www.mystudybro.com

Mathematics C4

6666

Past Paper

This resource was created and owned by Pearson Edexcel

Vrite your name here Surname	Other nan	nes
Pearson Edexcel GCE	Centre Number	Candidate Number
Core Mat	thomatic	CA
Advanced	liiematics	5 C4
	lorning	Paper Reference 6666/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 6 7 1 8 A 0 1 3 2

Turn over ▶

This resource was created and owned by Pearson Edexcel

Leave blank

Use the binomial series to find the expansion of

$$\frac{1}{\left(2+5x\right)^{3}}, \qquad \left|x\right| < \frac{2}{5}$$

in ascending powers of x, up to and including the term in x^3 . Give each coefficient as a fraction in its simplest form.

(6)

Past Paper (Mark Scheme)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

ıst Paper (Mar	Mark Scheme) This resource was created and owned by Pearson Edexcel						
Question Number	Scheme	Notes	Marks				
	$\left\{ \frac{1}{\left(2+5x\right)^3} = \right\} (2+5x)^{-3}$	Writes down $(2+5x)^{-3}$ or uses power of -3	M1				
	$= (2)^{-3} \left(1 + \frac{5x}{2}\right)^{-3} = \frac{1}{8} \left(1 + \frac{5x}{2}\right)^{-3}$ $= \frac{2^{-3} \text{ or } \frac{1}{8}}{2}$						
	$ = \left\{ \frac{1}{8} \right\} \left[1 + (-3)(kx) + \frac{(-3)(-4)}{2!} (kx)^2 + \frac{(-3)(-4)(-3)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)}{3!} (kx)^2 + \frac{(-3)(-4)(-4)}{3!} (kx)^2 + (-3)$	$\frac{-5)}{(kx)^3}$	5+	see notes	M1 A1		
	$ = \left\{ \frac{1}{8} \right\} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} \left(\frac{5x}{2} \right)^2 + \frac{(-3)(-4)(-3)}{3!} \right] $	(-5) $\left(\frac{5x}{2}\right)$	+				
	$= \frac{1}{8} \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$						
	$= \frac{1}{8} \left[1 - 7.5x + 37.5x^2 - 156.25x^3 + \dots \right]$						
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ $\mathbf{or} \frac{1}{8} - \frac{15}{16}x; + 4\frac{11}{16}x^2 - 19\frac{17}{32}x^3 + \dots$						
	0 10 10 32						
					6		
Way 2	$f(x) = (2+5x)^{-3}$ Writ	tes dowr		or uses power of -3	M1		
	$f''(x) = 300(2+5x)^{-5}, f'''(x) = -7500(2+5x)^{-6}$		Corr	rect $f''(x)$ and $f'''(x)$	B1		
	$f'(x) = -15(2+5x)^{-4}$		<u>±</u>	$a(2+5x)^{-4}, \ a \neq \pm 1$	M1		
	$\Gamma(x) = 13(2 + 3x)$			$-15(2+5x)^{-4}$	A1 oe		
	$\begin{cases} \therefore f(0) = \frac{1}{8}, f'(0) = -\frac{15}{16}, f''(0) = \frac{75}{8} \text{ and } f'''(0) = \end{cases}$	$-\frac{1875}{16}$	}				
	So, $f(x) = \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$			Same as in Way 1	A1; A1		
	2				[6]		
Way 3	$(2+5x)^{-3}$ Same as in Way 1						
	Same as in Way 1						
	$= (2)^{-3} + (-3)(2)^{-4}(5x) + \frac{(-3)(-4)}{2!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-3)(-4)}{3!}(2)^{-5}(5x)^2 + \frac{(-3)(-4)(-3)(-4)}{3!}(2)^{-5}(2)^{$	All four terms correct	M1 A1				
	$= \frac{1}{8} - \frac{15}{16}x; + \frac{75}{16}x^2 - \frac{625}{32}x^3 + \dots$ Same as in Way						
	Note: Terms can be simplified or un-sim			1 1 st A1	[6]		
	Note: The terms in C need						
	So ${}^{-3}C_0(2)^{-3} + {}^{-3}C_1(2)^{-4}(5x) + {}^{-3}C_2(2)$		-	$(5x)^3$			
	without further working is F	אינער אינער אינער	UI AU				

Mathematics C4

Past Paper (Mark Scheme)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

		Question 1 Notes							
1.	1st M1	mark can be implied by a constant term of $(2)^{-3}$ or $\frac{1}{8}$.							
	<u>B1</u>	$ \underline{2^{-3}} $ or $ \underline{\frac{1}{8}} $ outside brackets or $ \underline{\frac{1}{8}} $ as candidate's constant term in their binomial expansion.							
	2 nd M1	Expands $(+kx)^{-3}$, $k = a$ value $\neq 1$, to give any 2 terms out of 4 terms simplified or unsimplified,							
		Eg: $1 + (-3)(kx)$ or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ or $1 + \dots + \frac{(-3)(-4)}{2!}(kx)^2$							
	or $\frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$ are fine for M1.								
	1st A1	A correct simplified or un-simplified $1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \frac{(-3)(-4)(-5)}{3!}(kx)^3$							
		expansion with consistent (kx) . Note that (kx) must be consistent and $k = a$ value $\neq 1$. (on the RHS, not necessarily the LHS) in a candidate's expansion.							
	Note You would award B1M1A0 for $\frac{1}{8} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} \left(5x \right)^2 + \frac{(-3)(-4)(-5)}{3!} \left(\frac{5x}{2} \right)^2 \right]$								
		because (kx) is not consistent.							
	Note Incorrect bracketing: $= \left\{ \frac{1}{8} \right\} \left[1 + (-3) \left(\frac{5x}{2} \right) + \frac{(-3)(-4)}{2!} \left(\frac{5x^2}{2} \right) + \frac{(-3)(-4)(-5)}{3!} \left(\frac{5x^2}{2} \right) \right]$								
		is M1A0 unless recovered.							
	2 nd A1	For $\frac{1}{8} - \frac{15}{16}x$ (simplified) or also allow $0.125 - 0.9375x$.							
	3rd A1	Accept only $\frac{75}{16}x^2 - \frac{625}{32}x^3$ or $4\frac{11}{16}x^2 - 19\frac{17}{32}x^3$ or $4.6875x^2 - 19.53125x^3$							
	SC	If a candidate would otherwise score 2 nd A0, 3 rd A0 then allow Special Case 2 nd A1 for either							
		SC: $\frac{1}{8} \left[1 - \frac{15}{2} x ; \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots + \frac{75}{2} x^2 + \dots \right]$ or SC: $\frac{1}{8} \left[1 + \dots - \frac{625}{4} x^3 + \dots \right]$							
		SC: $\lambda \left[1 - \frac{15}{2}x + \frac{75}{2}x^2 - \frac{625}{4}x^3 + \dots \right]$ or SC: $\left[\lambda - \frac{15\lambda}{2}x + \frac{75\lambda}{2}x^2 - \frac{625\lambda}{4}x^3 + \dots \right]$							
		(where λ can be 1 or omitted), where each term in the $\left[\dots\right]$ is a simplified fraction or a decimal							
	SC	Special case for the 2 nd M1 mark Award Special Case 2 nd M1 for a correct simplified or un-simplified							
		$1 + n(kx) + \frac{n(n-1)}{2!}(kx)^2 + \frac{n(n-1)(n-2)}{3!}(kx)^3$ expansion with their $n \neq -3$, $n \neq positive$ integer							
		and a consistent (kx) . Note that (kx) must be consistent (on the RHS, not necessarily the LHS)							
		in a candidate's expansion. Note that $k \neq 1$.							
	Note	Ignore extra terms beyond the term in x^3							
	Note	You can ignore subsequent working following a correct answer.							

DO NOT WRITE IN THIS AREA

2.

Figure 1 shows a sketch of part of the curve with equation $y = x^2 \ln x$, $x \ge 1$

The finite region R, shown shaded in Figure 1, is bounded by the curve, the x-axis and the line x = 2

The table below shows corresponding values of x and y for $y = x^2 \ln x$

x	1	1.2	1.4	1.6	1.8	2
у	0	0.2625		1.2032	1.9044	2.7726

(a) Complete the table above, giving the missing value of y to 4 decimal places.

(1)

(b) Use the trapezium rule with all the values of y in the completed table to obtain an estimate for the area of R, giving your answer to 3 decimal places.

(3)

(c) Use integration to find the exact value for the area of R.

(5)

