 ••	-
F	666

		Candidate Number
nema	ticc	C A
		C4
ning		Paper Reference 6666/01
ſ	ning	ning

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

6666 Leave

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

1. The curve *C* has parametric equations

$$x = 3t - 4, y = 5 - \frac{6}{t}, t > 0$$

(a) Find $\frac{dy}{dx}$ in terms of t

The point *P* lies on *C* where $t = \frac{1}{2}$

(b) Find the equation of the tangent to *C* at the point *P*. Give your answer in the form y = px + q, where *p* and *q* are integers to be determined.

(3)

(2)

(c) Show that the cartesian equation for C can be written in the form

$$y = \frac{ax+b}{x+4}, \quad x > -4$$

where a and b are integers to be determined.

(3)

Şummer	2017 ww	ww.mystudybro.com Mathema	tics C4
Past Paper Number	Mark Scheme) Sche rn fis resource was	s created and owned by PearNoteEdexcel	Mocks
1.	$x = 3t - 4, y = 5 - \frac{6}{t}, t > 0$		
(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 3$, $\frac{\mathrm{d}y}{\mathrm{d}t} = 6t^{-2}$		
	$\frac{dy}{dx} = \frac{6t^{-2}}{3} \left\{ = \frac{6}{3t^2} = 2t^{-2} = \frac{2}{t^2} \right\}$	their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ to give $\frac{dy}{dx}$ in terms of t or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$ to give $\frac{dy}{dx}$ in terms of t	M1
		$\frac{\delta t}{3}$, simplified or un-simplified, in terms of t. See note.	A1 isw
	Award Special Case 1st M1 if	f both $\frac{dx}{dt}$ and $\frac{dy}{dt}$ are stated correctly and explicitly.	[2]
	Note: You can	recover the work for part (a) in part (b).	
(a) Way 2	$y = 5 - \frac{18}{x+4} \Rightarrow \frac{dy}{dx} = \frac{18}{(x+4)^2} = \frac{18}{(3t)^2}$	Writes $\frac{dy}{dx}$ in the form $\frac{\pm \lambda}{(x+4)^2}$, and writes $\frac{dy}{dx}$ as a function of t.	M1
		in terms of <i>t</i> . See note.	A1 isw
			[2]
(b)	$\left\{t = \frac{1}{2} \Longrightarrow\right\} P\left(-\frac{5}{2}, -7\right)$	$x = -\frac{5}{2}, y = -7$ or $P\left(-\frac{5}{2}, -7\right)$ seen or implied.	B1
	$\frac{dy}{dx} = \frac{2}{\left(\frac{1}{2}\right)^2}$ and either	Some attempt to substitute $t = 0.5$ into their $\frac{dy}{dx}$	
	(2)	which contains t in order to find $m_{\rm T}$ and either	
	• $y r = 8 \left(x\frac{1}{2}\right)$	applies y - (their y_p) = (their m_T)(x - their x_p)	M1
	• "-7" = ("8")("- $\frac{5}{2}$ ") + C	or finds c from (their y_p) = (their m_T)(their x_p) + c	
	So, $y = (\text{their } m_T)x + "c"$	and uses their numerical c in $y = (\text{their } m_{\text{T}})x + c$	
	T : $y = 8x + 13$	y = 8x + 13 or $y = 13 + 8x$	A1 cso
	Note: their x_p , their y_p and the	heir m_T must be numerical values in order to award M1	[3]
(c)	$\left\{ t = \frac{x+4}{2} \Rightarrow \right\} v = 5 - \frac{6}{2}$	An attempt to eliminate <i>t</i> . See notes.	M1
Way 1	$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} x+4 \\ 3 \end{pmatrix}$	Achieves a correct equation in x and y only	A1 o.e.
	$\Rightarrow y = 5 - \frac{18}{x+4} \Rightarrow y = \frac{5(x+4)}{x+4}$	<u>-18</u> 4	
	So, $y = \frac{5x+2}{x+4}$, $\{x > -4\}$	$y = \frac{5x+2}{x+4}$ (or implied equation)	A1 cso
			[3]
(c)	$\int_{t} \frac{6}{18} \rightarrow r - \frac{18}{18} = 4$	An attempt to eliminate <i>t</i> . See notes.	M1
Way 2	$\left \begin{array}{c} 1 & -5 \\ 5 & -y \end{array} \right ^{-1} \int x - \frac{1}{5 - y} = 4$	Achieves a correct equation in <i>x</i> and <i>y</i> only	A1 o.e.
	$\triangleright (x + 4)(5 - y) = 18 \triangleright 5x - xy +$	20 - 4y = 18	
	$\left\{ \vartriangleright 5x + 2 = y(x + 4) \right\}$ So, $y = \frac{5x + x}{x + x}$	$\frac{x+2}{4}, \{x > -4\}$ $y = \frac{5x+2}{x+4}$ (or implied equation)	A1 cso
			[3]
	Note: Some or all of the wo	ork for part (c) can be recovered in part (a) or part (b)	8

Summer Past Paper (Number	2017 Mark Scheme	e) This resource www.mystudybro.co	m Mathemat Pearson Edexce ^{Notes}	ics C4 Mocks			
1. (c)	A full method leading to the value of <i>a</i> being found $a = 5$						
Way 3	$y = \frac{3t - 4}{3t - 4}$	$\frac{1}{4+4} = \frac{1}{3t} - \frac{1}{3t} = a - \frac{1}{3t} = b = a = 5$	$y = a - \frac{4a - b}{3t} \text{ and } a = 5$	A1			
	$\frac{4a-b}{3} = 6$	$\Rightarrow b = 4(5) - 6(3) = 2$	Both $a=5$ and $b=2$	A1			
				[3]			
		Question 1 No	tes				
1. (a)	Note	Condone $\frac{dy}{dx} = \frac{\left(\frac{6}{t^2}\right)}{3}$ for A1					
	Note	You can ignore subsequent working following or	n from a correct expression for $\frac{dy}{dx}$ in t	terms of <i>t</i> .			
(b)	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$ or $-\left(\text{their } \frac{dy}{dx}\right)$) is M0.					
	Note	Final A1: A correct solution is required from a	correct $\frac{dy}{dx}$.				
(-)	Note	Final A1: You can ignore subsequent working f	following on from a correct solution.				
(C)	Note	1 st MII: A full attempt to eliminate <i>t</i> is defined a	is either	ng for t			
		• rearranging one of the parametric equations to make t the subject and substituting for t in the other parametric equation (only the PUS of the equation required for M mark)					
		 rearranging both parametric equation (only in 	p make t the subject and putting the result	ults equal			
		to each other.	r				
	Note	Award M1A1 for $\frac{6}{5-y} = \frac{x+4}{3}$ or equivalent.					

6666 Leave

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

2.

 $f(x) = (2 + kx)^{-3}$, |kx| < 2, where k is a positive constant

The binomial expansion of f(x), in ascending powers of x, up to and including the term in x^2 is

$$A + Bx + \frac{243}{16}x^2$$

where *A* and *B* are constants.

(a) Write down the value of A.

(b) Find the value of *k*.

(c) Find the value of B.

(3)	

(1)

(2)

Summer 2	2017		www.mystu	dybro.com		Ma	thema	itics C4
Past Paper (P Question Number	Mark Scher	ne) This re	esource was created and Scheme	l owned by Pearsor	1 Edexcel	Nc	otes	6666 Marks
2.	$\begin{cases} (2+k) \end{bmatrix}$	$(x)^{-3} = 2^{-3} \left(1 + \frac{k}{2} \right)^{-3}$	$\left(\frac{x}{2}\right)^{-3} = \frac{1}{8} \left(1 + (-3)\left(\frac{kx}{2}\right)\right)$	$+\frac{(-3)(-3-1)}{2!}\left(\frac{k}{2!}\right)$	$\left[\frac{x}{2}\right]^2 + \dots \bigg], k$	> 0		
(a)	$\left\{ A = \right\}$	$\frac{1}{8}$	$\frac{1}{8}$ or 2 ⁻³ or 0.125, clearly identified as A or as their answer to part (a)					
								[1]
			Uses	s the x^2 term of the	binomial expa	ansion t	to give	
			either $\frac{(-3)}{2}$	$\frac{k}{2!}$ or $\left(\frac{k}{2}\right)^2$ or	$\left(\frac{kx}{2}\right)^2$ or $\frac{(-1)^2}{2}$	$\frac{-3)(-4)}{2}$	or 6	M1
(b)	$\left(\frac{1}{8}\right)\frac{(-3)}{2}$	$\frac{k}{2!}\left(\frac{k}{2}\right)^2$	either (their A	$\left(\frac{(-3)(-4)}{2!}\left(\frac{k}{2}\right)^2\right)$ or	(their A) $\frac{(-3)}{(-3)}$	$\frac{1}{2!}$	$\left(\frac{kx}{2}\right)^2$,	
					where	(their 2	A) ¹ 1,	M1 o.e.
			or $\frac{3}{16}k^2$ or $\frac{3}{16}k^2x^2$ or	or $(2^{-5})\frac{(-3)(-4)}{2!}$	$(x^{2})^{2}$ or $(2^{-5})^{-1}$	$\frac{(-3)(-4)}{2!}$	$\frac{4}{(k)^2}$	l
	$\left\{ \text{So,} \left(\frac{1}{8} \right) \right\}$	$\frac{1}{3}\frac{(-3)(-4)}{2!}\left(\frac{k}{2}\right)$	$k^{2} = \frac{243}{16} \Rightarrow \frac{3}{16}k^{2} = \frac{243}{16}k^{2}$	$\frac{3}{3} \Rightarrow k^2 = 81$				
		x = 9)		k =	9 cao	A1 cso
	20, 1	No	te: $k = \pm 9$ with no refe	erence to $k = 9$ only	y is A0		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[3]
(c)			Uses the x	term of the binom	ial expansion	to give	either	
	$\left(\frac{1}{2}\right)^{"}$	$-3)\left(\frac{k}{2}\right)$	(their A)(-3) $\left(\frac{k}{2}\right)$	or (their A)(-3)	$\left(\frac{kx}{2}\right)$; where	(their 2	A) ¹ 1,	M1
	(0)	(2)		or $(2)^{-4}(-3)(k)$	or $(2)^{-4}(-3)($	(kx) or	$-\frac{3k}{16}$	
	$\begin{cases} \text{So, } B \\ \end{cases}$	$=\left(\frac{1}{8}\right)(-3)\left(\frac{9}{2}\right)$	$\Rightarrow \left\{ \underline{B = -\frac{27}{16}} \right.$	_	$\frac{27}{16}$ or $-1\frac{11}{16}$	or -1.	.6875	A1 cso
								[2]
			Oue	stion 2 Notes				6
	NOTE	IN THIS QUE	ESTION IGNORE LAP	BELLING AND M	ARK ALL PA	ARTS T	FOGET	HER.
	Note	$(2+kx)^{-3}=\frac{1}{8}$	$\left(1 - \frac{3}{2}kx + \frac{3}{2}k^2x^2 +\right)$	$= \frac{1}{8} - \frac{3}{16}kx + \frac{3}{16}k$	$x^2x^2 +$			
	Note	Writing down	$\left\{ \left(1 + \frac{kx}{2} \right)^{-3} \right\} = 1 + (-3)$	$\left(\frac{kx}{2}\right) + \frac{(-3)(-3-2)}{2!}$	$\frac{-1}{\left(\frac{kx}{2}\right)^2} + \dots$			
		gets (b) 1 st M1						
	Note	Writing down	$\left\{ (2+kx)^{-3} \right\} = \frac{1}{8} \left(1 + (-3)^{-3} \right)$	$3)\left(\frac{kx}{2}\right) + \frac{(-3)(-3)}{2!}$	$\frac{-1}{2}\left(\frac{kx}{2}\right)^2 + \dots$)		
		gets (b) 1 st M1 2 nd M1 and (c) M1						
	Note	Writing down	$\left\{ (2+kx)^{-3} \right\} = 2^{-3} + (-3)^{-3} = 2^{-3} = 2^{-3} + (-3)^{-3} = 2^{-3$	$(2^{-4})(kx) + (-3)(-3)(-3)(-3)(-3)(-3)(-3)(-3)(-3)(-3)$	$(2^{-5})(kx)^2$			
		gets (b) 1 st M1	1 2 nd M1 and (c) M1	2				
	Note	Writing down	$\left\{ (2+kx)^{-3} \right\} = (\text{their } A)^{-3}$	$\left(1+(-3)\left(\frac{kx}{2}\right)+\frac{4}{2}\right)$	$\frac{(-3)(-3-1)}{2!}\left(\frac{k}{2}\right)$	$\left(\frac{x}{2}\right)^2 + .$)	
		where (their A	A) ¹ 1, gets (b) 1^{st} M1 2	nd M1 and (c) M1			~	

