts (b) and (c)			
(b)	Apply the misread rule (MR) for candidates who apply $y = (2x - 1)^{\frac{3}{2}}$ to both $\left\{P(k, 8) \Rightarrow\right\} 8 = (2k - 1)^{\frac{3}{2}} \Rightarrow k = \frac{8^{\frac{3}{3}} + 1}{2}$ Sets $8 = (2k - 1)^{\frac{3}{2}}$ or rearranges to give $k = (\text{or } x = 1)^{\frac{3}{2}}$			Sets $8 = (2k - 1)^{\frac{3}{2}}$ or $8 = (2x - 1)^{\frac{3}{2}}$ and ges to give $k = (\text{or } x =)$ a numerical value.	M1		
		So, $k = \frac{5}{2}$		$k \text{ (or } x) = \frac{5}{2} \text{ or } 2.5$	A1		
					[2]		
(c)	$\pi \int (2x - 1)^{1/2} dx$	$(-1)^{\frac{3}{2}}\Big)^2 dx$		For $\pi \int \left((2x-1)^{\frac{3}{2}} \right)^2$ or $\pi \int (2x-1)^3$	B1		
				Ignore limits and dx . Can be implied.			
	(e ¹⁷	$\int \left[(2\pi - 1)^4 \right]^{\frac{5}{2}} \left(\left(4^4 \right) \right)$		Applies <i>x</i> -limits of "2.5" (their answer to part (b)) and 0.5 to an expression of the			
	$\left\{\int_{\frac{1}{2}}^{2} y^2 dx\right\}$	$ = \left[\frac{(2x-1)^4}{8}\right]_{\frac{1}{2}}^{\frac{5}{2}} = \left(\left(\frac{4^4}{8}\right) - (0)\right) \{$	= 32}	form $\pm \beta (2x-1)^4$; $\beta \neq 0$ and subtracts			
				the correct way round.			
	$V_{\text{cylinder}} = \pi$	$\pi(8)^2\left(\frac{5}{2}\right) \left\{= 160\pi\right\}$		$\pi(8)^2$ (their answer to part (b))	B1 ft		
	cymider	(2)		Sight of 160π implies this mark			
	$\left\{ \operatorname{Vol}(S) = 160\pi - 32\pi \right\} \Rightarrow \operatorname{Vol}(S) = 128\pi$			An exact correct answer in the form $k\pi$ E.g. 128π	A1		
					[4]		
		lark parts (b) and (c) using the man educt two from any A or B marks		above and then working forwards from par	rt (b)		
		.g. (b) M1A1 (c) B1M1B1A1 w		e (b) M1A0 (c) B0M1B1A1			
	E	.g. (b) M1A1 (c) B1M1B0A0 w	ould score	e (b) M1A0 (c) B0M1B0A0			
	Note If a candidate uses $y = (2x - 1)^{\frac{3}{4}}$ in part (b) and then uses $y = (2x - 1)^{\frac{3}{2}}$ in part (c) do not apply a misread in part (c).						

(1)

(2)

(2)

(3)

8. With respect to a fixed origin O, the line l_1 is given by the equation

$$\mathbf{r} = \begin{pmatrix} 8\\1\\-3 \end{pmatrix} + \mu \begin{pmatrix} -5\\4\\3 \end{pmatrix}$$

where μ is a scalar parameter.

The point *A* lies on l_1 where $\mu = 1$

(a) Find the coordinates of *A*.

The point *P* has position vector $\begin{pmatrix} 1\\5\\2 \end{pmatrix}$.

The line l_2 passes through the point P and is parallel to the line l_1

(b) Write down a vector equation for the line l_2

(c) Find the exact value of the distance *AP*. Give your answer in the form $k\sqrt{2}$, where k is a constant to be determined.

The acute angle between AP and l_2 is θ .

(d) Find the value of $\cos\theta$

A point *E* lies on the line l_2 Given that AP = PE,

(e) find the area of triangle *APE*,

(f) find the coordinates of the two possible positions of E.

(2)

blank

Leave

Summer 2016 Past Paper (Mark Scheme)