Question Number	Scheme							Mar	ks	
2.	X	1	1.2	1.4	1.6	1.8	2	$y = x^2 \ln x$		
2.	у	0	0.2625	0.659485	1.2032	1.9044	2.7726	y - x m x		
(a)	${\mathbf A} \mathbf{t} \ x = 1$	1.4,} y	= 0.6595 (4	4 dp)				0.6595	B1 ca	10
								-		[1]
								Outside brackets		
	$\frac{1}{2} \times (0.2)$	$) \times [0 +$	2.7726 + 2	(0.2625 + the	eir 0.6595 +	1.2032 + 1	.9044)	$\frac{1}{2}$ × (0.2) or $\frac{1}{10}$	В1 о.е	÷.
(b)	2			`				For structure of		
	{Note: T	he "0"	does not ha	ve to be inclu	ıded in [.]}		[]	M1	
	ſ 1)					L J		
	$\left\{ = \frac{1}{10} (1 - \frac{1}{10}) \right\}$	0.8318)	= 1.0831	8 = 1.083 (3 6)	dp)		anything the	hat rounds to 1.083	A1	
			,							[3]
			[,, _ 1	$n \times du$	1					
(c)	$\int_{\mathbf{I}} - \int_{\mathbf{r}^2}$	ln vdv	$\bigcup_{n=1}^{n-1}$	$n x \Rightarrow \frac{du}{dx} = x^2 \Rightarrow v = \frac{1}{2}$	$\frac{-}{x}$					
Way 1	$\begin{cases} 1 - \int x \end{cases}$	шхих	$\int dv = \int$	$r^2 \rightarrow v = \frac{1}{2}$	$\frac{1}{2}$					
			dx^{-1}	$\lambda \rightarrow V - \frac{1}{2}$	3 1					
					Ei	ther $x^2 \ln x$	$x \to \pm \lambda x^3 \ln x$	$x - \int \mu x^3 \left(\frac{1}{x}\right) \{dx\}$		
								• ()	M1	
	$=\frac{x^3}{100} \ln x$	$-\int \frac{x^3}{x^3}$	$-\left(\frac{1}{2}\right)\left\{dx\right\}$		(or $\pm \lambda x^3 \ln x$	$\mu x - \mu x^2 \left\{ d \right\}$	$\{x\}$, where $\lambda, \mu > 0$		
	$\int \int $									
	$x^2 \ln x \to \frac{x^3}{3} \ln x - \int \frac{x^3}{3} \left(\frac{1}{x}\right) \{dx\},$					A1				
							simplifi	ed or un-simplified		
	$=\frac{x^3}{3}\ln x$	$-\frac{x^3}{9}$				$\frac{x^3}{3}$ ln x –	$\frac{x^3}{9}$, simplifie	ed or un-simplified	A1	
		ſr	2 2	72)				nt on the previous		-
	Area(R)	$\mathbf{r} = \left\{ \left \begin{array}{c} \mathbf{j} \\ - \end{array} \right \right\}$	$\frac{x^{3}}{2} \ln x - \frac{x^{3}}{2}$		$2 - \frac{8}{10} - \left(0\right)$	$-\frac{1}{}$. Applies limits of	dM1	
		ĮL	3 9	\rfloor_1 \rfloor \backslash 3	9) (9)		and 1 and subtracts correct way round		
	$=\frac{8}{-\ln 2}$	7							A 1	-
	$=$ $\frac{-\ln 2}{3}$	- - 9					$\frac{-\ln 2}{9}$	or $\frac{1}{9}(24\ln 2 - 7)$	A1 oe	cso
					([5]
			_		$u = x^2$	$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}}$	$\frac{u}{x} = 2x$ $v = x \ln x - x$			
(c) Way 2	$I = x^2(x)$	$\ln x - 1$	$(x) - \int 2x(x)$	$\ln x - x) \mathrm{d}x$		d	x	}		
way 2	Ì		J	•	$\left \frac{\mathrm{d}v}{\mathrm{d}t} \right = \ln t$	$1x \Rightarrow 1$	$v = x \ln x - x$			
					\(\dx			J		
	So, 3I=	$x^2(x \ln$	$(x-x)+\int 2^{x}$	$x^2 \{ dx \}$						
					A full m	ethod of a	pplying $u = 1$	x^2 , $v' = \ln x$ to give		
								_	M1	
	and $I = \frac{1}{3}x^2(x\ln x - x) + \frac{1}{3}\int 2x^2 \{dx\}$ $\frac{\pm \lambda x^2(x\ln x - x) \pm \mu \int x^2 \{dx\}}{\frac{1}{3}x^2(x\ln x - x) + \frac{1}{3}\int 2x^2 \{dx\}}$									
] 3						A1			
	1 .		2 -			r ³		ed or un-simplified		
	$= \frac{1}{3}x^2(3)$	$x \ln x -$	$(x) + \frac{2}{9}x^3$			$\frac{\lambda}{3}$ ln x –	$\frac{3}{9}$, simplifie	ed or un-simplified	A1	
					Thei	award dN	IIAI in the s	same way as above	M1 A	1
										[5]
										9

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

st Paper (Mai		Question 2 Notes						
2. (a)	B1	0.6595 correct answer only. Look for this on the table or in the candidate's working.						
(b)	B1	Outside brackets $\frac{1}{2} \times (0.2)$ or $\frac{1}{2} \times \frac{1}{5}$ or $\frac{1}{10}$ or equivalent.						
	M1	For structure of trapezium rule [
	Note							
	A1	anything that rounds to 1.083						
	Note Note							
	Note	Award B1M1A1 for $\frac{1}{10}(2.7726) + \frac{1}{5}(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) = \text{awrt } 1.083$						
	Brack	eting mistake: Unless the final answer implies that the calculation has been done correctly						
	Award	B1M0A0 for $\frac{1}{2}(0.2) + 2(0.2625 + \text{their } 0.6595 + 1.2032 + 1.9044) + 2.7726$ (answer of 10.9318)						
	Award	B1M0A0 for $\frac{1}{2}$ (0.2)(2.7726) + 2(0.2625 + their 0.6595 + 1.2032 + 1.9044) (answer of 8.33646)						
	Altern	native method: Adding individual trapezia						
	Area $\approx 0.2 \times \left[\frac{0 + 0.2625}{2} + \frac{0.2625 + "0.6595"}{2} + \frac{"0.6595" + 1.2032}{2} + \frac{1.2032 + 1.9044}{2} + \frac{1.9044 + 2.7726}{2} \right] = 1.08318$							
	B1	0.2 and a divisor of 2 on all terms inside brackets						
	M1 First and last ordinates once and two of the middle ordinates inside brackets ignoring							
(-)	A1	anything that rounds to 1.083						
(c)	A1 Note	Exact answer needs to be a two term expression in the form $a \ln b + c$ Give A1 e.g. $\frac{8}{3} \ln 2 - \frac{7}{9}$ or $\frac{1}{9} (24 \ln 2 - 7)$ or $\frac{4}{3} \ln 4 - \frac{7}{9}$ or $\frac{1}{3} \ln 256 - \frac{7}{9}$ or $-\frac{7}{9} + \frac{8}{3} \ln 2$						
		or $\ln 2^{\frac{8}{3}} - \frac{7}{9}$ or equivalent.						
	Note	Give final A0 for a final answer of $\frac{8 \ln 2 - \ln 1}{3} - \frac{7}{9}$ or $\frac{8 \ln 2}{3} - \frac{1}{3} \ln 1 - \frac{7}{9}$ or $\frac{8 \ln 2}{3} - \frac{8}{9} + \frac{1}{9}$						
		or $\frac{8}{3} \ln 2 - \frac{7}{9} + c$						
	Note	$\left[\frac{x^3}{3} \ln x - \frac{x^3}{9}\right]_1^2$ followed by awrt 1.07 with no correct answer seen is dM1A0						
	Note	Give dM0A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \frac{1}{9}$ (adding rather than subtracting)						
	Note	Allow dM1A0 for $\left[\frac{x^3}{3}\ln x - \frac{x^3}{9}\right]_1^2 \rightarrow \left(\frac{8}{3}\ln 2 - \frac{8}{9}\right) - \left(0 + \frac{1}{9}\right)$						
	SC	A candidate who uses $u = \ln x$ and $\frac{dv}{dx} = x^2$, $\frac{du}{dx} = \frac{\alpha}{x}$, $v = \beta x^3$, writes down the correct "by parts"						
		formula but makes only one error when applying it can be awarded Special Case 1st M1.						

Past Paper

Leave blank

The curve C has equation

$$2x^2y + 2x + 4y - \cos(\pi y) = 17$$

(a) Use implicit differentiation to find $\frac{dy}{dx}$ in terms of x and y.

(5)

The point P with coordinates $\left(3, \frac{1}{2}\right)$ lies on C.

The normal to C at P meets the x-axis at the point A.

(b) Find the x coordinate of A, giving your answer in the form $\frac{a\pi + b}{a}$ where a, b, c and d are integers to be determined.

(4)

DO NOT WRITE IN THIS AREA

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks		
3.	$2x^2y + 2x + 4y - \cos(\pi y) =$: 17			
(a) Way 1	$\left\{\frac{\cancel{x}\cancel{x}}{\cancel{x}\cancel{x}}\right\} \left(\underbrace{\frac{4xy + 2x^2 \frac{dy}{dx}}{dx}}\right) + 2 + 4\frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx} = 0$				
	$\frac{\mathrm{d}y}{\mathrm{d}x} \Big(2x^2 + 4 + \pi \sin(\pi y) \Big) + 4xy +$	2=0		dM1	
	$\left\{ \frac{dy}{dx} = \right\} \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{2x^2 - 4xy - 2}{-2x^2 - 4xy - 2}$	$\frac{4xy+2}{4-\pi\sin(\pi y)}$	Correct answer or equivalent	A1 cso	
(b)	At $\left(3, \frac{1}{2}\right)$, $m_{\text{T}} = \frac{\text{d}y}{\text{d}x} = \frac{-4(3)(\frac{1}{2}) - 2}{2(3)^2 + 4 + \pi \sin\left(\frac{1}{2}\pi\right)}$	i	Substituting $x = 3$ & $y = \frac{1}{2}$ nto an equation involving $\frac{dy}{dx}$	[5] M1	
	$m_{ m N}=rac{22+\pi}{8}$		$m_{\rm N} = \frac{-1}{m_{\rm T}}$ to find a numerical $m_{\rm N}$ be implied by later working	M1	
	• $y - \frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(x - 3)$ • $\frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(3) + c \Rightarrow c = \frac{1}{2} - \frac{66 + 3\pi}{8}$ $\Rightarrow y = \left(\frac{22 + \pi}{8}\right)x + \frac{1}{2} - \frac{66 + 3\pi}{8}$ Cuts x -axis $\Rightarrow y = 0$ $\Rightarrow -\frac{1}{2} = \left(\frac{22 + \pi}{8}\right)(x - 3)$	$y = m_{N}x + $ with a num	$y - \frac{1}{2} = m_{\text{N}}(x - 3) \text{ or}$ $c \text{ where } \frac{1}{2} = (\text{their } m_{\text{N}})3 + c$ $\text{nerical } m_{\text{N}} \ (\neq m_{\text{T}}) \text{ where } m_{\text{N}} \text{ is}$ $\text{erms of } \mathcal{T} \text{ and sets } y = 0 \text{ in}$ $\text{their normal equation.}$	dM1	
	So, $\left\{ x = \frac{-4}{22 + \pi} + 3 \implies \right\} \ x = \frac{3\pi + 62}{\pi + 22}$	$\frac{3\pi}{\pi} + 2$	$\frac{62}{22}$ or $\frac{6\pi + 124}{2\pi + 44}$ or $\frac{62 + 3\pi}{22 + \pi}$	A1 o.e.	
				9	
(a) Way 2	$\left\{ \underbrace{\frac{dx}{dy}} \right. \times \left\{ \underbrace{\left(\underbrace{4xy\frac{dx}{dy} + 2x^2}\right)}_{} + 2\frac{dx}{dy} + 4 + \pi s \right\}$	$\sin(\pi y) = 0$		Ml <u>Al</u> <u>Bl</u>	
	$\frac{\mathrm{d}x}{\mathrm{d}y}(4xy+2)+2x^2+4+\pi\sin(\pi$	y) = 0		dM1	
	$\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{4xy + 2}{-2x^2 - 4 - \pi \sin(\pi y)}$ Correct answer or equivalent				
	Question 3 Notes				
3. (a)	Note Writing down from no working $ \frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or } \frac{dy}{dx} = \frac{4xy + 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ s} $	$\frac{4xy+2}{-2x^2-4-\pi \sin^2 \theta}$ cores M1A0B1M1	A0		
	Note Few candidates will write $4xy dx + 2x$ $\frac{dy}{dx} = \frac{-4xy - 2}{2x^2 + 4 + \pi \sin(\pi y)} \text{ or equiva}$	-			