Summer	2017	www.mystudybro.com	Mathematics C4
Past Paper (I	vlark Sch	eme) This resource was created and owned by Pearson Edexcel	6666
2. (b), (c)	Note	(their A) is defined as either	
		• their answer to part (a)	
		• their stated $A = \dots$	
		• their "2 ⁻³ " in their stated $2^{-3} \left(1 + \frac{kx}{2}\right)^{-3}$	
	Note	Give 2^{nd} M0 in part (b) if (their A) = 1	
	Note	Give M0 in part (c) if (their A) = 1	
2. (c)	Note	Allow M1 for (their A)(-3) $\left(\frac{\text{their } k \text{ from (b)}}{2}\right)$	
	Note	Award A0 for $B = -\frac{27}{16}x$	
	Note	Allow A1 for $B = -\frac{27}{16}x$ followed by $B = -\frac{27}{16}$ or $-1\frac{11}{16}$ or -1.6875	
	Note	$k = -9$ leading to $B = \frac{27}{16}$ or $1\frac{11}{16}$ or 1.6875 is A0	
	Note	Give A0 for finding both $B = -\frac{27}{16}$ and $B = \frac{27}{16}$ (without rejecting $B = \frac{27}{16}$)	as their final answer.
	Note	The A1 mark in part (c) is for a correct solution only.	
	Note	Be careful! It is possible to award M0A0 in part (c) for a solution leading to	$B = -\frac{27}{16}$. E.g.
		$f(x) = (2+kx)^{-3} = 2^{-3}(1+kx)^{-3} = \frac{1}{8} \left(1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \dots \right) = \frac{1}{8} \left(1 + (-3)(kx) + \frac{(-3)(-4)}{2!}(kx)^2 + \dots \right)$	$\frac{1}{8} - \frac{3k}{8}x + \frac{3k^2}{4}x^2 + \dots$
		leading to (a) $A = \frac{1}{8}$, (b) $k = \frac{9}{2}$, (c) $B = -\frac{27}{16}$, gets (a) B1, (b) M1M0A0	(c) M0A0
2. (b), (c)	Note	${}^{-3}C_0(2)^{-3} + {}^{-3}C_1(2)^{-4}(kx) + {}^{-3}C_2(2)^{-5}(kx)^2$ with the C terms not evaluated	
		gets (b) 1 st M0 2 nd M0 and (c) M0	

Past Paper

Mathematics C4

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

The table below shows corresponding values of x and y for $y = \frac{6}{(e^x + 2)}$

x	0	0.2	0.4	0.6	0.8	1
у	2		1.71830	1.56981	1.41994	1.27165

(a) Complete the table above by giving the missing value of y to 5 decimal places.

(1)

(b) Use the trapezium rule, with all the values of y in the completed table, to find an estimate for the area of R, giving your answer to 4 decimal places.

(3)

(c) Use the substitution $u = e^x$ to show that the area of R can be given by

$$\int_{a}^{b} \frac{6}{u(u+2)} \, \mathrm{d}u$$

where a and b are constants to be determined.

(2)

(d) Hence use calculus to find the exact area of *R*.
 [Solutions based entirely on graphical or numerical methods are not acceptable.]
 (6)

DO NOT WRITE IN THIS AREA

Summer 2	2017		www.my	/studybro	o.com		Mat	hemat	ics C4
Past Paper (N Number	vlark Scheme) T	his resource Schem	was create e	d and owne	d by Pearso	on Edexcel No	otes		6666 Marks
	x 0	0.2	0.4	0.6	0.8	1	6		
3.	y 2	1.8625426	1.71830	1.56981	1.41994	1.27165	$y = \frac{1}{(2 + 1)^2}$	e^x)	
(a)	{At $x = 0.2$,} $y = 1$	1.86254 (5 dp)				1	.86254	B1 cao
	No	ote: Look for	this value	on the giver	table or in	their workin	g.		[1]
						Outside	brackets $\frac{1}{2}$	×(0.2)	
	1 -	1			\ ٦		2	1 1	B1 o.e.
(b)	$\frac{1}{2}(0.2)$ 2+1.27165	+ 2(their 1.862	54 + 1.7183	0 + 1.56981 -	+ 1.41994)		or $\frac{1}{10}$ or	$\frac{1}{2} \times \frac{1}{5}$	
						For str	ucture of	·7	M1
		1							
	$=\frac{1}{10}(16.41283)$	= 1.641283	= 1.6413 (4	dp)		anything tha	t rounds to	1.6413	A1
									[3]
(c)	$\begin{cases} u = e^x \text{ or } x = \ln i \end{cases}$	ι Þ }							
	$du a^x a^y du$	dx = 1	an du - du	udr etc. on	d à 6	$dr = \dot{0}$	6 du	See	D1 *
	$\frac{1}{dx} = e^{-t} \frac{dt}{dx} = u^{-t}$	$\frac{du}{du} = \frac{1}{u}$	\mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u}	<i>i</i> ur etc., an	$10 \frac{1}{(e^x + 2)}$	$\frac{1}{2} \int \frac{dx}{dx} = 0$	$(+ 2)u^{-1}u^{-1$	notes	BI
	$\{x=0\} \bowtie a=e^0$	Þ <u>a = 1</u>				a = 1 as	nd $b = e$ or	$b = e^1$	R1
	$\{x = 1\} \bowtie b = e^1 \nvDash$	$ \ge \underline{b} = \underline{e} $			or	evidence of	$0 \rightarrow 1$ and	$1 1 \rightarrow e$	DI
	NOT		ark CANN	OT be reco	overed for v	work in part	t (d)		[2]
(d)	NOTE: 2^{nd} BI mark CAN be recovered for work in part (d)								
Way 1	$\frac{1}{u(u+2)} \circ \frac{A}{u} + \frac{B}{(u+2)} \qquad \text{Writing } \frac{C}{u(u+2)} \circ \frac{A}{u} + \frac{B}{(u+2)}, \text{ o.e. or } \frac{1}{u(u+2)} \circ \frac{A}{u} + \frac{C}{(u+2)},$				M1				
	\triangleright 6 ° $A(u+2)$ +	(u+2) + Bu o.e., and a complete method for finding the value of at least one of				1411			
			Roth their	1 - 3 and	their A or t	their B (or 1	P = 1 or the property of th	heir Q	
	u = 0 P A = 3 u = 2 P B = 3	2		$-\frac{1}{2}$ with	the factor of	f 6 in front o	$I = \frac{1}{2}$ all f the integra	al sign)	A1
	u2 P D	,		$=-\frac{1}{2}$ with			i the integra	ai sigii)	
	$\int \frac{6}{du} = \int$	$\frac{3}{3} - \frac{3}{3}$	du		Integrate	$es \frac{n}{u} \pm \frac{n}{u \pm u}$	$\frac{1}{k}$, M, N ,	<i>k</i> ¹ 0;	
	$\int u(u+2) \qquad \int$	(u + 2))	(i.e. <i>a</i>	two term p	artial fractio	n) to obtain	n either	M1
	= 31	nu - 3ln(u + 2)	2)	$\pm / \ln(\epsilon)$	(u) or $\pm n$	$\ln(b(u\pm k))$)); /, <i>m</i> , <i>a</i>	, <i>b</i> ¹ 0	
	or = 3	$\ln 2u - 3\ln(2u)$	(i+4) In	tegration of	both terms	is correctly rom their M	followed the	1rough heir N	A1 ft
	$\int \mathbf{S}_{2} \left[2 \mathbf{I}_{2} \mathbf{v} - 2 \mathbf{I}_{2} \mathbf{v} \right]$	$\cdot \cdot $				lonondont o	$\frac{1}{2} \frac{1}{2} \frac{1}$	f mork	
	$\int_{1}^{30} \int_{1}^{311} \sin u = \sin(u)$	$(+2) \rfloor_1 \int$			L L	Applie	es limits of	e and 1	
	$= (3\ln(e) - 3\ln(e +$	$2)) - (3\ln 1 -$	3ln3)	(or their b a	and their <i>a</i> ,	where $b > 0$, <i>b</i> ¹ 1, <i>a</i> >	0) in <i>u</i>	dM1
	[Note: A proper co	onsideration of	of the	or app	lies limits o	of 1 and 0 in $\frac{1}{2}$	x and subtra	acts the	
	$\frac{1111111}{111111} \text{ or } u = 1 \text{ is real}$	quiled for this			(3)		i o unu.	
	$= 3 - 3\ln(e+2) + 1$	3ln3 or 3(1	$-\ln(e+2)$	+ ln3) or 3	$3 + 3\ln\left(\frac{3}{e+1}\right)$	$\overline{\frac{2}{2}}$			
	e (e)	. (1)	e +	2)	(3e)	$(27e^{3})$	se	e notes	A1 cso
	or $3\ln\left(\frac{1}{e+2}\right) - 3$	$\ln\left(\frac{1}{3}\right)$ or 3	$-3\ln\left(\frac{3}{3}\right)$	$-$ or $3 \ln$	$\left(\frac{1}{e+2}\right) = 0$	$r \ln\left(\frac{1}{(e+2)}\right)$	$\overline{)^3}$		
		Note: All	$low e^1 in p$	lace of e fo	or the final A	A1 mark.	I		[6]
	Note: Give final A	A0 for $3-3\ln n$	$e + 2 + \overline{3ln}$	3 (i.e. brack	eting error)	unless recov	vered.		12
	Note: Give final A	0 for 3 - 3ln	(e+2) + 31	n3 - 3ln1, v	where 3ln1	has not been	n simplified	to 0	
	Note: Give final A	0 for 3lne -	$3\ln(e+2)$ -	+ 3ln3, whe	re 31ne has	s not been sin	nplified to	3	