Number	Scheme		Notes	Marks
8.	$l_1: \mathbf{r} = \begin{pmatrix} 8\\1\\-3 \end{pmatrix} + \mu \begin{pmatrix} -5\\4\\3 \end{pmatrix} \text{So } \mathbf{d}_1 = \begin{pmatrix} -5\\4\\3 \end{pmatrix}. \qquad \overrightarrow{OA} \text{ occurs when } \mu = 1. \overrightarrow{OP} = \begin{pmatrix} 1\\5\\2 \end{pmatrix}$			
(a)	A(3, 5, 0)		(3, 5, 0)	B1
(b)	$\{l_2:\} \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $\mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $\mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ $\mathbf{r} = \mathbf{i} + 5\mathbf{j} + 2\mathbf{k} \text{ or } \mathbf{d} = -5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k},$ $\mathbf{r} = \mathbf{i} + 5\mathbf{j} + 2\mathbf{k} \text{ or } \mathbf{d} = -5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k},$ $\mathbf{r} = \mathbf{i} + 5\mathbf{j} + 2\mathbf{k} \text{ or } \mathbf{d} = -5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k},$ $\mathbf{r} = \mathbf{i} + 5\mathbf{j} + 2\mathbf{k} \text{ or } \mathbf{d} = -5\mathbf{i} + 4\mathbf{j} + 3\mathbf{k},$			[1] M1
	(2) (3) Correct vector equation using $\mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 =$			
	\mathbf{d}_2 is the direction vector of l_2 Do not	allow l_2 : or $l_2 \rightarrow$	• or $l_1 = $ for the A1 mark.	[2]
(c)	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} - \begin{pmatrix} 3\\5\\0 \end{pmatrix} = \begin{pmatrix} -2\\0\\2 \end{pmatrix}$			
	$AP = \sqrt{(-2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$	Fi	all method for finding AP	M1
	$m = \sqrt{(2)^{-1}(0)^{-1}(2)} = \sqrt{0} = 2\sqrt{2}$		2√2	A1 [2]
(d)	So $\overrightarrow{AP} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$ and $\mathbf{d}_2 = \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$	$ \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} $ Realis requ	ation that the dot product is ired between $\left(\overline{AP} \text{ or } \overline{PA}\right)$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$	M1
	$\left\{\cos \theta = \right\} \frac{\overrightarrow{AP} \bullet \mathbf{d}_2}{\left \overrightarrow{AP}\right \cdot \left \mathbf{d}_2\right } = \frac{\pm \left(\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}\right)}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (2)^2}}$	$(-(4)^2 + (3)^2)$	dependent on the previous M mark. Applies dot product formula geen their $(\overline{AP} \text{ or } \overline{PA})$ and $\pm K\mathbf{d}_2 \text{ or } \pm K\mathbf{d}_1$	dM1
	$\left\{\cos\theta\right\} = \frac{\pm (10+0+6)}{\sqrt{8}.\sqrt{50}} = \frac{4}{5}$	{co	$\left\{s\theta\right\} = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20}$	A1 cso
(e)	$\left\{\text{Area } APE=\right\} \frac{1}{2} (\text{their } 2\sqrt{2})^2 \sin\theta \qquad \frac{1}{2} (\text{their } 2\sqrt{2})^2 \sin\theta$	their $2\sqrt{2}$) ² sin θ or	$\frac{1}{2}$ (their $2\sqrt{2}$) ² sin(their θ)	[3] M1
	= 2.4	2	$4 \text{ or } \frac{12}{5} \text{ or } \frac{24}{10} \text{ or awrt } 2.40$	A1
(f)				[2]
	$\frac{PE = (-5\lambda)\mathbf{i} + (4\lambda)\mathbf{j} + (3\lambda)\mathbf{k} \text{ and } PE = \text{their } 2}{\{PE^2 = \} (-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})^2}$	r_{1} rom part (c)	This mark can be implied.	M1
	$\frac{\left\{PE^2=\right\} (-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})^2}{\left\{\Rightarrow 50\lambda^2 = 8 \Rightarrow \lambda^2 = \frac{4}{25} \Rightarrow\right\} \lambda = \pm \frac{2}{5}}$		Either $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$	A1
	$l_2: \mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} \pm \frac{2}{5} \begin{pmatrix} -5\\4\\3 \end{pmatrix}$	dependen	t on the previous M mark Substitutes at least one of their values of λ into l_2 .	dM1
	$\left\{\overline{OE}\right\} = \begin{pmatrix} 3\\ \frac{17}{5}\\ \frac{4}{5} \end{pmatrix} \text{ or } \begin{pmatrix} 3\\ 3.4\\ 0.8 \end{pmatrix}, \left\{\overline{OE}\right\} = \begin{pmatrix} -1\\ \frac{33}{5}\\ \frac{16}{5} \end{pmatrix} \text{ or } \begin{pmatrix} -1\\ 6.6\\ 3.2 \end{pmatrix}$	At leas	at one set of coordinates are correct.	A1
	$\left(\begin{array}{c} 3\\ \frac{4}{5} \end{array}\right) \left(\begin{array}{c} 0.8 \end{array}\right) \left(\begin{array}{c} 3.2 \\ \frac{16}{5} \end{array}\right) \left(\begin{array}{c} 3.2 \\ 3.2 \end{array}\right)$	Both sets	s of coordinates are correct.	A1
				[5] 15