Mathematics C4 6666

Summer 2016 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

		Question 3 Notes Continued						
3. (a) Way 1	M1	Differentiates implicitly to include either $2x^2 \frac{dy}{dx}$ or $4y \to 4\frac{dy}{dx}$ or $-\cos(\pi y) \to \pm \lambda \sin(\pi y) \frac{dy}{dx}$						
		(Ignore $\left(\frac{dy}{dx}\right)$). λ is a constant which can be 1.						
	1st A1	$2x + 4y - \cos(\pi y) = 17 \to 2 + 4\frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx} = 0$						
	Note	$4xy + 2x^2 \frac{dy}{dx} + 2 + 4\frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx} \rightarrow 2x^2 \frac{dy}{dx} + 4\frac{dy}{dx} + \pi \sin(\pi y) \frac{dy}{dx} = -4xy - 2$						
		will get 1^{st} A1 (implied) as the "=0" can be implied by the rearrangement of their equation.						
	B1	$2x^2y \to 4xy + 2x^2 \frac{\mathrm{d}y}{\mathrm{d}x}$						
	Note	If an extra term appears then award 1 st A0.						
	dM1	Dependent on the first method mark being awarded.						
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.						
	ie. $\frac{dy}{dx}(2x^2 + 4 + \pi \sin(\pi y)) + \dots = \dots$ Note Writing down an extra $\frac{dy}{dx} = \dots$ and then including it in their factorisation is fine for							
	Final A1 cso: If the candidate's solution is not completely correct, then do not give this mark.							
()	Note	Final A1 isw: You can, however, ignore subsequent working following on from correct solution.						
(a)	Way 2	Apply the mark scheme for Way 2 in the same way as Way 1.						
(b)	1 st M1	M1 can be gained by seeing at least one example of substituting $x = 3$ and at least one example of						
		substituting $y = \frac{1}{2}$. E.g. " $-4xy$ " \rightarrow " -6 " in their $\frac{dy}{dx}$ would be sufficient for M1, unless it is clear						
		that they are instead applying $x = \frac{1}{2}$, $y = 3$.						
	3 rd M1	is dependent on the first M1.						
	Note	The 2 nd M1 mark can be implied by later working.						
	Eg. Award 2 nd M1 3 rd M1 for $\frac{\frac{1}{2}}{3-x} = \frac{-1}{\text{their } m_T}$							
	Note	We can accept $\sin \pi$ or $\sin \left(\frac{\pi}{2}\right)$ as a numerical value for the 2 nd M1 mark.						
		But, $\sin \pi$ by itself or $\sin \left(\frac{\pi}{2}\right)$ by itself are not allowed as being in terms of π for the 3 rd M1 mark.						
		The 3 rd M1 can be accessed for terms containing $\pi \sin\left(\frac{\pi}{2}\right)$.						

DO NOT WRITE IN THIS AREA

Leave blank

The rate of decay of the mass of a particular substance is modelled by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, \qquad t \geqslant 0$$

where *x* is the mass of the substance measured in grams and *t* is the time measured in days.

Given that x = 60 when t = 0,

(a) solve the differential equation, giving x in terms of t. You should show all steps in your working and give your answer in its simplest form.

(4)

(b) Find the time taken for the mass of the substance to decay from 60 grams to 20 grams. Give your answer to the nearest minute.

(3)

Question	G.1	X7 .	3.7. 1		
Number	Scheme	Notes	Marks		
4.	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \geqslant 0$				
(a) Way 1	$\int \frac{1}{x} \mathrm{d}x = \int -\frac{5}{2} \mathrm{d}t$	Separates variables as shown. dx and be in the wrong positions, though thi implied by later working. Ignore the	s mark can be B1		
	$\ln x = -\frac{5}{2}t + c$	Integrates both sides to give either $\pm \frac{\alpha}{x} \to \pm \alpha \ln \alpha$ $\alpha = -\frac{5}{2}t + c$ or $\pm k \to \pm kt$ (with respect to t); $k, \alpha \neq 0$			
	$\frac{1}{2}$	$\ln x = -\frac{5}{2}t + c , \text{ in}$			
	$\{t=0, x=60 \Longrightarrow\} \ln 60 = c$	Finds their c and uses c	-		
	$\ln x = -\frac{5}{2}t + \ln 60 \Rightarrow \underline{x = 60e^{-\frac{5}{2}t}} \text{ or }$	to achieve $x = 60e^{\frac{5}{2}t}$ with no incorrect	e ²		
			[4]		
(a) Way 2	$\frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x} \text{or} t = \int -\frac{2}{5x} \mathrm{d}x$	Either $\frac{\mathrm{d}t}{\mathrm{d}x} = -\frac{2}{5x}$ or t	$t = \int -\frac{2}{5x} dx$ B1		
	2	Integrates both either $t =$ or $\pm \alpha \ln px$	○ N/1		
	$t = -\frac{2}{5}\ln x + c$	$t = -\frac{2}{5}\ln x + c, \text{ in}$			
	$\left\{t=0, x=60 \Rightarrow\right\} c = \frac{2}{5}\ln 60 \Rightarrow t=-$	orrect algebra			
	to achieve $r = 60e^{-\frac{2}{2}t}$ or $r = \frac{60}{2}$				
	$\Rightarrow -\frac{5}{2}t = \ln x - \ln 60 \Rightarrow \underline{x = 60e^{-\frac{5}{2}t}}$	or $x = \frac{3}{e^{\frac{5}{2}t}}$ with no incorrect	working seen A1 cso		
			[4]		
(a) Way 3	$\int_{60}^{x} \frac{1}{x} dx = \int_{0}^{t} -\frac{5}{2} dt$		Ignore limits B1		
	$\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t}$	Integrates both sides to give either $\pm \cdot$ or $\pm k \rightarrow \pm kt$ (with respect to	X 1V11		
	$\begin{bmatrix} \lim x \end{bmatrix}_{60} = \begin{bmatrix} -\frac{1}{2}t \end{bmatrix}_{0}$	$\left[\ln x\right]_{60}^{x} = \left[-\frac{5}{2}t\right]_{0}^{t} \text{ including the}$			
	$\ln x - \ln 60 = -\frac{5}{2}t \implies \underline{x = 60e^{-\frac{5}{2}t}}$ or	$c = \frac{60}{e^{\frac{5}{2}t}}$ Correct algebra leading to a	correct result A1 cso		
		Substitutes = 20 into an aquati-	[4]		
(b)	Substitutes $x = 20$ into an equation in the form of either $x = \pm \lambda e^{\pm \mu t} \pm \beta$ or $x = \pm \lambda e^{\pm \mu t \pm \alpha \ln \delta x}$ or $\pm \alpha \ln \delta x = \pm \mu t \pm \beta$ or $t = \pm \lambda \ln \delta x \pm \beta$; $\alpha, \lambda, \mu, \delta \neq 0$ and β can be 0				
	- (/	dependent on the prev ses correct algebra to achieve an equation	ious M mark of the form of		
	${= 0.4394449 (days)}$	either $t = A \ln \left(\frac{60}{20} \right)$ or $A \ln \left(\frac{20}{60} \right)$ or $A \ln 3$ or $A \ln 3$ or $A \ln 3$ 0 or $A \ln 3$	$A \operatorname{III}\left(\frac{3}{3}\right)$ o.e. of		
	Note: t must be greater than 0 $t = A(\ln 20 - \ln 60)$ or $A(\ln 60 - \ln 20)$ o.e. $(A \in \square, t > 0)$ $\Rightarrow t = 632.8006 = 633$ (to the nearest minute) awrt 633 or 10 hours and awrt 33 minutes				
	$\Rightarrow t = 632.8006 = 633$ (to the nearest minute) awrt 633 or 10 hours and awrt 33 minutes Note: dM1 can be implied by $t = \text{awrt } 0.44$ from no incorrect working.				
	r	-	7		

Question Number		Scheme		Notes		
4.		$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{5}{2}x, x \in \mathbb{R}, x \geqslant 0$				
(a) Way 4	$\int \frac{2}{5}$	$\frac{2}{x} \mathrm{d}x = -\int \mathrm{d}t$	Separates variables as shown. dx and dt should not be in the wrong positions, though this mark can be implied by later working. Ignore the integral signs.			B1
		$\frac{2}{5}\ln(5x) = -t + c$	or :	_	tes both sides to give either $\pm \alpha \ln(px)$ $\pm kt$ (with respect to t); k , $\alpha \neq 0$; $p > 0$	M1
		$5^{\operatorname{III}(3\lambda)} = i + \epsilon$			$\frac{2}{5}\ln(5x) = -t + c, \text{ including "} + c"$	A1
		$(x = 60 \Rightarrow) \frac{2}{5} \ln 300 = c$			Finds their c and uses correct algebra	
	$\frac{2}{5}\ln(5)$	$(5x) = -t + \frac{2}{5}\ln 300 \implies x = 60e^{-\frac{5}{2}}$	or		to achieve $x = 60e^{-\frac{5}{2}t}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$	
	$x = \frac{60}{e^{\frac{5}{2}}}$	0			with no incorrect working seen	A1 cso
_						[4]
(a) Way 5	$\left\{ \frac{\mathrm{d}t}{\mathrm{d}x} = \right.$	$-\frac{2}{5x} \Rightarrow \left. \begin{cases} t = \int_{60}^{x} -\frac{2}{5x} dx \end{cases} \right.$			Ignore limits	B1
				_	ates both sides to give either $\pm k \rightarrow \pm kt$	N/1
	$t = \left[-\frac{2}{5} \ln x \right]_{60}^{x}$		(with respect to t) or $\pm \frac{\alpha}{x} \rightarrow \pm \alpha \ln x$; $k, \alpha \neq 0$		M1	
			$t = \left[-\frac{2}{5} \ln x \right]_{60}^{x}$ including the correct limits		A1	
	-	$\frac{2}{5}\ln x + \frac{2}{5}\ln 60 \Rightarrow -\frac{5}{2}t = \ln x - \ln x$	160			
	$\Rightarrow \underline{x} =$	$x = \frac{60e^{-\frac{5}{2}t}}{e^{\frac{5}{2}t}}$ or $x = \frac{60}{e^{\frac{5}{2}t}}$		(Correct algebra leading to a correct result	A1 cso
				Duestion	4 Notes	[4]
4. (a)	B1	For the correct separation of vari				
	Note	B1 can be implied by seeing eith	er ln 2	$x = -\frac{5}{2}$	$t + c$ or $t = -\frac{2}{5} \ln x + c$ with or without	+c
	Note	B1 can also be implied by seeing	$g[\ln x]$	$\frac{x}{60} = \begin{bmatrix} -\frac{1}{2} \end{bmatrix}$	$\left[\frac{5}{2}t\right]_{0}^{t}$	
	Note	Allow A1 for $x = 60\sqrt{e^{-5t}}$ or x	$=\frac{60}{\sqrt{\mathrm{e}^{5t}}}$	with n	o incorrect working seen	
	Note	Give final A0 for $x = e^{-\frac{5}{2}t} + 60$	→ x =	$= 60e^{-\frac{5}{2}t}$		
	Note	I .			final answer (without seeing $x = 60e^{-\frac{5}{2}t}$)	
	Note				t methods that candidates can give.	
	Note		wn $x =$	$= 60e^{-\frac{5}{2}t}$	or $x = \frac{60}{e^{\frac{5}{2}t}}$ with no evidence of working of	or integration
(b)	A 1	Seen.	only co	an in no	rt (b)	
(b)	A1 Note	You can apply cso for the work of Give dM1(Implied) A1 for $\frac{5}{t}$			by $t = \text{awrt } 633 \text{ from no incorrect working}$	ng.
	Note	Z				-o·
	11016	Substitutes $x = 40$ into their equation from part (a) is M0dM0A0				