Summer 2	2017	www.mystudybro.com	Mathematics C4
Past Paper (N	lark Sche	eme) This resource was created and owned by Pearson Edexcel	6666
3. (b)	Note	M1: Do not allow an extra y-value <i>or</i> a repeated y value in their [] Do not allow an omission of a y-ordinate in their [] for M1 unless they give	ve the correct answer of
	Note	A1 : Working must be seen to demonstrate the use of the trapezium rule	
	note	(Actual area is 1.64150274)	
	Note	Full marks can be gained in part (b) for awrt 1.6413 even if B0 is given in part	art (a)
	Note	Award B1M1A1 for	
		$\frac{1}{10}(2+1.27165) + \frac{1}{5}(\text{their } 1.86254 + 1.71830 + 1.56981 + 1.41994) = \text{awrt } 1$.6413
	Bracke	ting mistakes: Unless the final answer implies that the calculation has b	een done correctly
	Award	B1M0A0 for $\frac{1}{2}(0.2) + 2 + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) +	+ 1.27165 (=16.51283)
	Award	B1M0A0 for $\frac{1}{2}(0.2)(2 + 1.27165) + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1	.41994) (=13.468345)
	Award	B1M0A0 for $\frac{1}{2}(0.2)(2) + 2$ (their 1.86254 + 1.71830 + 1.56981 + 1.41994) +	1.27165 (=14.61283)
	<u>Alterna</u>	ative method: Adding individual trapezia	_
	Area ≈0	$0.2 \times \left[\frac{2 + "1.86254"}{2} + \frac{"1.86254" + 1.71830}{2} + \frac{1.71830 + 1.56981}{2} + \frac{1.56981 + 1.41994}{2}\right]$	$+\frac{1.41994+1.27165}{2}$
	=	1.641283	
	B1	0.2 and a divisor of 2 on all terms inside brackets	
	M1	First and last ordinates once and two of the middle ordinates inside bracket	s ignoring the 2
2 ()	Al	anything that rounds to 1.6413	
3. (c)	1ª B1	Must start from either	
		• $\hat{0} y dx$, with integral sign and dx	
		• $\dot{0} \frac{6}{(e^x + 2)} dx$, with integral sign and dx	
		• $\dot{0} \frac{6}{(e^x + 2)} \frac{dx}{du} du$, with integral sign and $\frac{dx}{du} du$	
		and state either $\frac{du}{dx} = e^x$ or $\frac{du}{dx} = u$ or $\frac{dx}{du} = \frac{1}{u}$ or $du = u dx$	
		and end at $\hat{0}\frac{6}{u(u+2)}$ du, with integral sign and du, with no incorrect v	working.
	Note	So, just writing $\frac{du}{dx} = e^x$ and $\hat{0}\frac{6}{(e^x + 2)}dx = \hat{0}\frac{6}{u(u + 2)}du$ is sufficient f	or 1 st B1
	Note	Give 2^{nd} B0 for $b = 2.718$, without reference to $a = 1$ and $b = e$ or $b = e$	1
	Note	You can also give the 1 st B1 mark for using a reverse process. i.e.	
		Proceeding from $0 \frac{1}{u(u+2)} du$ to $0 \frac{1}{(e^x+2)} dx$, with no incorrect work	king,
		and stating either $\frac{du}{dt} = e^x$ or $\frac{du}{dt} = u$ or $\frac{dx}{dt} = \frac{1}{2}$ or $du = u dx$	
		$\frac{dx}{dx} = \frac{dx}{dx} + \frac{dx}{du} = \frac{du}{u}$	
3. (d)	Note	Give final A0 for $3 - 3\ln(e+2) + 3\ln 3$ simplifying to $1 - \ln(e+2) + \ln 3$	
		(i.e. dividing their correct final answer by 3)	
		Otherwise, you can ignore incorrect working (isw) following on from a con	rect exact value.
	Note	A decimal answer of 1.641502724 (without a correct exact answer) is fir	al A0
	Note	$\left[-3\ln(u+2)+3\ln u\right]_{1}^{e}$ followed by awrt 1.64 (without a correct exact answer	ver) is final M1A0

Summer 2017 Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

		Question 3 Notes Continued
3. (d)	Note	BE CAREFUL! Candidates will assign their own "A" and "B" for this question.
	Note	Writing down $\frac{6}{(u+2)u}$ in the form $\frac{A}{(u+2)} + \frac{B}{u}$ with at least one of A or B correct is 1 st M1
	Note	Writing down $\frac{6}{(u+2)u}$ as $\frac{-3}{(u+2)} + \frac{3}{u}$ is 1 st M1 1 st A1.
	Note	Condone $\int \left(\frac{3}{u} - \frac{3}{(u+2)}\right) du$ to give $3\ln u - 3\ln u + 2$ (poor bracketing) for 2^{nd} A1.
	Note	Award M0A0M1A1ft for a candidate who writes down
		e.g. $\int \frac{6}{u(u+2)} du = \int \left(\frac{6}{u} + \frac{6}{(u+2)}\right) du = 6\ln u + 6\ln(u+2)$
		AS EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ AS PARTIAL FRACTIONS.
	Note	Award M0A0M0A0 for a candidate who writes down
		$\hat{0} \frac{6}{u(u+2)} du = 6 \ln u + 6 \ln(u+2)$ or $\hat{0} \frac{6}{u(u+2)} du = \ln u + 6 \ln(u+2)$
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
	Note	Award M1A1M1A1 for a candidate who writes down
		$\hat{0}\frac{6}{u(u+2)}du = 3\ln u - 3\ln(u+2)$
		WITHOUT ANY EVIDENCE OF WRITING $\frac{6}{u(u+2)}$ as partial fractions.
	Note	If they lose the "6" and find $\hat{D}_1 = \frac{1}{u(u+2)} du$ we can allow a maximum of M1A0M1A1ftM1A0

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4

	Question 3 Notes Continued					
3. (d) Way 2	$\left\{\int \frac{6}{u^2 + 2u} du = \int \frac{3(2u+2)}{u^2 + 2u} du - \int \frac{6u}{u^2 + 2u} du\right\}$					
	$=\int \frac{3(2u+2)}{2} du - \int \frac{6}{1+2} du$	$\frac{\partial(2u+2)}{u^2+2u}\left\{\mathrm{d}u\right\}\ \pm$	$= \mathbf{\hat{0}} \frac{d}{u+2} \{ \mathrm{d}u \},$	$\alpha, \beta, \delta \neq 0$	M1	
	$\mathbf{J} \ \mathbf{u} + 2\mathbf{u} \qquad \mathbf{J} \ \mathbf{u} + 2$			Correct	t expression	A1
		Integrates $\frac{\pm \Lambda}{\Lambda}$	$\frac{M(2u+2)}{u^2+2u} \pm \frac{N}{u\pm u}$	$\frac{N}{k}, M, N, k^{-1}$	0, to obtain	M
×	$= 3\ln(u^2 + 2u) - 6\ln(u + 2)$	any one	e of $\pm / \ln(u^2 +$	$-2u$) or $\pm m \ln t$	(<i>b</i> (<i>u</i> ± <i>k</i>)); / , <i>m</i> , <i>b</i> ¹ 0	MI
		Integration of both terms is correctly followed through from their <i>M</i> and from their <i>N</i>			A1 ft	
	$\left\{\operatorname{So}, \left[\operatorname{3ln}(u^2 + 2u) - \operatorname{6ln}(u + 2)\right]_1^e\right\}$		dependent on the 2nd M mark Applies limits of e and 1 (or their <i>b</i> and their <i>a</i> , where $b > 0, b^{-1} 1, a > 0$) in <i>u</i>		2nd M mark as of e and 1 eir a , where a > 0) in u	dM1
	$= (3\ln(e^2 + 2e) - 6\ln(e + 2))$	$-(3\ln 3 - 6\ln 3)$	or applies limits of 1 and 0 in x and subtracts the correct way round.			
	$= 3\ln(e^2 + 2e) - 6\ln(e + 2) +$	3ln3	$3\ln(e^2+2e)-6\ln(e+2)+3\ln 3$		A1 o.e.	
	A 1 ' ~ 1					[6]
3. (d)	Applying $u = Q - 1$					
Way 3	$\left\{\int_{1}^{e} \frac{6}{u(u+2)} \mathrm{d}u = \right\} \int_{2}^{1+e} \frac{6}{(\theta-1)(\theta+1)} \mathrm{d}\theta = \int_{2}^{1+e} \frac{6}{(\theta-1)(\theta+1)} \mathrm{d}\theta$		$\frac{6}{\theta^2 - 1} \mathrm{d}u = \left[3\ln\right]$	$\left(\frac{\theta-1}{\theta+1}\right)\Big]_2^{1+e}$		M1A1M1A1
	$= 3\ln\left(\frac{1+e-1}{e+1+1}\right) - 3\ln\left(\frac{2-2}{2+1}\right)$	$\frac{1}{1} = 3\ln\left(\frac{e}{e+2}\right) -$	$3\ln\left(\frac{1}{3}\right)$	3 rd M mark is on	s dependent 2 nd M mark	dM1A1
						[6]

6666 Leave

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

4. The curve *C* has equation

 $4x^2 - y^3 - 4xy + 2^y = 0$

The point *P* with coordinates (-2, 4) lies on *C*.

(a) Find the exact value of $\frac{dy}{dx}$ at the point *P*.

The normal to C at P meets the y-axis at the point A.

(b) Find the y coordinate of A, giving your answer in the form $p + q \ln 2$, where p and q are constants to be determined.

(3)

(6)

12

DO NOT WRITE IN THIS AREA

www.mystudybro.com

Summer 2017 Past Paper (Mark Scheme)