		Question 8 Notes				
8. (a)	B1	Allow $A(3, 5, 0)$ or $3\mathbf{i} + 5\mathbf{j}$ or $3\mathbf{i} + 5\mathbf{j} + 0\mathbf{k}$ or $\begin{pmatrix} 3\\5\\0 \end{pmatrix}$ of	3 or benefit of the doubt 5 0			
(b)	A1	Correct vector equation using $\mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 = \mathbf{or} \ \text{Line } 2 =$ i.e. Writing $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \mathbf{d}$, where \mathbf{d} is a multiple of $\begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$.				
	Note	Allow the use of parameters μ or <i>t</i> instead of λ .				
(c)	M1	Finds the difference between \overline{OP} and their \overline{OA} and a	pplies Pythagoras to the result to find AP			
	Note	Allow M1A1 for $\begin{pmatrix} 2\\0\\2 \end{pmatrix}$ leading to $AP = \sqrt{(2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$.				
(d)	Note	For both the M1 and dM1 marks \overrightarrow{AP} (or \overrightarrow{PA}) must be \overrightarrow{OP} and their \overrightarrow{OA} from part (a).	the vector used in part (c) or the difference			
	Note	Applying the dot product formula correctly without cos				
	Note	<i>Evaluating</i> the dot product (i.e. $(-2)(-5) + (0)(4) + (2)$	(3)) is not required for M1 and dM1 marks.			
	Note In part (d) allow one slip in writing \overrightarrow{AP} and \mathbf{d}_2					
	Note	Note $\cos \theta = \frac{-10 + 0 - 6}{\sqrt{8} \cdot \sqrt{50}} = -\frac{4}{5}$ followed by $\cos \theta = \frac{4}{5}$ is fine for A1 cso				
	Note	Give M1dM1A1 for $\{\cos \theta = \} = \frac{\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -10 \\ 8 \\ 6 \end{pmatrix}}{\sqrt{8} \cdot 10\sqrt{2}} = \frac{20 + 12}{40} = \frac{4}{5}$				
	Note	Allow final A1 (ignore subsequent working) for $\cos\theta$ =	= 0.8 followed by 36.869°			
	Alternativ	e Method: Vector Cross Product				
	Only app	ly this scheme if it is clear that a candidate is applying				
	$\overline{AP} \times \mathbf{d}_2$	$= \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \times \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 2 \\ -5 & 4 & 3 \end{vmatrix} = -8\mathbf{i} - 4\mathbf{j} - 8\mathbf{i}$	$\mathbf{x} \left\{ \begin{array}{c} \text{Realisation that the vector} \\ \text{cross product is required} \\ \text{between their} \\ \left(\overline{AP} \text{ or } \overline{PA} \right) \text{ and} \\ \pm K \mathbf{d}_2 \text{ or } \pm K \mathbf{d}_1 \end{array} \right \mathbf{M} 1$			
	sin	$\theta = \frac{\sqrt{(-8)^2 + (-4)^2 + (-8)^2}}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}}$	Applies the vector product formula between their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$ dM1			
		$\sin \theta = \frac{12}{\sqrt{8}.\sqrt{50}} = \frac{3}{5} \Rightarrow \underline{\cos \theta} = \frac{4}{5}$	$\cos\theta = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20}$ A1			
(e)	Note	Allow M1;A1 for $\frac{1}{2}(2\sqrt{2})^2 \sin(36.869^\circ)$ or $\frac{1}{2}(2\sqrt{2})^2 \sin(180^\circ - 36.869^\circ)$; = awrt 2.40 Candidates must use their θ from part (d) or apply a correct method of finding their $\sin \theta = \frac{3}{5}$ from their $\cos \theta = \frac{4}{5}$				
	Note					

6666

		Question 8 Notes Contin	nued				
8. (f)	Note	Allow the first M1A1 for deducing $\lambda = \frac{2}{5}$ or $\lambda =$	$-\frac{2}{5}$ from no incorrect working				
	SC	Allow special case 1 st M1 for $\lambda = 2.5$ from comparing lengths or from no working					
	Note	Give 1 st M1 for $\sqrt{(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2} = (\text{their } 2\sqrt{2})$					
	Note	Give 1 st M0 for $(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2}) \text{ or equivalent}$ Give 1 st M1 for $\lambda = \frac{\text{their } AP = \sqrt[8]{2}\sqrt{2}}{\sqrt{(-5)^2 + (4)^2 + (3)^2}}$ and 1 st A1 for $\lambda = \frac{2\sqrt{2}}{5\sqrt{2}}$					
	Note						
	Note	So $\left\{ \hat{\mathbf{d}}_1 = \frac{1}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix} \Rightarrow \right\}$ "vector" = $\frac{2\sqrt{2}}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ is M1A1					
	Note	The 2^{nd} dM1 in part (f) can be implied for at least 2 (out of 6) correct <i>x</i> , <i>y</i> , <i>z</i> ordinates from their values of λ .					
	Note	Giving their "coordinates" as a column vector or position vector is fine for the final A1A1.					
	CAREFUL	Putting l_2 equal to A gives					
		$\begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix} = \begin{pmatrix} 3\\5\\0 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = \frac{2}{5}\\\lambda = 0\\\lambda = -\frac{2}{3} \end{pmatrix}$ Give M0 dM0 for finding and using $\lambda = \frac{2}{5}$ from this incorrect method.					
	CAREFUL	Putting $\lambda \mathbf{d}_2 = \overrightarrow{AP}$ gives					
		$\lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = -\frac{2}{5} \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{pmatrix}$	Give M0 dM0 for finding and using $\lambda = -\frac{2}{5}$ from this incorrect method.				
	General	You can follow through the part (c) answer of their $AP = 2\sqrt{2}$ for (d) M1dM1, (e) M1, (f) M1dM1					
	General	You can follow through their \mathbf{d}_2 in part (b) for ((d) M1dM1, (f) M1dM1.				