DO NOT WRITE IN THIS AREA

Leave blank

5.

Past Paper

Figure 2

Figure 2 shows a sketch of the curve C with parametric equations

$$x = 4 \tan t$$
, $y = 5\sqrt{3} \sin 2t$, $0 \leqslant t < \frac{\pi}{2}$

The point *P* lies on *C* and has coordinates $\left(4\sqrt{3}, \frac{15}{2}\right)$.

(a) Find the exact value of $\frac{dy}{dx}$ at the point *P*.

Give your answer as a simplified surd.

(4)

The point Q lies on the curve C, where $\frac{dy}{dx} = 0$

(b) Find the exact coordinates of the point Q.

(2)

Question Number		Scheme	Notes	Marks
5.	x = 4 ta	$\tan t, y = 5\sqrt{3}\sin 2t, \qquad 0 \leqslant t < \frac{\pi}{2}$		
(a) Way 1	Gi.	$\frac{dy}{dt} = 10\sqrt{3}\cos 2t$ $\frac{0\sqrt{3}\cos 2t}{4\sec^2 t} \left\{ = \frac{5}{2}\sqrt{3}\cos 2t\cos^2 t \right\}$	Either both x and y are differentiated correctly with respect to t or their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or applies $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$	M1
	dx	$4\sec^2 t$ $\left(\begin{array}{c}2\end{array}\right)$	Correct $\frac{dy}{dx}$ (Can be implied)	A1 oe
	$\int At P \bigg(4 \sqrt{4} \bigg)$	$\sqrt{3}, \frac{15}{2}, t = \frac{\pi}{3}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{10}{10}$	$\frac{0\sqrt{3}\cos\left(\frac{2\pi}{3}\right)}{4\sec^2\left(\frac{\pi}{3}\right)}$	dependent on the previous M mark Some evidence of substituting $t = \frac{\pi}{3}$ or $t = 60^{\circ}$ into their $\frac{dy}{dx}$	dM1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{5}{16}$	$\frac{15}{16\sqrt{3}}$ or $-\frac{15}{16\sqrt{3}}$	$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ from a correct solution only	A1 cso
				[4]
(b)	$\begin{cases} 10\sqrt{3}\cos \theta & 0 \end{cases}$	$2t = 0 \Rightarrow t = \frac{\pi}{4} $		
	So $x = 4 \text{ ta}$	$ \operatorname{an}\left(\frac{\pi}{4}\right), \ y = 5\sqrt{3}\sin\left(2\left(\frac{\pi}{4}\right)\right) $	At least one of either $x = 4 \tan\left(\frac{\pi}{4}\right)$ or $y = 5\sqrt{3} \sin\left(2\left(\frac{\pi}{4}\right)\right)$ or $x = 4$ or $y = 5\sqrt{3}$ or $y = 4$ or $y = 5\sqrt{3}$	M1
	Coordinate	es are $(4, 5\sqrt{3})$	$(4, 5\sqrt{3})$ or $x = 4, y = 5\sqrt{3}$	A1
		,		[2]
				6
			stion 5 Notes	
5. (a)	1 st A1	Correct $\frac{dy}{dx}$. E.g. $\frac{10\sqrt{3}\cos 2t}{4\sec^2 t}$ or $\frac{5}{2}$ or any equivalent form.	$\sqrt{3}\cos 2t\cos^2 t$ or $\frac{5}{2}\sqrt{3}\cos^2 t(\cos^2 t - \sin^2 t)$	
	Note	Give the final A0 for a final answer of $-\frac{10}{32}\sqrt{3}$ without reference to $-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$		
	Note	Give the final A0 for more than one v	value stated for $\frac{dy}{dx}$	
(b)	Note	Also allow M1 for either $x = 4 \tan(45)$	(i) or $y = 5\sqrt{3}\sin(2(45))$	
	Note	M1 can be gained by ignoring previous	,	
	Note	Give A0 for stating more than one set		
	Note	Writing $x = 4$, $y = 5\sqrt{3}$ followed by	$(5\sqrt{3},4)$ is A0.	

Mathematics C4 6666

Question Number	Scheme		Notes	Marks
5.	$x = 4\tan t, y = 5\sqrt{3}\sin 2t, \qquad 0 \leqslant t < \frac{\pi}{2}$			
(a) Way 2	$\tan t = \frac{x}{4} \Rightarrow \sin t = \frac{x}{\sqrt{(x^2 + 16)}}, \cos t = \frac{4}{\sqrt{(x^2 + 16)}} \Rightarrow \frac{1}{\sqrt{(x^2 + 16)}}$	$y = \frac{40\sqrt{3}x}{x^2 + 16}$		
	$\begin{cases} u = 40\sqrt{3}x & v = x^2 + 16 \\ \frac{du}{dx} = 40\sqrt{3} & \frac{dv}{dx} = 2x \end{cases}$			
	$\frac{dy}{dx} = \frac{40\sqrt{3}(x^2 + 16) - 2x(40\sqrt{3}x)}{(x^2 + 16)^2} \left\{ = \frac{40\sqrt{3}(16 - x^2)}{(x^2 + 16)^2} \right\}$		$\frac{\pm A(x^2 + 16) \pm Bx^2}{(x^2 + 16)^2}$	M1
	$ dx (x^2 + 16)^2 (x^2 + 16)^2 $	Correct $\frac{dy}{dx}$; sim	plified or un-simplified	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{40\sqrt{3}(48+16) - 80\sqrt{3}(48)}{(48+16)^2}$	Some e	the previous M mark evidence of substituting $x = 4\sqrt{3}$ into their $\frac{dy}{dx}$	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$		$-\frac{5}{16}\sqrt{3}$ or $-\frac{15}{16\sqrt{3}}$	A1 cso
		from a	a correct solution only	[4]
(a) Way 3	$y = 5\sqrt{3}\sin\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)$			[-3
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{2}{1+\left(\frac{x}{4}\right)^2}\right)\left(\frac{1}{4}\right)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm A\cos \theta$	$\cos\left(2\tan^{-1}\left(\frac{x}{4}\right)\right)\left(\frac{1}{1+x^2}\right)$	M1
	$ \frac{dx}{\left(\frac{x}{4}\right)\left(1+\left(\frac{x}{4}\right)\right)^{4}} $	Correct $\frac{dy}{dx}$; simp	olified or un-simplified.	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5\sqrt{3}\cos\left(2\tan^{-1}\left(\sqrt{3}\right)\right)\left(\frac{2}{1+3}\right)\left(\frac{1}{4}\right) \left\{ = 5\sqrt{3}\left(-\frac{1}{2}\right)\left(\frac{1}{2}\right)\right\}$	$\left\{\frac{1}{4}\right\}$ Some e	dependent on the previous M mark evidence of substituting $x = 4\sqrt{3}$ into their $\frac{dy}{dx}$	dM1
	$\frac{dy}{dx} = -\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$	fuom o	$-\frac{5}{16}\sqrt{3} \text{ or } -\frac{15}{16\sqrt{3}}$ a correct solution only	A1 cso
		Irom a	i correct solution omy	[4]

Past Paper

www.mystudybro.com This resource was created and owned by Pearson Edexcel

6666

Leave

blank

(i) Given that y > 0, find

$$\int \frac{3y - 4}{y(3y + 2)} \, \mathrm{d}y$$

(6)

(ii) (a) Use the substitution $x = 4\sin^2\theta$ to show that

$$\int_0^3 \sqrt{\left(\frac{x}{4-x}\right)} \, \mathrm{d}x = \lambda \int_0^{\frac{\pi}{3}} \sin^2 \theta \, \, \mathrm{d}\theta$$

where λ is a constant to be determined.

(5)

(b) Hence use integration to find

$$\int_0^3 \sqrt{\left(\frac{x}{4-x}\right)} \, \mathrm{d}x$$

giving your answer in the form $a\pi + b$, where a and b are exact constants.