e) This resource was created and owned by Pearson Edexcel

Mathematics C4

6	666
0	000

Question	,	Scheme			Notes	Marks	
4.		$4x^2 - y^3 - 4xy + 2^y = 0$					
(a) Way 1	$\left\{\frac{\partial f_{X}}{\partial \mathbf{x}}\times\right\}\underline{8x-3}$	$\left\{ \underbrace{8x - 3y^2 \frac{dy}{dx}}_{p} - 4y - 4x \frac{dy}{dx}_{p} + \underbrace{\overline{2^y \ln 2 \frac{dy}{dx}}}_{p} = 0 \right\}$				M1 <u>A1 M1</u> B	=
	$8(-2) - 3(4)^2 \frac{d}{d}$	$\frac{y}{x} - 4(4) - 4(-2)\frac{dy}{dx} + 2^4 \ln 2$	$2\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	depen	dent on the first M mark	dM1	
	-16	$-48\frac{dy}{dx} - 16 + 8\frac{dy}{dx} + 16\ln 2$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$				
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{32}{-40+16}$	$\frac{-32}{5\ln 2}$ or $\frac{-32}{40-16\ln 2}$ or	$\frac{4}{-5+2\ln 2}$	or $\frac{1}{-5}$	$\frac{4}{+\ln 4}$ or exact equivalent	A1 cso	
		NOTE: You can recover	work for p	art (a) i	n part (b)		[6]
(b)	e.g. $m_{\rm N} = \frac{-40}{-100}$	$\frac{0+16\ln 2}{-32}$ or $\frac{40-16\ln 2}{32}$	Applying	$m_{\rm N} = \frac{-}{n}$ Can be	$\frac{1}{m_{\rm T}}$ to find a numerical $m_{\rm N}$ implied by later working	M1	
	• y - 4 =	$=\left(\frac{40-16\ln 2}{32}\right)(x-2)$	I		Using a numerical $m_{\rm N}$ (¹ $m_{\rm T}$), either		
	Cuts y-	$-axis \Rightarrow x = 0 \Rightarrow y - 4 = \left(\right)$	$\frac{40 - 16\ln 2}{32}$	$\frac{2}{2}$)(2)	$y-4 = m_N(x-2)$ and sets $x=0$ in their normal equation	M1	
	• $4 = \left(\frac{4}{4}\right)$	$\frac{40-16\ln 2}{32}\Big)\Big(-2\Big)+c$			$4 = (\text{their } m_{N})(-2) + c$		
	$\left\{ \Rightarrow c = 4 + \frac{40}{2} \right\}$	$\frac{0 - 16\ln 2}{16}$, so $y = \frac{104 - 161}{16}$	$\left. \frac{n2}{2} \Rightarrow \right\}$				
	$y(\text{or } c) = \frac{13}{2}$ -	ln 2	$\frac{104}{16}$ -	ln2 or	$\frac{13}{2} - \ln 2$ or $-\ln 2 + \frac{13}{2}$	A1 cso isw	
	Note:	Allow exact equivalents in the	ne form p	- ln2 fo	r the final A mark		[3]
							9
(a) Way 2	$\left\{\frac{\partial \mathbf{x}}{\partial \mathbf{x}}\times\right\}\underline{8x\frac{\mathrm{d}x}{\mathrm{d}y}}$	$-3y^2 - 4y\frac{\mathrm{d}x}{\mathrm{d}y} - 4x + \overline{2^y \ln x}$	$\frac{1}{2} = 0$			M1 <u>A1</u> <u>M1</u> B	= \$1
	$8(-2)\frac{\mathrm{d}x}{\mathrm{d}y} - 3(4)$	$\int (x^2 - 4(4)) \frac{dx}{dy} - 4(-2) + 2^4 \ln 2$. = 0	depen	dent on the first M mark	dM1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{32}{-40+16}$	$\frac{-32}{6\ln 2}$ or $\frac{-32}{40 - 16\ln 2}$ or	$\frac{4}{-5+2\ln 2}$	or $\frac{1}{-5}$	$\frac{4}{\ln 4}$ or exact equivalent	A1 cso	
	Note: You must be clear that Way 2 is being applied before you use this scheme						[6]
4 (2)	Note Fort	he first four morks	Question	4 Notes	j		
+. (a)	Writin	ng down from no working					
	•	$\frac{dy}{dx} = \frac{4y - 8x}{-3y^2 - 4x + 2^y \ln 2}$	or $\frac{8}{3y^2}$ +	$\frac{4x-4y}{4x-2^y}$	ln2 scores M1A1M1B1		
	•	$\frac{dy}{dx} = \frac{8x - 4y}{-3y^2 - 4x + 2^y \ln 2}$	$\frac{4}{3y^2}$ or $\frac{4}{3y^2}$ +	$\frac{y - 8x}{4x - 2^y}$	ln2 scores M1A0M1B1		
	Writi	ng $8x dx - 3y^2 dy - 4y dx -$	$4x dy + 2^y$	$\ln 2 dy =$	0 scores M1A1M1B1		

www.mystudybro.com This resource was created and owned by Pearson Edexcel

	Question 4 Notes Continued						
4. (a)	1 st M1	Differentiates implicitly to include <i>either</i> $\pm 4x \frac{dy}{dx}$ or $-y^3 \rightarrow \pm \lambda y^2 \frac{dy}{dx}$ or $2^y \rightarrow \pm m 2^y \frac{dy}{dx}$					
		(Ignore $\left(\frac{dy}{dx}\right)$). /, <i>m</i> are constants which can be 1					
	1 st <u>A1</u>	Both $4x^2 - y^3 \rightarrow 8x - 3y^2 \frac{dy}{dx}$ and $= 0 \rightarrow = 0$					
	Note	e.g. $8x - 3y^2 \frac{dy}{dx} - 4y - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} \rightarrow -3y^2 \frac{dy}{dx} - 4x \frac{dy}{dx} + 2^y \ln 2 \frac{dy}{dx} = 4y - 8x$					
		or e.g. $-16 - 48\frac{dy}{dx} - 16 + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} \rightarrow -48\frac{dy}{dx} + 8\frac{dy}{dx} + 16\ln 2\frac{dy}{dx} = 32$					
		will get I^{st} A1 (implied) as the " = 0" can be implied by the rearrangement of their equation.					
	2 nd <u>M1</u>	$-4xy \rightarrow -4y - 4x \frac{dy}{dx}$ or $4y - 4x \frac{dy}{dx}$ or $-4y + 4x \frac{dy}{dx}$ or $4y + 4x \frac{dy}{dx}$					
	B 1	$2^{y} \rightarrow 2^{y} \ln 2 \frac{dy}{dx}$ or $2^{y} \rightarrow e^{y \ln 2} \ln 2 \frac{dy}{dx}$					
	Note	If an extra term appears then award 1 st A0					
	3 rd dM1	dependent on the first M mark					
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dy}{dx}$					
	Note	M1 can be gained by seeing at least one example of substituting $x = -2$ and at least one					
		xample of substituting $y = 4$ unless it is clear that they are instead applying $x = 4$ and $y = -2$					
		Otherwise, you will NEED to check (with your calculator) that $x = -2$, $y = 4$ that has been					
		substituted into their equation involving $\frac{dy}{dx}$					
	Note	AI cso: If the candidate's solution is not completely correct, then do not give this mark.					
(1)	Note	Isw: You can, however, ignore subsequent working following on from correct solution.					
(b)	Note	The 2 nd M1 mark can be implied by later working.					
		Eq. Award 1 st M1 and 2 nd M1 for $\frac{y-4}{z} = \frac{-1}{z}$					
		2 their $m_{\rm T}$ evaluated at $x = -2$ and $y = 4$					
	Note	A1: Allow the alternative answer $\left\{y = \right\} \ln\left(\frac{1}{2}\right) + \frac{13}{2\ln 2}(\ln 2)$ which is in the form $p + q \ln 2$					
4. (a) Way 2	1 st M1	Differentiates implicitly to include <i>either</i> $\pm 4y \frac{dx}{dy}$ or $4x^2 \rightarrow \pm /x \frac{dx}{dy}$					
		(Ignore $\left(\frac{dx}{dy}\right)$ =). / is a constant which can be 1					
	1 st <u>A1</u>	Both $4x^2 - y^3 \rightarrow 8x \frac{dx}{dy} - 3y^2$ and $= 0 \rightarrow = 0$					
	2 nd <u>M1</u>	$-4xy \rightarrow -4y \frac{dx}{dy} - 4x \text{ or } 4y \frac{dx}{dy} - 4x \text{ or } -4y \frac{dx}{dy} + 4x \text{ or } 4y \frac{dx}{dy} + 4x$					
	 R1	$2^{\nu} \rightarrow 2^{\nu} \ln 2$					
	3 rd dM1	dependent on the first M mark					
		For substituting $x = -2$ and $y = 4$ into an equation involving $\frac{dx}{dy}$					

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

P 4 9 1 0 9 A 0 1 6 3 2

www.mystudybro.com ...

Mathematics C4

Past Paper (N	per (Mark Scheme) This resource was created and owned by Pearson Edexcel					6
Question Number		Scheme		Notes	Mar	·ks
5.	$y = e^{x}$	$x^{4} + 2e^{-x}, x^{3} 0$				
Way 1	$\left\{V=\right\}\mathcal{P}$	$D \dot{0}_{0}^{\ln 4} \left(e^{x} + 2e^{-x} \right)^{2} dx$	Ig	For $\pi \int (e^x + 2e^{-x})^2$ nore limits and dx. Can be implied.	B1	
		• ln 4	Expands $(e^x +$	$2e^{-x}$ $\xrightarrow{2}$ \rightarrow $+ 2e^{2x} + be^{-2x} + d$ where		
	$=\{\pi$	$\Big\} \Big(e^{2x} + 4e^{-2x} + 4 \Big) dx$	$\alpha, \beta, \delta \neq 0$. Igr	nore π , integral sign, limits and dx.	M1	
		JO		This can be implied by later work.		
			Integrates at least	one of either $\pm a e^{2x}$ to give $\pm \frac{a}{2} e^{2x}$	M1	\square
		Γ_1 $\Box_{\rm ln4}$		or $\pm b e^{-2x}$ to give $\pm \frac{2}{2} e^{-2x} a, b^{-1} 0$		
	= {p	$\left \frac{1}{2}e^{2x} - 2e^{-2x} + 4x\right $		dependent on the 2 nd M mark		
				$e^{2x} + 4e^{-2x} \rightarrow \frac{1}{2}e^{2x} - 2e^{-2x},$	A1 _	
			whic	ch can be simplified or un-simplified		
				$4 \rightarrow 4x \text{ or } 4e^0x$	B1 cac	,
				dependent on the previous method mark. Some evidence of		
	[][$\begin{pmatrix} 1 \\ 2^{2(\ln 4)} \end{pmatrix} = 2^{-2(\ln 4)} + 4(\ln 4) \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	-9 $2-9$ (0)	applying limits of ln 4 o.e. and 0		
	= {p}	$\frac{-1}{2}e^{-1} - 2e^{-1} + 4(114) - (\frac{-1}{2}e^{-1})$	$e^{\circ} - 2e^{\circ} + 4(0)$ to a changed function in x and subtracts the correct way round.			
				Note: A proper consideration of the limit of 0 is required		
	$= \{\pi\} \left(\left(8 - \frac{1}{4} + 4\ln 4 \right) - \left(\frac{1}{4} - 2 \right) \right)$					
		8) (2))	(75			
		$=\frac{75}{8}\rho + 4\rho\ln 4$ or $\frac{75}{8}\rho + 8\rho$	$p \ln 2 \text{ or } \pi \left(\frac{75}{8} + 4 \right)$	$\ln 4$) or $\pi \left(\frac{75}{8} + 8 \ln 2 \right)$	A1 isw	1
	(or $\frac{75}{8}\rho + \ln 2^{8\rho}$ or $\frac{75}{8}\rho + \rho \ln 2^{8\rho}$	256 or $\ln\left(2^{8\rho}e^{\frac{75}{8}}\right)$	$\left(\frac{1}{8} \right) $ or $\frac{1}{8} \rho (75 + 32 \ln 4)$, etc		
						[7]
			Question 5 N	otes	I	
5.	Note	π is only required for the 1 st B	1 mark and the fina	al A1 mark.		
	Note	Give 1^{st} B0 for writing $\rho \hat{0} y^2 d$	1x followed by $2p$	$\dot{0}\left(\mathbf{e}^{x}+2\mathbf{e}^{-x}\right)^{2}\mathbf{d}x$		
	Note	Give $1^{\text{st}} \text{ M1 for } \left(e^x + 2e^{-x} \right)^2 \rightarrow 2^{-x}$	$\Rightarrow e^{2x} + 4e^{-2x} + 2e^{0}$	+ $2e^{0}$ because $d = 2e^{0} + 2e^{0}$		
	Note	A decimal answer of 46.8731 or $p(14.9201)$ (without a correct exact answer) is A0				
	Note	$\rho \left[\frac{1}{2} e^{2x} - 2e^{-2x} + 4x \right]_{0}^{\ln 4}$ followed by awrt 46.9 (without a correct exact answer) is final dM1A0				
	Note	Allow exact equivalents which	should be in the fo	rm $a\rho + b\rho \ln c$ or $\rho(a + b\ln c)$,		
		where $a = \frac{75}{8}$ or $9\frac{3}{8}$ or 9.375	5. Do not allow $a =$	$=\frac{150}{16}$ or $9\frac{6}{16}$		
	Note	Give BIM0M1A1B0M1A0 for $\mathbf{c}^{\ln 4}$	r the common respo	1 $\int^{\ln 4} 75$		
		$\left[\mathcal{P} \right]_{0} \left(e^{x} + 2e^{-x} \right)^{2} dx \to \mathcal{P} \int_{0} \left(e^{x} + 2e$	$e^{2x} + 4e^{-2x} dx = \rho \left[\frac{1}{2} \right]$	$\frac{1}{2}e^{2x} - 2e^{-2x} \bigg _{0} = \frac{15}{8}p$		

Summer	2017 ww	w.mystudybro.	com	Mathema	tics C4	ł
Past Paper (1 Question Number	Vark Scheme) This resource was Scheme	created and owned	by Pearson E	Notes	6666 Mark	5 KS
5.	$y = e^x + 2e^{-x}, x^3 0$					
Way 2	$\{V = \} \mathcal{P} \dot{O}_{0}^{\ln 4} \left(e^{x} + 2e^{-x} \right)^{2} dx$		Ignore limits	For $\pi \int (e^x + 2e^{-x})^2$ is and dx . Can be implied.	B1	
	$u = e^x \triangleright \frac{\mathrm{d}u}{\mathrm{d}x} = e^x = u \text{ and } x = \ln 4$	\triangleright <i>u</i> = 4, <i>x</i> = 0 \triangleright	$u = e^0 = 1$			
	$V = \{ \rho \} \int_{1}^{4} \left(u + \frac{2}{u} \right)^{2} \frac{1}{u} du = \{ \rho \} \int_{1}^{4} du$	$\left(u^2 + \frac{4}{u^2} + 4\right)\frac{1}{u}\mathrm{d}u$				
	$= \left\{ \mathcal{P} \right\} \int_{1}^{4} \left(u + \frac{4}{u^3} + \frac{4}{u} \right) \mathrm{d}u$		$(e^x + 2e^{-x})^{-1}$ W Ignore π , in This car	$(x^{x})^{2} \rightarrow \pm au \pm bu^{-3} \pm du^{-1}$ where $u = e^{x}, \alpha, \beta, \delta \neq 0$. tegral sign, limits and du .	<u>M1</u>	
	г ¬4	Integrates at or $\pm bu^{-3}$ t	least one of e to give $\pm \frac{b}{2}u$	where $\pm \partial u$ to give $\pm \frac{\partial}{2}u^2$ $a, b^{-2} \partial, b^{-1} 0$, where $u = e^x$	M1	
	$= \{ p \} \left \frac{1}{2} u^2 - \frac{2}{2} + 4 \ln u \right ^2$	dependent on the 2 nd M mark				
	$\begin{bmatrix} \mu \\ 2 \end{bmatrix} \begin{bmatrix} 2^{u} \\ u^{2} \end{bmatrix}_{1}$			$u + 4u^{-3} \rightarrow \frac{1}{2}u^2 - 2u^{-2},$	A1	
		simplified or un-simplified, where $u = e^x$				
		$4u^{-1} \rightarrow 4\ln u$, where $u = e^x$			B1 cao	
	$= \left\{ \rho \right\} \left\{ \left(\frac{1}{2} (4)^2 - \frac{2}{(4)^2} + 4 \ln 4 \right) - \left(\frac{1}{2} (1)^2 + 4 \ln 4 \right) \right\}$	$(1)^2 - \frac{2}{(1)^2} + 4\ln 1$	dependent mark. S limit function ir integrated f	t on the previous method some evidence of applying ts of 4 and 1 to a changed in u [or ln 4 o.e. and 0 to an unction in x] and subtracts the correct way round.	dM1	
	$= \{\pi\} \left(\left(8 - \frac{1}{8} + 4\ln 4 \right) - \left(\frac{1}{2} - 2 \right) \right)$					
	$= \frac{75}{8}\rho + 4\rho \ln 4 \text{ or } \frac{75}{8}\rho$ or $\frac{75}{8}\rho + \ln 2^{8\rho}$ or $\frac{75}{8}\rho + \rho$	+ $8\rho \ln 2$ or $\pi \left(\frac{75}{8}\right)$	$+ 4\ln 4 \int \mathbf{or}$ $e^{\frac{75}{8}\rho} \int \mathbf{or} \ \frac{1}{8}\rho$	$\pi\left(\frac{75}{8} + 8\ln 2\right)$ $p(75 + 32\ln 4), \text{ etc}$	A1 isw	7
						[7]

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Leave blank With respect to a fixed origin O, the lines l_1 and l_2 are given by the equations 6. $l_{1}: \mathbf{r} = \begin{pmatrix} 4\\28\\4 \end{pmatrix} + \lambda \begin{pmatrix} -1\\-5\\1 \end{pmatrix}, \qquad l_{2}: \mathbf{r} = \begin{pmatrix} 5\\3\\1 \end{pmatrix} + \mu \begin{pmatrix} 3\\0\\-4 \end{pmatrix}$ where λ and μ are scalar parameters. The lines l_1 and l_2 intersect at the point X. (a) Find the coordinates of the point X. (3) (b) Find the size of the acute angle between l_1 and l_2 , giving your answer in degrees to 2 decimal places. (3) The point A lies on l_1 and has position vector $\begin{pmatrix} 2\\ 18\\ c \end{pmatrix}$ (c) Find the distance AX, giving your answer as a surd in its simplest form. (2) The point Y lies on l_2 . Given that the vector \overrightarrow{YA} is perpendicular to the line l_1 (d) find the distance YA, giving your answer to one decimal place. (2) The point *B* lies on l_1 where $|\overrightarrow{AX}| = 2|\overrightarrow{AB}|$. (e) Find the two possible position vectors of *B*. (3)

Summer Net Bapar	2017	This resource	ww.mystu	dybro.com	on Edexcel Notes	Mathema	itics C4 Mandas
'Number'				I Owned by Fears			1,0000
6.	$l_1: \mathbf{r} = \begin{pmatrix} 4\\28\\4 \end{pmatrix} + \lambda \begin{pmatrix} \\ \end{pmatrix}$	$ \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, l_2: \mathbf{r} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} $	$\begin{pmatrix} 3\\ 0\\ -4 \end{pmatrix}$; $\overrightarrow{OA} = \begin{pmatrix} 2\\ 18\\ 6 \end{pmatrix}$ li	es on l_1 Let q_{Ac} acute au between	be the ngle l_1 and l_2	
(a)	$\{l_1 = l_2 \Rightarrow\} 28 - 1$ or $4 - \lambda = 5 + 3\mu$	$5\lambda = 3 \{ \Rightarrow \lambda = 5 \}$ and $4 + \lambda = 1 - 4\mu$	$\{ \Rightarrow \mu = -2 \}$	$4 - $ or $\lambda = 5$	$28 - 1 = 5 + 3m$ and $4 + 3m$ or $\mu = -2$ (Can be	$5\lambda = 3$ or $\lambda = 1 - 4m$ be implied).	B1
	$\left\{\overrightarrow{OX} = \right\} \begin{pmatrix} 4\\28\\4 \end{pmatrix} +$	$5\begin{pmatrix} -1\\ -5\\ 1 \end{pmatrix} \text{ or } \begin{pmatrix} 5\\ 3\\ 1 \end{pmatrix} -$	$-2\begin{pmatrix}3\\0\\-4\end{pmatrix}$	Puts $l_1 = l_2$ a and substitution	nd solves to find / itutes their value fo or their value for	and/or <i>m</i> or λ into l_1 or μ into l_2	M1
	So, X(-1, 3, 9)		(-1, 3, 9)	or $\begin{pmatrix} -1\\ 3\\ 9 \end{pmatrix}$ or -	$\mathbf{i} + 3\mathbf{j} + 9\mathbf{k}$ or con	-1 done 3 9	A1 cao
	(1)		(2)		11 .1 .11	1. 1.	[3]
(b) Way 1	$\mathbf{d}_1 = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \ \mathbf{d}_2 =$	$ \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet $	$\begin{pmatrix} 3\\0\\-4 \end{pmatrix}$	R i:	ealisation that the of s required between or a multiple of	dot product \mathbf{d}_1 and \mathbf{d}_2 \mathbf{d}_1 and \mathbf{d}_2	M1
	$\cos\theta = \frac{1}{\sqrt{(-1)^2 + 1}}$	$ \pm \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ 0 \\ -4 \\ \hline (-5)^2 + (1)^2 \cdot \sqrt{(3)^2} \\ \hline \end{array} $	$\left(+ (0)^{2} + (-4)^{2} \right)^{2}$	$\overline{2} \left\{ = \frac{-7}{\sqrt{27} \cdot \sqrt{25}} \right\}$	depend 1 st M mar dot produ between d ₁ a multiple of	lent on the k. Applies act formula and \mathbf{d}_2 or a \mathbf{d}_1 and \mathbf{d}_2	dM1
	${q = 105.6303588}$	$\beta \dots \triangleright \} \theta_{Acute} = 74$.36964117	= 74.37 (2 dp)	awrt 74.37 seen	in (b) only	A1
							[3]
(c)	$\overrightarrow{AX} = "\overrightarrow{OX}" - \overrightarrow{OA}$	$ = \left(\begin{array}{c} -1\\ 3\\ 9\end{array}\right) - \left(\begin{array}{c} 1\\ 1\\ 0 \end{array}\right) $	$ \begin{pmatrix} 2\\8\\6 \end{pmatrix} = \begin{pmatrix} -3\\-15\\3 \end{pmatrix} $) or $A_{/=2}, X_{/=1}$	$_{5} \bowtie AX = 3 \mathbf{d}_{1} , \{ \mathbf{d}_{1} \}$	$\left \mathbf{d}_{1}\right = \sqrt{27}$	
	$AX = \sqrt{(-3)^2 + (-3)^2}$	$(15)^2 + (3)^2$ or $3\sqrt{7}$	$\frac{1}{27} \left\{ = \sqrt{243} \right\}$	$=9\sqrt{3}$ Full 1	nethod for finding	AX or XA	M1
					9√3 seen	in (c) only	A1 cao
	Note:	You cannot recov	$\frac{\text{ver work for }}{V^{A}}$	part (c) in either p	$\frac{\operatorname{art}(d) \operatorname{or} \operatorname{part}(e)}{ \longrightarrow }$		[2]
(d) Way 1	$\frac{YA}{"9\sqrt{3}"} = \tan("74.$	36964")	$\frac{1}{\text{their}} \frac{1}{AX}$	$\int = \tan \theta \text{ or } YA =$	$(\text{their } AX) \tan \theta$,	where θ is	M1
	<i>YA</i> = 55.71758	= 55.7 (1 dp)			anything that rou	nds to 55.7	A1
							[2]
(e)	$\left\{A_{\lambda=2}, X_{\lambda=5} \Rightarrow S\right\}$	So $AX = 2AB \Longrightarrow S$	So at B , $\lambda = 3$	$3.5 \text{ or } \lambda = 0.5) \Big\}$			
Way 1		$\begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$	5)		(their / v found i	in(a)) + 2	
	$\overrightarrow{OB} = \begin{bmatrix} 28\\4 \end{bmatrix} + 3.$	$5\left(\begin{array}{c} -5\\ 1 \end{array}\right); = \left(\begin{array}{c} 10\\ 7\\ 7\\ \end{array}\right)$	5 5	or $l_b = 3 - \frac{1}{2}$	$=\frac{2}{\frac{2}{\frac{1}{x}}}$	$(a))$ into l_1	M1;
	$\left \begin{array}{c} 4 \\ \hline \end{array} \right $	$\begin{bmatrix} -1 \\ -1 \end{bmatrix} \begin{bmatrix} 3.5 \\ -1 \end{bmatrix}$	5	At least	one position vector	r is correct.	A1
	$OB = \begin{bmatrix} 28 \\ 4 \end{bmatrix} + 0.$	$\begin{bmatrix} -5 \\ 1 \end{bmatrix}; = \begin{bmatrix} 25 \\ 4 \end{bmatrix}$	5	Bot	(Also allow co h position vectors a (Also allow co	are correct.	A1
					([3]
							13