(4)

Summer 2016 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

Mathematics C4 6666

Question Number	Scheme			N	Notes	Marks
6.	(i) $\int \frac{3y-4}{y(3y+2)} dy$, $y > 0$, (ii) $\int_0^3 \sqrt{\left(\frac{y}{4}\right)^2} dy$	$\frac{\overline{x}}{-x}$ dx, $x = \frac{x}{x}$	$=4\sin^2\theta$			
(i) Way 1	$\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 3y-4 = A(3y-4)$ $y=0 \Rightarrow -4 = 2A \Rightarrow A=-2$			See notes st one of their $B = 9$	M1 A1	
	$y = 0 \implies -4 = 2A \implies A = -2$ $y = -\frac{2}{3} \implies -6 = -\frac{2}{3}B \implies B = 9$				Both their $B = 9$	A1
			Integrates to g	_		
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{-2}{y} + \frac{9}{(3y+2)} \mathrm{d}y$	$\frac{A}{y} \rightarrow$	$\pm \lambda \ln y$ or $\frac{1}{2}$	$\frac{B}{3y+2)} \rightarrow 1$	$\pm \mu \ln(3y + 2)$ $A \neq 0, B \neq 0$	M1
		At lea	st one term co		owed through r from their B	A1 ft
	$= -2\ln y + 3\ln(3y+2) \left\{ + c \right\}$	$-2 \ln y +$	$3\ln(3y+2)$		$+3\ln(y+\frac{2}{3})$ ct bracketing,	A1 cao
		simp	lified or un-sii	mplified. C	an apply isw.	[6]
(ii) (a) Way 1	$\left\{ x = 4\sin^2\theta \Rightarrow \right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta \text{or} \frac{\mathrm{d}x}{\mathrm{d}\theta} =$	$4\sin 2\theta$ or	$dx = 8\sin\theta$	$\cos \theta d\theta$		B1
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}} \cdot 8\sin\theta\cos\theta \left\{ d\theta \right\} \text{or} \int \sqrt{\frac{4}{4-4}} d\theta$					M1
	$= \int \underline{\tan \theta} \cdot 8 \sin \theta \cos \theta \left\{ d\theta \right\} \text{ or } \int \underline{\tan \theta} \cdot 4 \sin 2\theta$	$O\left\{d\theta\right\}$	$\sqrt{\left(\frac{x}{4-x}\right)} \to$	$\pm K \tan \theta$ or	$r \pm K \left(\frac{\sin \theta}{\cos \theta} \right)$	<u>M1</u>
	$= \int 8\sin^2\theta d\theta$		$\int 8$	$\sin^2\theta\mathrm{d}\theta$	including $d\theta$	A1
	$3 = 4\sin^2\theta$ or $\frac{3}{4} = \sin^2\theta$ or $\sin\theta = \frac{\sqrt{3}}{2} \Rightarrow \theta = \frac{1}{2}$	$=\frac{\pi}{3}$			to $\theta = \frac{\pi}{3}$ and	B1
	$\left\{ x = 0 \to \theta = 0 \right\}$		no incorrect work seen regarding limits			
		<u>, </u>				[5]
(ii) (b)	$= \left\{ 8 \right\} \int \left(\frac{1 - \cos 2\theta}{2} \right) d\theta \left\{ = \int \left(4 - 4\cos 2\theta \right) d\theta \right\}$	θ			$\theta = 1 - 2\sin^2\theta$ l. (See notes)	M1
	()(1 1)				$n2\theta, \alpha, \beta \neq 0$	M1
	$= \left\{ 8 \right\} \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right) \left\{ = 4\theta - 2\sin 2\theta \right\} $ $\sin^2 \theta \rightarrow \left(\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right)$			A1		
	$\left\{ \int_{0}^{\frac{\pi}{3}} 8\sin^{2}\theta d\theta = 8 \left[\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta \right]_{0}^{\frac{\pi}{3}} \right\} = 8 \left[\left(\frac{\pi}{6} - \frac{1}{4} \left(\frac{\sqrt{3}}{2} \right) \right) - (0+0) \right]$					
	$= \frac{4}{3}\pi - \sqrt{3}$ "two term"	" exact answ	ver of e.g. $\frac{4}{3}\pi$	$-\sqrt{3}$ or $\frac{1}{3}$	$\frac{1}{3}\left(4\pi-3\sqrt{3}\right)$	A1 o.e.
						[4]
						15

		Question 6 Notes
	4	T
6. (i)	1 st M1	Writing $\frac{3y-4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)}$ and a complete method for finding the value of at least one of their <i>A</i> or their <i>B</i> .
	Note	M1A1 can be implied <i>for writing down</i> either $\frac{3y-4}{y(3y+2)} \equiv \frac{-2}{y} + \frac{\text{their } B}{(3y+2)}$
		or $\frac{3y-4}{y(3y+2)} \equiv \frac{\text{their } A}{y} + \frac{9}{(3y+2)}$ with no working.
	Note	Correct bracketing is not necessary for the penultimate A1ft, but is required for the final A1 in (i)
	Note	Give $2^{\text{nd}} \text{ M0 for } \frac{3y-4}{y(3y+2)}$ going directly to $\pm \alpha \ln(3y^2+2y)$
	Note	but allow 2 nd M1 for either $\frac{M(6y+2)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ or $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$
6. (ii)(a)	1st M1	Substitutes $x = 4\sin^2\theta$ and their dx (from their correctly rearranged $\frac{dx}{d\theta}$) into $\sqrt{\left(\frac{x}{4-x}\right)}dx$
	Note	$dx \neq \lambda d\theta$. For example $dx \neq d\theta$
	Note	Allow substituting $dx = 4\sin 2\theta$ for the 1 st M1 after a correct $\frac{dx}{d\theta} = 4\sin 2\theta$ or $dx = 4\sin 2\theta d\theta$
	2 nd M1	Applying $x = 4\sin^2\theta$ to $\sqrt{\left(\frac{x}{4-x}\right)}$ to give $\pm K \tan\theta$ or $\pm K \left(\frac{\sin\theta}{\cos\theta}\right)$
	Note	Integral sign is not needed for this mark.
	1st A1	Simplifies to give $\int 8\sin^2\theta d\theta$ including $d\theta$
	2 nd B1	Writes down a correct equation involving $x = 3$ leading to $\theta = \frac{\pi}{3}$ and no incorrect work seen
		regarding limits
	Note	Allow 2 nd B1 for $x = 4\sin^2\left(\frac{\pi}{3}\right) = 3$ and $x = 4\sin^2 0 = 0$
	Note	Allow 2 nd B1 for $\theta = \sin^{-1}\left(\sqrt{\frac{x}{4}}\right)$ followed by $x = 3$, $\theta = \frac{\pi}{3}$; $x = 0$, $\theta = 0$
(ii)(b)	M1	Writes down a correct equation involving $\cos 2\theta$ and $\sin^2 \theta$
		E.g.: $\cos 2\theta = 1 - 2\sin^2 \theta$ or $\sin^2 \theta = \frac{1 - \cos 2\theta}{2}$ or $K\sin^2 \theta = K\left(\frac{1 - \cos 2\theta}{2}\right)$
		and <i>applies</i> it to their integral. Note: Allow M1 for a correctly stated formula (via an incorrect rearrangement) being applied to their integral.
	M1	Integrates to give an expression of the form $\pm \alpha \theta \pm \beta \sin 2\theta$ or $k(\pm \alpha \theta \pm \beta \sin 2\theta)$, $\alpha \neq 0, \beta \neq 0$
		(can be simplified or un-simplified).
	1st A1	Integrating $\sin^2 \theta$ to give $\frac{1}{2}\theta - \frac{1}{4}\sin 2\theta$, un-simplified or simplified. Correct solution only.
		Can be implied by $k \sin^2 \theta$ giving $\frac{k}{2}\theta - \frac{k}{4}\sin 2\theta$ or $\frac{k}{4}(2\theta - \sin 2\theta)$ un-simplified or simplified.
	2 nd A1	A correct solution in part (ii) leading to a "two term" exact answer of
		e.g. $\frac{4}{3}\pi - \sqrt{3}$ or $\frac{8}{6}\pi - \sqrt{3}$ or $\frac{4}{3}\pi - \frac{2\sqrt{3}}{2}$ or $\frac{1}{3}(4\pi - 3\sqrt{3})$
	Note	A decimal answer of 2.456739397 (without a correct exact answer) is A0.
	Note	Candidates can work in terms of λ (note that λ is not given in (ii)) and gain the 1 st three marks (i.e. M1M1A1) in part (b).
	Note	If they incorrectly obtain $\int_0^{\frac{\pi}{3}} 8\sin^2\theta d\theta$ in part (i)(a) (or correctly guess that $\lambda = 8$)
		then the final A1 is available for a correct solution in part (ii)(b).

	0.1		N	3.6.1
	Scheme	-	Notes	Marks
6. (i) Way 2	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{6y+2}{3y^2+2y} \mathrm{d}y - \int \frac{3y+6}{y(3y+2)} \mathrm{d}y$			
	$\frac{3y+6}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \implies 3y+6 = A(3y+2) + By$		See notes	M1
	$y(3y + 2) y (3y + 2)$ $y = 0 \Rightarrow 6 = 2A \Rightarrow A = 3$		At least one of their $A = 3$ or their $B = -6$	A1
	$y = 0 \implies 6 = 2A \implies A = 3$ $y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Both their $A = 3$ and their $B = -6$	A1
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y$	or $\stackrel{A}{\longrightarrow}$	Integrates to give at least one of either $\frac{M(6y+2)}{3y^2+2y} \to \pm \alpha \ln(3y^2+2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \to \pm \mu \ln(3y+2)$	M1
	$\begin{bmatrix} 6y + 2 \\ \end{bmatrix} \begin{bmatrix} 3 \\ \end{bmatrix} \begin{bmatrix} 6 \\ \end{bmatrix}$	у	$(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	
	$= \int \frac{6y+2}{3y^2+2y} dy - \int \frac{3}{y} dy + \int \frac{6}{(3y+2)} dy$	$\frac{1}{x^2+2y} dy - \int \frac{1}{y} dy + \int \frac{1}{(3y+2)} dy$ At least		A1 ft
	$= \ln(3y^2 + 2y) - 3\ln y + 2\ln(3y + 2) \{+c\}$			A1 cao
				[6]
			1	լսյ
6. (i) Way 3	$\int \frac{3y-4}{y(3y+2)} dy = \int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{y(3y+2)} dy$	dy		[0]
6. (i) Way 3	$\int \frac{3y-4}{y(3y+2)} dy = \int \frac{3y+1}{3y^2+2y} dy - \int \frac{5}{y(3y+2)} dy$ $\frac{5}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) = A(3y$	2) dy + By	See notes	M1
6. (i) Way 3	$\frac{5}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2)$	2) dy + By	At least one of their $A = \frac{5}{2}$	M1
6. (i) Way 3	$\int \frac{3y-4}{y(3y+2)} dy = \int \frac{3y+1}{3y^2 + 2y} dy - \int \frac{5}{y(3y+2)} dy$ $\frac{5}{y(3y+2)} = \frac{A}{y} + \frac{B}{(3y+2)} \implies 5 = A(3y+2) - A(3y+2) = A(3y+2) - A(3y+2) = A($	2) dy + By	At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$	M1 A1
6. (i) Way 3	$\frac{5}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) - A(3y+2) = A(3y+2) =$	2) dy + By	At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$ Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$	M1
6. (i) Way 3	$\frac{5}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) - A(3y+2) = A(3y+2) =$	+ By	At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$ Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$ Integrates to give at least one of either $\frac{M(3y+1)}{3y^2 + 2y} \rightarrow \pm \alpha \ln(3y^2 + 2y)$	M1 A1
6. (i) Way 3	$\frac{5}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) - A(3y+2)$ $y = 0 \Rightarrow 5 = 2A \Rightarrow A = \frac{5}{2}$ $y = -\frac{2}{3} \Rightarrow 5 = -\frac{2}{3}B \Rightarrow B = -\frac{15}{2}$ $\int \frac{3y-4}{y(3y+2)} dy$	+ By	At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$ Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$ Integrates to give at least one of either	M1 A1 A1
6. (i) Way 3	$\frac{5}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) - A(3y+2)$ $y = 0 \Rightarrow 5 = 2A \Rightarrow A = \frac{5}{2}$ $y = -\frac{2}{3} \Rightarrow 5 = -\frac{2}{3}B \Rightarrow B = -\frac{15}{2}$ $\int \frac{3y-4}{y(3y+2)} dy$	or $\frac{A}{y}$ \rightarrow	At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$ Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$ Integrates to give at least one of either $\frac{M(3y+1)}{3y^2 + 2y} \rightarrow \pm \alpha \ln(3y^2 + 2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$	M1 A1 A1
6. (i) Way 3	$\frac{5}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) - A(3y+2)$ $y = 0 \Rightarrow 5 = 2A \Rightarrow A = \frac{5}{2}$ $y = -\frac{2}{3} \Rightarrow 5 = -\frac{2}{3}B \Rightarrow B = -\frac{15}{2}$	or $\frac{A}{y}$ \rightarrow At least	At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$ Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$ Integrates to give at least one of either $\frac{M(3y+1)}{3y^2 + 2y} \rightarrow \pm \alpha \ln(3y^2 + 2y)$ $\pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $M \neq 0, A \neq 0, B \neq 0$	M1 A1 A1 M1
6. (i) Way 3	$\frac{5}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 5 = A(3y+2) - A(3y+2)$ $y = 0 \Rightarrow 5 = 2A \Rightarrow A = \frac{5}{2}$ $y = -\frac{2}{3} \Rightarrow 5 = -\frac{2}{3}B \Rightarrow B = -\frac{15}{2}$ $\int \frac{3y-4}{y(3y+2)} dy$	or $\frac{A}{y}$ \rightarrow At least	At least one of their $A = \frac{5}{2}$ or their $B = -\frac{15}{2}$ Both their $A = \frac{5}{2}$ and their $B = -\frac{15}{2}$ Integrates to give at least one of either $\frac{M(3y+1)}{3y^2+2y} \rightarrow \pm \alpha \ln(3y^2+2y)$ $\Delta \pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ $\Delta \pm \lambda \ln y \text{ or } \frac{B}{(3y+2)} \rightarrow \pm \mu \ln(3y+2)$ ast one term correctly followed through $\frac{1}{2}\ln(3y^2+2y) - \frac{5}{2}\ln y + \frac{5}{2}\ln(3y+2)$ with correct bracketing,	M1 A1 A1 A1 A1