Summer 2017 Past Paper (Mark Scheme) www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks		
6. (e)	$\left\{ AX = 2AB \Rightarrow AB = \frac{1}{2}AX. \text{ So, } \overrightarrow{OB} = \overrightarrow{OA} \pm \overrightarrow{AB} \Rightarrow \overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2}\overrightarrow{AX} \right\}$				
Way 2	$\overrightarrow{OB} = \begin{pmatrix} 2 \\ 18 \\ 6 \end{pmatrix} + 0.5 \begin{pmatrix} -3 \\ -15 \\ 3 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies either $\overrightarrow{OA} + 0.5\overrightarrow{AX}$ or $\overrightarrow{OA} - 0.5\overrightarrow{AX}$ where (their \overrightarrow{AX}) = ±[(their \overrightarrow{OX}) – \overrightarrow{OA}]	M1;		
	\overline{OP} $\begin{pmatrix} 2\\ 18 \end{pmatrix}$ $O = \begin{pmatrix} -3\\ 15 \end{pmatrix}$ $\begin{pmatrix} 3.5\\ 25 = 5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1		
	$OB = \left(\begin{array}{c} 18\\6\end{array}\right)^{-0.5} \left(\begin{array}{c} -15\\3\end{array}\right)^{+0.5} \left(\begin{array}{c} 25.5\\4.5\end{array}\right)$	Both position vectors are correct (Also allow coordinates)	A1		
			[3]		
6. (e) Way 3	$\overrightarrow{AB} = \begin{pmatrix} 4-\lambda\\28-5\lambda\\4+\lambda \end{pmatrix} - \begin{pmatrix} 2\\18\\6 \end{pmatrix} = \begin{pmatrix} 2-\lambda\\10-5\lambda\\-2+\lambda \end{pmatrix} = \begin{pmatrix} 1\\3\\-2\\-2+\lambda \end{pmatrix}$	$ \begin{array}{l} 1(2-\lambda) \\ 5(2-\lambda) \\ 1(2-\lambda) \end{array} \end{array} ; \overrightarrow{AX} = \left(\begin{array}{c} -3 \\ -15 \\ 3 \end{array} \right) \qquad AX^2 = 243 \vartriangleright \\ AB^2 = 27(2-1)^2 \end{array} $			
	$AX = 2AB \vartriangleright AX^2 = 4AB^2 \vartriangleright 243 = 4(27)(2)$	$(-/)^2 \vdash (2-/)^2 = \frac{9}{4}$ or $(27/)^2 - 108/ + \frac{189}{4} = 0$			
	or $108/^2 - 432/ + 189 = 0$ or $4/^2 - 16/ + 7$	$7 = 0 \Rightarrow / = 3.5 \text{ or } / = 0.5$			
	$\overrightarrow{OB} = \begin{pmatrix} 4\\28\\4 \end{pmatrix} + 3.5 \begin{pmatrix} -1\\-5\\1 \end{pmatrix}; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix}$	Full method of solving for / the equation $AX^2 = 4AB^2$ using (their \overrightarrow{AX}) and \overrightarrow{AB} and substitutes at least one of their values for / into l_1	M1;		
	$\overrightarrow{OB} = \begin{pmatrix} 4 \\ 28 \end{pmatrix} + 0.5 \begin{pmatrix} -1 \\ -5 \end{pmatrix} = \begin{pmatrix} 3.5 \\ 25.5 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1		
		Both position vectors are correct (Also allow coordinates)	A1		
	Note: $AX = 2AB \Rightarrow \overrightarrow{AX} = \pm 2\overrightarrow{AB}$. Hence, / $x: -3 = \pm 2(2 - 1)$ or $y: -15 = \frac{1}{2}$	= 3.5 or / = 0.5 can be found from solving either $\pm 2(10 - 5/)$ or z: -3 = $\pm 2(-2 + /)$	[3]		
6. (e) Way 4	$\overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ 9 \end{pmatrix} + 0.5 \begin{pmatrix} 3 \\ 15 \\ -3 \end{pmatrix}; = \begin{pmatrix} 0.5 \\ 10.5 \\ 7.5 \end{pmatrix}$	Applies either (their \overrightarrow{OX}) + 0.5 \overrightarrow{XA} or (their \overrightarrow{OX}) + 1.5 \overrightarrow{XA} where (their \overrightarrow{XA}) = \overrightarrow{OA} – (their \overrightarrow{OX})	M1;		
	$\overrightarrow{OB} = \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix}_{\pm 1.5} \begin{pmatrix} 3 \\ 15 \\ -15 \end{pmatrix}_{\pm 1.5} \begin{pmatrix} 3.5 \\ 25.5 \\ -15 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1		
	$\begin{array}{c} 0B = \left(\begin{array}{c} 0 \\ 9 \end{array}\right)^{-1} \left(\begin{array}{c} 10 \\ -3 \end{array}\right)^{-1} \left(\begin{array}{c} 200 \\ 4.5 \end{array}\right)$	Both position vectors are correct (Also allow coordinates)	A1		
			[3]		
6. (e) Way 5	$\overrightarrow{OB} = 0.5 \left(\left(\begin{array}{c} -1 \\ 3 \\ 9 \end{array} \right) + \left(\begin{array}{c} 2 \\ 18 \\ 6 \end{array} \right) \right); = \left(\begin{array}{c} 0.5 \\ 10.5 \\ 7.5 \end{array} \right)$	Applies $\frac{1}{2} \left[(\text{their } \overrightarrow{OX}) + \overrightarrow{OA} \right]$	M1;		
	$\overrightarrow{OR} = \begin{pmatrix} 2 \\ 18 \end{pmatrix} \begin{pmatrix} -3 \\ 15 \end{pmatrix} \begin{pmatrix} 3.5 \\ 25 \end{pmatrix}$	At least one position vector is correct (Also allow coordinates)	A1		
	$\begin{array}{c} \mathbf{C}\mathbf{D} = \left(\begin{array}{c} 16\\6\end{array}\right)^{-10.5} \left(\begin{array}{c} -15\\3\end{array}\right)^{+10.5} \left(\begin{array}{c} 25.5\\4.5\end{array}\right)$	Both position vectors are correct (Also allow coordinates)	A1		
			[3]		

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4

Past Paper (N	(Mark Scheme) This resource was created and owned by Pearson Edexcel				
Question Number		Scheme	Notes	Marks	
6. (e) Way 6	$\left\{ \left \overrightarrow{AX} \right = \right.$	$=9\sqrt{3}$, $ d_1 = 3\sqrt{3} \implies K = \frac{9\sqrt{3}}{3\sqrt{3}} = 3 \implies \overline{AX} = 3\mathbf{d}_1$; S	o, $\overrightarrow{OB} = \overrightarrow{OA} \pm \frac{1}{2}\overrightarrow{AX} = \overrightarrow{OA} \pm \frac{1}{2}(3\mathbf{d}_1)$		
	$\overrightarrow{OB} = \left(\begin{array}{c} \\ \\ \end{array} \right)$	$\begin{pmatrix} 2\\18\\6 \end{pmatrix} + 0.5 \begin{pmatrix} -1\\-5\\1 \end{pmatrix} ; = \begin{pmatrix} 0.5\\10.5\\7.5 \end{pmatrix}$	Applies either $\overrightarrow{OA} + 0.5(K\mathbf{d}_1)$ or $\overrightarrow{OA} - 0.5(K\mathbf{d}_1)$, where $K = \frac{\text{their} \overrightarrow{AX} }{3\sqrt{3}}$	M1;	
	$\overrightarrow{OB} =$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	At least one position vector is correct (Also allow coordinates)	A1	
		$\begin{pmatrix} 6 \end{pmatrix} \left(\begin{pmatrix} 1 \end{pmatrix} \right) \left(4.5 \right)$	Both position vectors are correct (Also allow coordinates)	A1	
				[3]	
		Question 6 N	otes		
6. (a)	Note	M1 can be implied by at least two correct follow	through coordinates from their / or fr	om their <i>m</i>	
(b)	Note	Evaluating the dot product (i.e. $(-1)(3) + (-5)(0)$ for the M1, dM1 marks.	+(1)(-4)) is not required		
	Note	For M1 dM1: Allow one slip in writing down th	eir direction vectors, \mathbf{d}_1 and \mathbf{d}_2		
	Note	Allow M1 dM1 for			
		$\left(\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}\right) \cos q =$	$= \pm \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$		
	Note	$q = 1.297995^{\circ}$, (without evidence of awrt 74.37	') is A0		
6. (b)	Altern	ative Method: Vector Cross Product			
Way 2	Only a	pply this scheme if it is clear that a vector cross p	roduct method is being applied.		
	$\mathbf{d}_1 \times \mathbf{d}_2$	$= \underbrace{\begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}} \times \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix} = \begin{cases} \mathbf{i} \mathbf{j} \mathbf{k} \\ -1 -5 1 \\ 3 0 -4 \end{cases} = 20\mathbf{i} - \mathbf{j}$	+ 15k $\left\{ \begin{array}{c} \text{Realisation that the vector} \\ \text{cross product is required} \\ \text{between } \mathbf{d}_1 \text{ and } \mathbf{d}_2 \\ \text{or a multiple of } \mathbf{d}_1 \text{ and } \mathbf{d}_2 \end{array} \right.$	M1	
	sin q =	$= \frac{\sqrt{(20)^2 + (-1)^2 + (15)^2}}{\sqrt{(-1)^2 + (-5)^2 + (1)^2} \cdot \sqrt{(3)^2 + (0)^2 + (-4)^2}}$	Applies the vector product formula between \mathbf{d}_1 and \mathbf{d}_2 or a multiple of \mathbf{d}_1 and \mathbf{d}_2	dM1	
	$\sin q =$	$= \frac{\sqrt{626}}{\sqrt{27} \cdot \sqrt{25}} \triangleright q = 74.36964117 = 74.37 \ (2 \text{ dp})$	awrt 74.37 seen in (b) only	A1	
				[3]	
6. (c)	M1	Finds the difference between their \overline{OX} and \overline{OA} and	applies Pythagoras to the result to fin	d AX or XA	
		OR applies $\left \left(\text{their } /_X \text{ found in } (a) \right) - 2 \right \sqrt{(-1)^2 + (-1)^2}$	$(-5)^2 + (1)^2$		
	Note	For M1: Allow one slip in writing down their \overrightarrow{OX}	and \overline{OA}		
	1,000	$\left(\begin{array}{c} 2 \end{array}\right)$			
	Note	Allow M1A1 for $\begin{pmatrix} 3\\15\\3 \end{pmatrix}$ leading to $AX = \sqrt{(3)^2 + (3)^2}$	$(15)^2 + (3)^2 = \sqrt{243} = 9\sqrt{3}$		
(e)	Note	Imply M1 for no working leading to any two comp	onents of one of the \overrightarrow{OB} which are co	orrect.	
L		0 · · · · · · · · · · · · · · · ·			