Summer 2016 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

	Scheme		Notes		
6. (i) Way 4	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y = \int \frac{3y}{y(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+2)} \mathrm{d}y$				
	$= \int \frac{3}{(3y+2)} \mathrm{d}y - \int \frac{4}{y(3y+1)} \mathrm{d}y$				
	$\frac{4}{y(3y+2)} \equiv \frac{A}{y} + \frac{B}{(3y+2)} \Rightarrow 4 = A(3y+2) +$	- By		See notes	M1
			their $A = 2$ or	At least one of their $B = -6$	A1
	$y = 0 \implies 4 = 2A \implies A = 2$ $y = -\frac{2}{3} \implies 4 = -\frac{2}{3}B \implies B = -6$		Both their $A = 2$ and		A1
	$y = -\frac{1}{3} \implies 4 = -\frac{1}{3}B \implies B = -0$		Integrates to give at leas	st one of either	
	$\int \frac{3y-4}{y(3y+2)} \mathrm{d}y$	$\frac{C}{(3y+2)}$	$\rightarrow \pm \alpha \ln(3y+2)$ or $\frac{A}{y}$		M1
	$= \int \frac{3}{3y+2} dy - \int \frac{2}{y} dy + \int \frac{6}{(3y+2)} dy$		(-) -/	$B \neq 0$, $C \neq 0$	
	$ \begin{bmatrix} \mathbf{J} & 3y + 2 & \mathbf{J} & \mathbf{y} & \mathbf{J} & (3y + 2) \end{bmatrix} $	At lea	ast one term correctly fo		A1 ft
	$= \ln(3y+2) - 2\ln y + 2\ln(3y+2) \left\{+c\right\}$		ln(3y+2) - 2ln y + 2ln(3y+2) with correct bracketing, simplified or un-simplified		A1 cao
				[6]	
(::)(-)	Alternative methods for B1M1M1A1 in (ii)(a)				
(ii)(a) Way 2	$\left\{ x = 4\sin^2\theta \Rightarrow \right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 8\sin\theta\cos\theta$	As in Way 1			B1
	$\int \sqrt{\frac{4\sin^2\theta}{4-4\sin^2\theta}}.8\sin\theta\cos\theta \left\{ d\theta \right\}$	As before			M1
	$= \int \sqrt{\frac{\sin^2 \theta}{(1-\sin^2 \theta)}} \cdot 8\cos \theta \sin \theta \left\{ d\theta \right\}$				
	$= \int \frac{\sin \theta}{\sqrt{(1-\sin^2 \theta)}} \cdot 8\sqrt{(1-\sin^2 \theta)} \sin \theta \left\{ d\theta \right\}$				
	$= \int \sin \theta . 8 \sin \theta \left\{ d\theta \right\}$		$\frac{\text{Correct me}}{\sqrt{(1-\sin^2\theta)}} \text{ bein}$	thod leading to g cancelled out	M1
	$= \int 8\sin^2\theta d\theta$		$\int 8\sin^2\theta \mathrm{d}\theta$	including $\mathrm{d}\theta$	A1 cso
(ii)(a) Way 3	$\left\{x = 4\sin^2\theta \Longrightarrow\right\} \frac{\mathrm{d}x}{\mathrm{d}\theta} = 4\sin 2\theta$			As in Way 1	B1
	$x = 4\sin^2\theta = 2 - 2\cos 2\theta$, $4 - x = 2 + 2\cos 2\theta$				
	$\int \sqrt{\frac{2-2\cos 2\theta}{2+2\cos 2\theta}} \cdot 4\sin 2\theta \left\{ d\theta \right\}$			M1	
	$= \int \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 + 2\cos 2\theta}} \cdot \frac{\sqrt{2 - 2\cos 2\theta}}{\sqrt{2 - 2\cos 2\theta}} 4\sin 2\theta \left\{ d\theta \right\} = \int \frac{2 - 2\cos 2\theta}{\sqrt{4 - 4\cos^2 2\theta}} \cdot 4\sin 2\theta \left\{ d\theta \right\}$				
	$= \int \frac{2 - 2\cos 2\theta}{2\sin 2\theta} \cdot 4\sin 2\theta \left\{ d\theta \right\} = \int 2(2 - 2\cos 2\theta) \cdot \left\{ d\theta \right\}$ Correct method leading to $\sin 2\theta$ being cancelled out			M1	
	$= \int 8\sin^2\theta d\theta$		$\int 8\sin^2\theta d\theta$	including $\mathrm{d} heta$	A1 cso

DO NOT WRITE IN THIS AREA

Past Paper

Leave blank

(a) Find

$$\int (2x-1)^{\frac{3}{2}} \, \mathrm{d}x$$

giving your answer in its simplest form.

(2)

Figure 3

Figure 3 shows a sketch of part of the curve C with equation

$$y = (2x - 1)^{\frac{3}{4}}, \qquad x \geqslant \frac{1}{2}$$

The curve C cuts the line y = 8 at the point P with coordinates (k, 8), where k is a constant.

(b) Find the value of k.

(2)

The finite region S, shown shaded in Figure 3, is bounded by the curve C, the x-axis, the y-axis and the line y = 8. This region is rotated through 2π radians about the x-axis to form a solid of revolution.

(c) Find the exact value of the volume of the solid generated.

(4)

Question	Scheme			Notes		Marks
Number				110105		TVIAI ILS
7.	$y = (2x - 1)^{\frac{3}{4}}, x \geqslant \frac{1}{2}$ passes though	P(k,8)				
(a)	$\left\{ \int (2x-1)^{\frac{3}{2}} dx \right\} = \frac{1}{5} (2x-1)^{\frac{5}{2}} \left\{ + c \right\}$		$(2x \pm 1)^{\frac{3}{2}} \rightarrow \pm \lambda (2x \pm 1)^{\frac{5}{2}} \text{ or } \pm \lambda u^{\frac{5}{2}}$ where $u = 2x \pm 1$; $\lambda \neq 0$			M1
	()	$\frac{1}{5}(2x-1)^{\frac{5}{2}}$	with or witho	out + c. Must be	e simplified.	A1
	4			3	3	[2]
(b)	${P(k,8) \Rightarrow}$ $8 = (2k-1)^{\frac{3}{4}} \Rightarrow k = \frac{8^{\frac{3}{3}} + 1}{2}$,	$(-1)^{\frac{3}{4}}$ or $8 = (2)^{\frac{3}{4}}$ or $8 = (2)^{\frac{3}{4}}$		M1
	So, $k = \frac{17}{2}$			$k ext{ (or } x)$	$=\frac{17}{2}$ or 8.5	A1
				. 2	6 3	[2]
(c)	$\pi \int \left((2x-1)^{\frac{3}{4}} \right)^2 \mathrm{d}x$		For $\pi \int \left(C \right)$	$(2x-1)^{\frac{3}{4}}$ or $(2x-1)^{\frac{3}{4}}$	$\tau \int (2x-1)^{\frac{3}{2}}$	B1
			Ignore lim	nits and dx. Can	be implied.	
	$\left\{ \int_{\frac{1}{2}}^{\frac{17}{2}} y^2 \mathrm{d}x \right\} = \left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_{1}^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5} \right) - (0) \right)$	$ = \frac{1024}{5} $	to part (b)	limits of "8.5" (and 0.5 to an experim $\pm \beta(2x-1)$	xpression of	M1
	Note: It is not necessary to write the " -0 "			racts the correct		
			π ()	$8)^2$ (their answer	to part (b)	
	$\left\{ V_{\text{cylinder}} \right\} = \pi(8)^2 \left(\frac{17}{2} \right) \left\{ = 544\pi \right\}$			$_{\rm der} = 544\pi \text{ impli}$,	B1 ft
	$\begin{bmatrix} 1024\pi \end{bmatrix}$	696	An exact co	rrect answer in	the form $k\pi$	
	$\left\{ \operatorname{Vol}(S) = 544\pi - \frac{1024\pi}{5} \right\} \Rightarrow \operatorname{Vol}(S) = \frac{1}{5}$	$\frac{\pi}{5}$	E.g.	$\frac{1696}{5}\pi, \frac{3392}{10}\pi$	or 339.2π	A1
					2	[4]
Alt. (c)	Vol(S) = $\pi(8)^2 \left(\frac{1}{2}\right) + \underline{\underline{\pi}} \int_{0.5}^{8.5} \left(8^2 - \underline{(2x-1)^{\frac{3}{2}}}\right)^{\frac{3}{2}}$	dx		1	$\dots \underline{(2x-1)^{\frac{3}{2}}}$	B1
		0.5		Ignore li	mits and dx.	
	$= \pi(8)^{2} \left(\frac{1}{2}\right) + \pi \left[64x - \frac{1}{5}(2x - 1)^{\frac{5}{2}}\right]$	8.5				
	(1) ((1	5) (, 1	5))	as above	M1
	$= \underline{\pi(8)^2 \left(\frac{1}{2}\right)} + \underline{\underline{\pi}} \left[\left(\underline{\underline{64("8.5")}} - \frac{1}{5} (2(8.5) - 1)^{\frac{5}{2}} \right) - \left(\underline{\underline{64(0.5)}} - \frac{1}{5} (2(0.5) - 1)^{\frac{5}{2}} \right) \right] $ as above			<u>B1</u>		
	$\left\{ = 32\pi + \pi \left(\left(544 - \frac{1024}{5} \right) - \left(32 - 64 + \frac{1024}{5} \right) \right) \right\}$	$O)$ $\Rightarrow Vol(S)$	$S(x) = \frac{1696}{5}\pi$			A1
		,			ı	[4]
						8

Summer 2016 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

				n 7 Notes		
7. (b)	SC	Allow Special Case SC M1 for a	a candida	te who sets $8 = (2k - 1)^{\frac{3}{2}}$ or $8 = (2x - 1)^{\frac{3}{2}}$	and	
		rearranges to give $k = (\text{or } x =)$ a	numerica	l value.		
7. (c)	M1	Can also be given for applying u	<i>ı</i> -limits of	f "16" $(2("part (b)") - 1)$ and 0 to an expre	ession of the	
		form $\pm \beta u^{\frac{5}{2}}$; $\beta \neq 0$ and subtracts	Form $\pm \beta u^{\frac{5}{2}}$; $\beta \neq 0$ and subtracts the correct way round.			
	Note	You can give M1 for $ \frac{(2x-1)^{\frac{5}{2}}}{5} $	You can give M1 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5}\right]_{\frac{1}{2}}^{\frac{17}{2}} = \frac{1024}{5}$			
	Note	Give M0 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]_0^{\frac{17}{2}} = \left(\frac{1}{5} \right)_0^{\frac{17}{2}}$	Give M0 for $\left[\frac{(2x-1)^{\frac{5}{2}}}{5} \right]^{\frac{17}{2}} = \left(\left(\frac{16^{\frac{5}{2}}}{5} \right) - (0) \right)$			
	B1ft		•	linder with radius 8 and their (part (b)) heig		
	Note	to give a correct expression for i		volume of this cylinder they need to apply t	neir limits	
		9.5		at for B1 but $\pi(64(8.5) - 0)$ is sufficient for	or B1.	
7.	MISREAI	DING IN BOTH PARTS (B) AN	D (C)			
	Apply the	misread rule (MR) for candidates v	who apply	$y = (2x - 1)^{\frac{3}{2}}$ to both parts (b) and (c)		
(b)				Sets $8 = (2k - 1)^{\frac{3}{2}}$ or $8 = (2x - 1)^{\frac{3}{2}}$ and rearranges to give $k = (\text{or } x =)$ a numerical value.		
		So, $k = \frac{5}{2}$		$k \text{ (or } x) = \frac{5}{2} \text{ or } 2.5$	A1	
				2	[2]	
(c)	$\pi \int \left((2x - $	$-1)^{\frac{3}{2}}\bigg)^2 dx$		For $\pi \int \left((2x-1)^{\frac{3}{2}} \right)^2$ or $\pi \int (2x-1)^3$	B1	
				Ignore limits and dx. Can be implied. Applies x-limits of "2.5" (their answer to		
	$\left\{ \int_{\frac{1}{2}}^{\frac{17}{2}} y^2 dx \right\} = \left[\frac{(2x-1)^4}{8} \right]_{\frac{1}{2}}^{\frac{5}{2}} = \left(\left(\frac{4^4}{8} \right) - \left(0 \right) \right) \left\{ = \frac{1}{8} \right\}_{\frac{1}{2}}^{\frac{17}{2}} = \left(\frac{4^4}{8} \right) - \left(0 \right) = \frac{1}{8} $		= 32}	part (b)) and 0.5 to an expression of the form $\pm \beta (2x-1)^4$; $\beta \neq 0$ and subtracts the correct way round.	M1	
	$V_{\text{cylinder}} = \pi (8)^2 \left(\frac{5}{2}\right) \left\{= 160\pi\right\}$			$\pi(8)^2$ (their answer to part (b)) Sight of 160π implies this mark	B1 ft	
	$\left\{ \operatorname{Vol}(S) = 160\pi - 32\pi \right\} \Rightarrow \operatorname{Vol}(S) = 128\pi$			An exact correct answer in the form $k\pi$ E.g. 128π	A1	
	Note Mark parts (b) and (c) using the mark scheme above and then working forwards from part (b) deduct two from any A or B marks gained. E.g. (b) M1A1 (c) B1M1B1A1 would score (b) M1A0 (c) B0M1B1A1 E.g. (b) M1A1 (c) B1M1B0A0 would score (b) M1A0 (c) B0M1B0A0					
	Note If	3		and then uses $y = (2x - 1)^{\frac{3}{2}}$ in part (c) do r	not apply a	

With respect to a fixed origin O, the line l_1 is given by the equation

$$\mathbf{r} = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$$

where μ is a scalar parameter.

The point A lies on l_1 where $\mu = 1$

(a) Find the coordinates of A.

(1)

The point P has position vector $\begin{bmatrix} 1 \\ 5 \\ 2 \end{bmatrix}$.

The line l_2 passes through the point P and is parallel to the line l_1

(b) Write down a vector equation for the line l_2

(2)

(c) Find the exact value of the distance AP. Give your answer in the form $k\sqrt{2}$, where k is a constant to be determined.

(2)

The acute angle between AP and l_2 is θ .

(d) Find the value of $\cos \theta$

(3)

A point E lies on the line l_2 Given that AP = PE,

(e) find the area of triangle APE,

(2)

(f) find the coordinates of the two possible positions of E.

(5)

DO NOT WRITE IN THIS AREA

Question Number	Scheme		Notes	Marks
	$l_1: \mathbf{r} = \begin{pmatrix} 8 \\ 1 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} \text{So } \mathbf{d}_1 = \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}. \qquad \overrightarrow{OA} $	occurs when $\mu = 1$	$\overrightarrow{OP} = \begin{pmatrix} 1\\5\\2 \end{pmatrix}$	
(a)	A(3,5,0)		(3, 5, 0)	B1
(b)	$\{l_2:\}\mathbf{r} = \begin{pmatrix} 1\\5\\2 \end{pmatrix} + \lambda \begin{pmatrix} -5\\4\\3 \end{pmatrix}$ with	th either $\mathbf{a} = \mathbf{i} + 5\mathbf{j}$	+ μ d , $\mathbf{a} + t$ d , $\mathbf{a} \neq 0$, $\mathbf{d} \neq 0$ + 2 k or $\mathbf{d} = -5$ i + 4 j + 3 k , a multiple of -5 i + 4 j + 3 k	[1] M1
	Correc	et vector equation u	$\operatorname{sing} \mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 =$	A1
	\mathbf{d}_2 is the direction vector of l_2 Do not	ot allow l_2 : or l_2	\rightarrow or $l_1 =$ for the A1 mark.	[2]
(c)	$\overrightarrow{AP} = \overrightarrow{OP} - \overrightarrow{OA} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$			
	$AP = \sqrt{(-2)^2 + (0)^2 + (2)^2} = \sqrt{8} = 2\sqrt{2}$		Full method for finding AP	M1
	$\frac{1}{1} - \frac{1}{1} \left(\frac{2}{1} \right) + \frac{1}{1} \left(\frac{2}{1} \right) - \frac{1}{1} \left(\frac{2}{1} \right) - \frac{1}{1} \left(\frac{2}{1} \right) = \frac{1}{1} \left(\frac{2}{1} \right) + \frac{1}{1} \left(\frac{2}{1} \right) + \frac{1}{1} \left(\frac{2}{1} \right) = \frac{1}{1} \left(\frac{2}{1} \right) + \frac{1}{1} \left(\frac{2}{1} \right) + \frac{1}{1} \left(\frac{2}{1} \right) = \frac{1}{1} \left(\frac{2}{1} \right) + \frac{1}{1} \left(\frac{2}{1}$		2√2	A1
(d)	So $\overrightarrow{AP} = \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$ and $\mathbf{d}_2 = \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} \Rightarrow \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$	$ \begin{array}{c c} & \text{Real} \\ \hline & 4 \\ \hline & 3 \end{array} $	isation that the dot product is quired between $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$	[2] M1
	$\left\{\cos\theta = \right\} \frac{\overrightarrow{AP} \cdot \mathbf{d}_2}{\left \overrightarrow{AP}\right \cdot \left \mathbf{d}_2\right } = \frac{\pm \left(\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}\right)}{\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2}}$	be $\frac{1}{(2^2+(4)^2+(3)^2)}$	dependent on the previous M mark. Applies dot product formula tween their $(\overrightarrow{AP} \text{ or } \overrightarrow{PA})$ and $\pm K\mathbf{d}_2$ or $\pm K\mathbf{d}_1$	dM1
	$\left\{\cos\theta\right\} = \frac{\pm (10+0+6)}{\sqrt{8}.\sqrt{50}} = \frac{4}{5}$	{0	$\cos \theta$ = $\frac{4}{5}$ or 0.8 or $\frac{8}{10}$ or $\frac{16}{20}$	
(e)	$\left\{ \text{Area } APE = \right\} \frac{1}{2} (\text{their } 2\sqrt{2})^2 \sin \theta \qquad \frac{1}{2}$	(their $2\sqrt{2}$) ² sin θ	or $\frac{1}{2}$ (their $2\sqrt{2}$) ² sin(their θ)	[3] M1
	= 2.4		2.4 or $\frac{12}{5}$ or $\frac{24}{10}$ or awrt 2.40	
(f)	$\overrightarrow{PE} = (-5\lambda)\mathbf{i} + (4\lambda)\mathbf{j} + (3\lambda)\mathbf{k}$ and $PE = \text{their}$	$2\sqrt{2}$ from part (c)		[2]
	$\left\{ PE^2 = \right\} (-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})^2$		This mark can be implied.	M1
	$\left\{ \Rightarrow 50\lambda^2 = 8 \Rightarrow \lambda^2 = \frac{4}{25} \Rightarrow \right\} \lambda = \pm \frac{2}{5}$		Either $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$	A1
	$l_2 \colon \mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} \pm \frac{2}{5} \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$	depende	Int on the previous M mark Substitutes at least one of their values of λ into l_2 .	dM1
	$\left\{\overline{OE}\right\} = \begin{pmatrix} 3\\ \frac{17}{5}\\ \frac{4}{5} \end{pmatrix} \text{ or } \begin{pmatrix} 3\\ 3.4\\ 0.8 \end{pmatrix}, \left\{\overline{OE}\right\} = \begin{pmatrix} -1\\ \frac{33}{5}\\ \frac{16}{5} \end{pmatrix} \text{ or } \begin{pmatrix} -1\\ 6.6\\ 3.2 \end{pmatrix}$	At le	ast one set of coordinates are correct.	A1
	$\left(\begin{array}{c} 3\\ \frac{4}{5} \end{array}\right) \left(\begin{array}{c} 0.8\\ \end{array}\right) \left(\begin{array}{c} 3.2\\ \end{array}\right)$	Both se	ets of coordinates are correct.	A1
				[5] 15