Question Number	Scheme			Notes	Mar	rks
6. (d) Way 2	$\frac{"9\sqrt{3}"}{YA} = \tan(90 - "74.36964")$	$\frac{\text{their } \overline{A}}{YA}$ where θ is the	$\frac{ \vec{X} }{ \vec{X} } = \tan \theta$	n(90 - θ) or $AY = \frac{\text{their } \overline{AX} }{\tan(90 - \theta)}$, or obtuse angle between l_1 and l_2	M1	
	<i>YA</i> = 55.71758 = 55.7 (1 dp)			anything that rounds to 55.7	A1	
						[2]
6. (d) Way 3	$\frac{YA}{\sin("74.36964")} = \frac{"9\sqrt{3}"}{\sin(90 - "74.36964")}$	")	$\frac{YA}{\sin\theta} =$ acute o	$= \frac{\text{their } \overline{AX}}{\sin(90-\theta)} \text{ o.e., where } \theta \text{ is the}$ or obtuse angle between l_1 and l_2	M1	
	$YA = \frac{9\sqrt{3}\sin(74.36964)}{\sin(15.63036)} = 55.71758$. = 55.7 (1 dp)		anything that rounds to 55.7	A1	
						[2]
6. (d) Way 4	$\mathbf{d}_{1} = \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix}, \overrightarrow{OY} = \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 0 \\ -4 \end{pmatrix}$	$ = \left(\begin{array}{c} 5+3\mu \\ 3 \\ 1-4\mu \end{array} \right) $				
	$\overrightarrow{YA} = \begin{pmatrix} 2\\18\\6 \end{pmatrix} - \begin{pmatrix} 5+3\mu\\3\\1-4\mu \end{pmatrix} = \begin{pmatrix} -3-3\mu\\15\\5+4\mu \end{pmatrix}$					
	$\overrightarrow{YA} \bullet \mathbf{d}_1 = 0 \implies \begin{pmatrix} -3 - 3\mu \\ 15 \\ 5 + 4\mu \end{pmatrix} \bullet \begin{pmatrix} -1 \\ -5 \\ 1 \end{pmatrix} =$	= 0	App	(Allow a sign slip in copying \mathbf{d}_1) blies $\overrightarrow{YA} \bullet \mathbf{d}_1 = 0$ or $\overrightarrow{AY} \bullet \mathbf{d}_1 = 0$	M1	
	$\Rightarrow 3 + 3m - 75 + 5 + 4m = 0 \Rightarrow m = \frac{67}{7}$	to	or \overline{YA}	• $(K\mathbf{d}_1) = 0$ or $\overrightarrow{AY} \bullet (K\mathbf{d}_1) = 0$ and applies Pythagoras to find a		
	$YA^{2} = \left(-3 - 3\left(\frac{67}{7}\right)\right)^{2} + \left(15\right)^{2} + \left(5 + 4\left(-\frac{1}{7}\right)^{2}\right)^{2} + \left(-3 - 3\left(\frac{67}{7}\right)^{2}\right)^{2} + \left(-3 - 3\left(67$	$\left(\frac{67}{7}\right)^2$	numeric	cal expression for AY^2 or for the distance AY		
	So, $YA = \sqrt{\left(-\frac{222}{7}\right)^2 + \left(15\right)^2 + \left(\frac{303}{7}\right)^2}$					
	= 55.71758 = 55.7 (1 dp)			anything that rounds to 55.7	A1	
	Note: $\overrightarrow{OY} = \frac{236}{7}\mathbf{i} + 3\mathbf{j} - \frac{261}{7}\mathbf{k}$, $\overrightarrow{AY} = -$	$\frac{222}{7}$ i + 15 j + $\frac{30}{7}$	$\frac{33}{7}$ k			[2]

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Figure 3 shows a vertical cylindrical tank of height 200 cm containing water. Water is leaking from a hole *P* on the side of the tank.

At time t minutes after the leaking starts, the height of water in the tank is h cm.

The height h cm of the water in the tank satisfies the differential equation

$$\frac{\mathrm{d}h}{\mathrm{d}t} = k(h-9)^{\frac{1}{2}}, \qquad 9 < h \leqslant 200$$

where *k* is a constant.

Given that, when h = 130, the height of the water is falling at a rate of 1.1 cm per minute,

(a) find the value of *k*.

(2)

Given that the tank was full of water when the leaking started,

(b) solve the differential equation with your value of k, to find the value of t when h = 50

(6)

Summer 2017

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Question Number	Scheme		Notes	Marks	
7.	$\frac{\mathrm{d}h}{\mathrm{d}t} = k \sqrt{(h-9)}, 9 < h \neq 200;$	$h = 130, \ \frac{\mathrm{d}h}{\mathrm{d}t} = -1.1$			
(a)	$-1.1 = k \sqrt{(130 - 9)} \bowtie k =$	Substitutes $h = 13$ into the printed	30 and either $\frac{dh}{dt} = -1.1$ or $\frac{dh}{dt} = 1.1$ I equation and rearranges to give $k =$	M1	
	so, $k = -\frac{1}{10}$ or -0.1		$k = -\frac{1}{10}$ or -0.1	A1	
(b) Way 1	$\int \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int k \mathrm{d}t$	Separates the variables the wrong position	s correctly. dh and dt should not be in us, although this mark can be implied by later working. Ignore the integral signs.	B1	
	$\int (h-9)^{-\frac{1}{2}} \mathrm{d}h = \int k \mathrm{d}t$				
	1	Integrates $-$	$\frac{\pm\lambda}{(h-9)}$ to give $\pm m\sqrt{(h-9)}$; /, m^{-1} 0	M1	
	$\frac{(h-9)^2}{\left(\frac{1}{2}\right)} = kt(+c)$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{or} -$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{with/without } + c,$	A1	
	or equivalent, which can be un-simplified or simplified. $\{t = 0, h = 200 \triangleright\}$ $2\sqrt{(200 - 9)} = k(0) + c$ $t = 0$ and $h = 200$ to changed equation			M1	
	$containing a constant of integration, e.g. c or A$ $c = 2\sqrt{191} \triangleright 2(h-9)^{\frac{1}{2}} = -0.1t + 2\sqrt{191}$ $\{h = 50 \Rightarrow\} 2\sqrt{(50-9)} = -0.1t + 2\sqrt{191}$ $t = \dots$ $t = \dots$ $t = 0$ $t = 0$ $t = 0$			dM1	
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minut	tes) (nearest minute)	$t = 20\sqrt{191} - 20\sqrt{41}$ isw or awrt 148	A1 cso	
				[6]	
(b) Way 2	$\int_{200}^{50} \frac{\mathrm{d}h}{\sqrt{(h-9)}} = \int_{0}^{T} k \mathrm{d}t$	in the wrong posit by later working.	les correctly. dh and dt should not be ions, although this mark can be implied Integral signs and limits not necessary.	B1	
	$\int_{200}^{50} (h-9)^{-\frac{1}{2}} dh = \int_{0}^{T} k dt$				
	$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{\frac{1}{2}}$	Integrates $\frac{1}{\sqrt{2}}$	$\frac{\pm \lambda}{(h-9)} \text{ to give } \pm m\sqrt{(h-9)}; \ /, \ m^{-1} 0$	M1	
	$\left\lfloor \frac{(n-9)^2}{\left(\frac{1}{2}\right)} \right\rfloor_{200} = \left\lfloor kt \right\rfloor_0^T$	$\frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = kt \text{ or } \frac{(h-9)^{\frac{1}{2}}}{\left(\frac{1}{2}\right)} = (\text{their } k)t, \text{ with/without limits}$			
		Attempts to apply limits of $h = 200, h = 50$			
	$2\sqrt{41} - 2\sqrt{191} = kt$ or kT	and (can be implied) $t = 0$ to their changed equation		M1 7	
	$t = \frac{2\sqrt{41} - 2\sqrt{191}}{-0.1}$	The	dependent on the previous M markThen rearranges to find the value of $t =$		
	$t = 20\sqrt{191} - 20\sqrt{41}$ or $t = 148.3430145 = 148$ (minut	tes) (nearest minute)	$t = 20\sqrt{191} - 20\sqrt{41}$ or awrt 148 or 2 hours and awrt 28 minutes	A1 cso	
				[6]	
				ð	

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel

Mathematics C4

	Question 7 Notes						
7. (b)	Note	Allow first B1 for writing $\frac{dt}{dh} = \frac{1}{k\sqrt{(h-9)}}$ or $\frac{dt}{dh} = \frac{1}{(\text{their } k)\sqrt{(h-9)}}$ or equivalent					
	Note	$\frac{\mathrm{d}t}{\mathrm{d}h} = \frac{1}{k\sqrt{(h-9)}} \text{ leading to } t = \frac{2}{k}\sqrt{(h-9)} \ (+c) \text{ with/without } +c \text{ is B1M1A1}$					
	Note	After finding $k = 0.1$ in part (a), it is only possible to gain full marks in part (b) by initially writing					
		$\frac{\mathrm{d}h}{\mathrm{d}t} = -k\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-k\mathrm{d}t \text{ or } \frac{\mathrm{d}h}{\mathrm{d}t} = -0.1\sqrt{(h-9)} \text{ or } \grave{0}\frac{\mathrm{d}h}{\sqrt{(h-9)}} = \grave{0}-0.1\mathrm{d}t$					
		Otherwise, those candidates who find $k = 0.1$ in part (a), should lose at least the final A1 mark in					
		part (b).					

(a) Find the exact value of k.

The finite region *R*, shown shaded in Figure 4, is bounded by the curve *C*, the *y*-axis, the *x*-axis and the line with equation x = k.

(b) Show that the area of R can be expressed in the form

$$\lambda \int_{\alpha}^{\beta} \left(\theta \sec^2 \theta + \tan \theta \sec^2 \theta \right) \mathrm{d}\theta$$

where λ , α and β are constants to be determined.

(4)

(6)

(2)

(c) Hence use integration to find the exact value of the area of R.

Figure 4 shows a sketch of part of the curve C with parametric equations

Past Paper

8.