	Question 8 Notes					
		Question o Notes	3			
0 ()	D1	Allow $A(3,5,0)$ or $3\mathbf{i} + 5\mathbf{j}$ or $3\mathbf{i} + 5\mathbf{j} + 0\mathbf{k}$ or $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$				
8. (a)	B1	Allow $A(3,3,0)$ of $3i+3j$ of $3i+3j+0k$ of $3i+3j+0k$				
		(0) 0				
(b)	A1	Correct vector equation using $\mathbf{r} = \mathbf{or} \ l = \mathbf{or} \ l_2 =$	or Line 2 =			
		(1) (-5) (1)	(-5)			
		i.e. Writing $\mathbf{r} = \begin{vmatrix} 5 \\ +\lambda \end{vmatrix} \begin{vmatrix} 4 \\ \text{or } \mathbf{r} = \begin{vmatrix} 5 \\ +\lambda \mathbf{d} \end{vmatrix}$	where \mathbf{d} is a multiple of $\begin{bmatrix} 4 \end{bmatrix}$.			
		i.e. Writing $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix}$ or $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \mathbf{d}$, verified to $\mathbf{r} = \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix}$				
	NT 4		(-)			
(a)	Note M1	Allow the use of parameters μ or t instead of λ .	I' Data and Track' LAD			
(c)	IVII	Finds the difference between <i>OP</i> and their <i>OA</i> and a	applies Pythagoras to the result to find AP			
	N T 4	Allow M1A1 for $\begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$ leading to $AP = \sqrt{(2)^2 + (0)^2}$	$\frac{1}{1+(2)^2} = \sqrt{8} = 2\sqrt{2}$			
	Note		(2) (0 2 (2 .			
(d)	Note	For both the M1 and dM1 marks \overrightarrow{AP} (or \overrightarrow{PA}) must be	the vector used in part (c) or the difference			
	NI-4-	<i>OP</i> and their <i>OA</i> from part (a).	- 0			
	Note Note	Applying the dot product formula correctly without co <i>Evaluating</i> the dot product (i.e. $(-2)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5) + (0)(4) + (2)(-5)(-5)(-5) + (0)(4) + (2)(-5)(-5)(-5) + (0)(4)(-5)(-5)(-5) + (0)(4)(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5)(-5$				
			2)(3)) is not required for first and divir marks.			
	Note	In part (d) allow one slip in writing \overline{AP} and \mathbf{d}_2				
	Note	$\cos \theta = \frac{-10+0-6}{-10+0-6} = \frac{4}{-10}$ followed by $\cos \theta = \frac{4}{-10}$ is f	ing for A1 aso			
	Note	$\cos \theta = \frac{-10 + 0 - 6}{\sqrt{8} \cdot \sqrt{50}} = -\frac{4}{5}$ followed by $\cos \theta = \frac{4}{5}$ is fine for A1 cso				
		$\begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -10 \end{pmatrix}$				
	Note	Give M1dM1A1 for $\{\cos \theta =\} = \frac{\begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -10 \\ 8 \\ 6 \end{pmatrix}}{\sqrt{8 + 10 \sqrt{2}}} = \frac{20 + 10 \sqrt{2}}{\sqrt{10 + 10 \sqrt{2}}}$				
	Note	Give M1dM1A1 for $\{\cos\theta_{\pm}\}=\frac{2}{2}\left(\frac{2}{2}\right)\left(\frac{6}{6}\right)=\frac{20+2}{2}$	$\frac{12}{12} = \frac{4}{12}$			
		V8.10V2 40	3			
	Note	Allow final A1 (ignore subsequent working) for $\cos \theta$	= 0.8 followed by 36.869°			
		we Method: Vector Cross Product	a a westen sugg mus dreet mothed			
		oly this scheme if it is clear that a candidate is applying	75 11 11 11 11 11 11 11 11 11 11 11 11 11			
		$\begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} -5 \end{pmatrix} \begin{bmatrix} 1 & i & k \end{bmatrix}$				
	$\frac{1}{4D} \times d$	$= \begin{vmatrix} -2 \\ 0 \\ 2 \end{vmatrix} \times \begin{vmatrix} -5 \\ 4 \\ 3 \end{vmatrix} = \begin{cases} \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 0 & 2 \\ -5 & 4 & 3 \end{vmatrix} = -8\mathbf{i} - 4\mathbf{j} - 8$	between their			
	$AI \wedge \mathbf{u}_2$	$\begin{bmatrix} -1 & 0 & & & & & & & & & $	$(\overrightarrow{AP} \text{ or } \overrightarrow{PA}) \text{ and } M1$			
		$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} -5 & 4 & 3 \end{pmatrix}$	$\pm K\mathbf{d}$, or $\pm K\mathbf{d}_1$			
			2 1			
		$\sqrt{(-8)^2 + (-4)^2 + (-8)^2}$	Applies the vector product formula between their			
	sin	$\theta = \frac{\sqrt{(-8)^2 + (-4)^2 + (-8)^2}}{\sqrt{(-2)^2 + (0)^2 + (2)^2}} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}$	QIVI 1			
		$\sqrt{(-2)^2 + (0)^2 + (2)^2} \cdot \sqrt{(-5)^2 + (4)^2 + (3)^2}$ $\left(\overrightarrow{AP} \text{ or } \overrightarrow{PA} \right) \text{ and } \pm K\mathbf{d}_2 \text{ or } \pm K\mathbf{d}_1$				
		$\sin \theta = \frac{12}{\sqrt{8}.\sqrt{50}} = \frac{3}{5} \Rightarrow \cos \theta = \frac{4}{5}$	$\cos \theta = \frac{4}{5} \text{ or } 0.8 \text{ or } \frac{8}{10} \text{ or } \frac{16}{20} $ A1			
		1	•			
(e)	Note	Allow M1;A1 for $\frac{1}{2}(2\sqrt{2})^2 \sin(36.869^\circ)$ or $\frac{1}{2}(2\sqrt{2})$	$^2 \sin(180^\circ - 36.869^\circ)$; = awrt 2.40			
` '						
	Note	Candidates must use their θ from part (d) or apply a co	orrect method of finding			
		their $\sin \theta = \frac{3}{5}$ from their $\cos \theta = \frac{4}{5}$				

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics	C4
	8888

		Question 8 Notes Continued		
8. (f)	Note	Note Allow the first M1A1 for deducing $\lambda = \frac{2}{5}$ or $\lambda = -\frac{2}{5}$ from no incorrect working SC Allow special case 1 st M1 for $\lambda = 2.5$ from comparing lengths or from no working		
	SC			
	Note	Give 1 st M1 for $\sqrt{(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2} = (\text{their } 2\sqrt{2})$		
	Note	Give 1 st M0 for $(-5\lambda)^2 + (4\lambda)^2 + (3\lambda)^2 = (\text{their } 2\sqrt{2})$ or equivalent		
	Note	Give 1 st M1 for $\lambda = \frac{\text{their } AP = 2\sqrt{2}}{\sqrt{(-5)^2 + (4)^2 + (3)^2}}$ and 1 st A1 for $\lambda = \frac{2\sqrt{2}}{5\sqrt{2}}$		
	Note	So $\left\{ \hat{\mathbf{d}}_{1} = \frac{1}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix} \Rightarrow \right\} \text{"vector"} = \frac{2\sqrt{2}}{5\sqrt{2}} \begin{pmatrix} -5\\4\\3 \end{pmatrix} \text{ is M1A1}$		
	Note	 The 2nd dM1 in part (f) can be implied for at least 2 (out of 6) correct x, y, z ordinates from the values of λ. Giving their "coordinates" as a column vector or position vector is fine for the final A1A1. 		
	Note			
			Sosition vector is time for the final fiffi.	
	CAREFUL	Putting l_2 equal to A gives		
		$ \begin{pmatrix} 1 \\ 5 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 3 \\ 5 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = \frac{2}{5} \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{pmatrix} $	Give M0 dM0 for finding and using $\lambda = \frac{2}{5}$ from this incorrect method.	
	CAREFUL	Putting $\lambda \mathbf{d}_2 = \overrightarrow{AP}$ gives		
		$ \lambda \begin{pmatrix} -5 \\ 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix} \rightarrow \begin{pmatrix} \lambda = -\frac{2}{5} \\ \lambda = 0 \\ \lambda = -\frac{2}{3} \end{pmatrix} $	Give M0 dM0 for finding and using $\lambda = -\frac{2}{5}$ from this incorrect method.	
	General	You can follow through the part (c) answer of their $AP = 2\sqrt{2}$ for (d) M1dM1, (e) M1, (f) M1dM1		
			(d) M1dM1 (f) M1dM1	
General You		1 ou can follow unough their \mathbf{u}_2 in part (b) for ((4) 1411 (11) (1) 1411 (11).	