Leave blank

Şummer	r 2017 www.mystudybro.com Mathematic					s C4		
Past Paper Number	(Mark Scheme) This	resouseewas creat	ted and own	ed by Pearse	on Edexcel Notes 6	6 Marks		
8.	$x = 3q\sin q, y = \sec^3 q, 0 \neq q < \frac{p}{2}$							
(a)	{When $y = 8$,} $8 = \sec^3 \theta \Rightarrow \cos^3 \theta = \frac{1}{8} \Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta$			$\Rightarrow \theta = \frac{\pi}{3}$	Sets $y=8$ to find θ and attempts to substitute their θ	M1		
	$k \text{ (or } x) = 3\left(\frac{1}{3}\right)^{\text{SE}}$ so $k \text{ (or } x) = \frac{\sqrt{3}\pi}{1}$	$\frac{\left(\frac{\pi}{3}\right)\sin\left(\frac{\pi}{3}\right)}{3\pi}$			$\frac{\sqrt{3}p}{\sqrt{3}p} \text{ or } \frac{3p}{\sqrt{3}p}$	A1		
	2				$2 2\sqrt{3}$			
	Note: Obta	ining two value for	k without a	ccepting the c	$\frac{1}{20} \frac{1}{100} \frac{1}{$	[2]		
(b)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sin\theta + 3\theta\cos\theta$				Can be implied by later working	g B1		
	$\left\{\int y \frac{\mathrm{d}x}{\mathrm{d}q} \left\{\mathrm{d}q\right\}\right\} = \int (\sec q)$	$(q){dq}$		Applies $(\pm K \sec^3 q) (their \frac{dx}{dq})$ Ignore integral sign and dq : $K^{-1} = 0$	M1			
			Achieves	the correct re	esult no errors in their working e g			
	$= 3 \mathbf{\hat{0}} q \sec^2 q + \tan q \sec^2 q$	$c^2 q \mathrm{d}q$	Must	have integra	bracketing or manipulation errors. I sign and $d\theta$ in their final answer.	A1 *		
	$x=0$ and $x=k \Rightarrow \underline{\alpha}$	$\underline{=0}$ and $\underline{\beta} = \frac{\pi}{3}$	$\alpha = 0$	$\alpha = 0$ and $\beta = \frac{\pi}{3}$ or evidence of $0 \to 0$ and $k \to \frac{\pi}{3}$				
	Note:	The work for the f	inal B1 mar	k must be see	en in part (b) only.	[4]		
				$q \sec^2 q$ -	$\rightarrow Aqg(q) - B \int g(q), A > 0, B > 0,$			
			V	where $g(q)$ is	a trigonometric function in q and	M1		
				$\sigma(\alpha) = \text{their}$	r à sec ² ada [Note: $a(a) = 1 \sec^2 a$]			
(C) Woy 1	$\left\{ \grave{0} q \sec^2 q \mathrm{d} q \right\} = q \tan q$		5(9) the					
vvay 1		Either $/q \sec^2 q \rightarrow Aq \tan q - B \int \tan q, A > 0, B > 0$						
			or $q \sec^2 q \to q \tan q - \int \tan q$					
	$= q \tan q - \ln(\sec q)$		$q \sec^2 q \rightarrow q \tan q - \ln(\sec q)$ or $q \tan q + \ln(\cos q)$ or					
	or =	$q \tan q + \ln(\cos q)$	$/q \sec^2 q$	$q \rightarrow /q \tan q$	$/\ln(\sec q)$ or $/q\tan q + /\ln(\cos q)$	A1		
	Note: Co	ondone $q \sec^2 q \rightarrow$	$q \tan q - \ln($	$\sec x$) or qt	anq + ln(cosx) for A1			
	$\left\{ \hat{\mathbf{h}} \tan q \sec^2 q \mathrm{d} q \right\}$		$\tan\theta \sec$	$^{2}\theta$ or $/\tan\theta$	$q \sec^2 q \rightarrow \pm C \tan^2 q \text{ or } \pm C \sec^2 q$ or $\pm C u^{-2}$ where $u = \cos q$	M1		
			2 1	2 1	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$			
	$= \frac{-\tan^2 q}{2} \text{ or } \frac{-\sec^2 q}{2}$	d tan q se	$ec^2 q \rightarrow \frac{1}{2} tar$	$n^2 q$ or $\frac{1}{2}$ sec	² q or $\frac{1}{2\cos^2 q}$ or $\tan^2 q - \frac{1}{2}\sec^2 q$			
	or $\frac{1}{2u^2}$ where $u = c$	r $\frac{1}{2u^2}$ where $u = \cos q$		or $0.5u^{-2}$, where $u = \cos q$ or $0.5u^{-2}$, where $u = \tan q$				
	or $\frac{1}{2}u^2$ where $u = \tan q$		or $\lambda \tan \theta \sec^2 \theta \rightarrow \frac{\pi}{2} \tan^2 \theta$ or $\frac{\pi}{2} \sec^2 \theta$ or $\frac{\pi}{2\cos^2 \theta}$					
		or $0.5/u$, where $u = \cos q$ or $0.5/u$, where $u = \tan q$						
	$\left\{\operatorname{Area}(R)\right\} = \left[3q \tan q - 3\ln(\sec q) + \frac{3}{2}\tan^2 q\right]_0^{\frac{2}{3}} \text{ or } \left[3q \tan q - 3\ln(\sec q) + \frac{3}{2}\sec^2 q\right]_0^{\frac{2}{3}}$			$\frac{3}{2}\sec^2 q \bigg]_0^3$				
	$= \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \frac{3}{2}(3) \right) - (0) \text{ or } \left(3\left(\frac{\pi}{3}\right)\sqrt{3} - 3\ln 2 + \frac{3}{2}(4) \right) - \left(\frac{3}{2}\right) \right)$							
	$= \frac{9}{2} + \sqrt{3}\rho - 3\ln 2 \text{ or } \frac{9}{2} + \sqrt{3}\rho + 3\ln\left(\frac{1}{2}\right) \text{ or } \frac{9}{2} + \sqrt{3}\pi - \ln 8 \text{ or } \ln\left(\frac{1}{8}e^{\frac{9}{2} + \sqrt{3}\rho}\right)$				A1 o.e.			
					[6]			
						12		

Past Paper (Mark Scheme)

www.mystudybro.com This resource was created and owned by Pearson Edexcel Mathematics C4

Question Number		Scheme	Notes			
8. (c)	Way 2 for the first 5 marks: Applying integration by parts on $\hat{0}(q + \tan q)\sec^2 q dq$					
Way 2	$ \hat{0}(q\sec^2 q + \tan q\sec^2 q)\mathbf{d}q = \hat{0}(q + \tan q)\sec^2 q\mathbf{d}q, \begin{cases} u = q + \tan q \Rightarrow \frac{\mathbf{d}u}{\mathbf{d}q} = 1 + \sec^2 q \\ \frac{\mathbf{d}v}{\mathbf{d}q} = \sec^2 q \Rightarrow v = \tan q = \mathbf{g}(q) \end{cases} $					
	h(q) and	g(q) are trigonometric functions in	q and g	$g(q) = \text{their } \hat{g} \sec^2 q \mathrm{d} q.$ [Note: $g(q)^{-1} \sec^2 q$]		
			A(q	+ $\tan q$)g(q) - $B\dot{0}(1 + h(q))g(q), A > 0, B > 0$	M1	
	$= (q + \tan q) \tan q - \mathbf{\hat{0}} (1 + \sec^2 q) \tan q \{ dq \}$			dependent on the previous M mark Either $/ [(q + \tan q)\sec^2 q] \rightarrow$ $A(q + \tan q)\tan q - B\hat{0}(1 + h(q))\tan q, A^{-1} 0, B > 0$ or $(q + \tan q)\tan q - \hat{0}(1 + h(q))\tan q$		
	$= (q + \tan q) \tan q - \check{0} (\tan q + \tan q \sec^2 q) \{ \mathrm{d}q \}$					
	$= (q + \tan q) \tan q - \ln(\sec q) - \grave{0} \tan q \sec^2 q \{ \mathrm{d}q \}$			$(q + \tan q)\tan q - \ln(\sec q) \text{ o.e.}$ or $\left[(q + \tan q)\tan q - \ln(\sec q) \right]$ o.e.	A1	
	$= (q + \tan q)\tan q - \ln(\sec q) - \frac{1}{2}\tan^2 q$ or $= (q + \tan q)\tan q - \ln(\sec q) - \frac{1}{2}\sec^2 q$ etc.			$\tan q \sec^2 q \to \pm C \tan^2 q \text{ or } \pm C \sec^2 q$	M1	
				$(q + \tan q)\tan q - \frac{1}{2}\tan^2 q$ or $(q + \tan q)\tan q - \frac{1}{2}\sec^2 q$	A1	
	Note	Allow the first two marks in part (c) for $q \tan q - \hat{0} \tan q$ embedded in their working				
	Note	Allow the first three marks in part (c) for $q \tan q - \ln(\sec q)$ embedded in their working				
	Note	Allow 3 rd M1 2 nd A1 marks for either $\tan^2 q - \frac{1}{2}\tan^2 q$ or $\tan^2 q - \frac{1}{2}\sec^2 q$ embedded in their working				
			Questi	on 8 Notes		
8. (a)	Note	Allow M1 for an answer of $k = awrt 2.72$ without reference to $\frac{\sqrt{3}p}{2}$ or $\frac{3p}{2\sqrt{3}}$				
	Note	Allow M1 for an answer of $k = 3\left(\arccos(\frac{1}{2})\right)\sin\left(\arccos(\frac{1}{2})\right)$ without reference to $\frac{\sqrt{3}p}{2}$ or $\frac{3p}{2\sqrt{3}}$				
	Note	E.g. allow M1 for $q = 60^\circ$, leading to $k = 3(60)\sin(60)$ or $k = 90\sqrt{3}$				

Sur	nmer	20	1	7	
_	_			-	

www.mystudybro.com

Mathematics C4

Past Paper (1	Mark Scheme	e) This resource was created and owned by Use tion 8 Notes	Pearson Edexcel	6666				
8. (b)	Note	To gain A1, dq does not need to appear until they obtain $3\hat{0}(q\sec^2 q + \tan q \sec^2 q)dq$						
	Note	For M1, their $\frac{dx}{dq}$, where their $\frac{dx}{dq}$ ¹ $3q\sin q$, needs to be a trigonometric function in q						
	Note	Writing $\hat{0}(\sec^3 q)(3\sin q + 3q\cos q) = 3\hat{0}(q\sec^2 q + \tan q\sec^2 q)dq$ is sufficient for B1M1A1						
	Note	Writing $\frac{dx}{d\theta} = 3\sin\theta + 3\theta\cos\theta$ followed by writing $\oint y \frac{dx}{dq} dq = 3 \oint (q \sec^2 q + \tan q \sec^2 q) dq$ is sufficient for B1M1A1						
	Note	The final A mark would be lost for $\partial \frac{1}{\cos^3 q} 3\sin q + 3q\cos q = 3 \partial (q \sec^2 q + \tan q \sec^2 q) dq$						
	Note	Give 2 nd B0 for $a = 0$ and $b = 60^\circ$, without reference to $b = \frac{p}{2}$						
(c)	Note	A decimal answer of 7.861956551 (without a c	correct exact answer) is A0.					
(-)	Note	First three marks are for integrating $\theta \sec^2 \theta$ wit	h respect to θ					
	Note	Fourth and fifth marks are for integrating tan As	$ec^2 \theta$ with respect to θ					
	Note	Candidates are not penalised for writing $\ln \sec q$	as either $\ln(\sec q)$ or $\ln \sec q$					
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\sec q)$ WITH NO INTER	RMEDIATE WORKING is M0M0A0					
	Note	$q \sec^2 q \rightarrow q \tan q - \ln(\cos q)$ WITH NO INTER	RMEDIATE WORKING is M0M0A0					
	Note	$q \sec^2 q \rightarrow q \tan q - \ln(\sec q)$ WITH NO INTER	$q \sec^2 q \rightarrow q \tan q - \ln(\sec q)$ WITH NO INTERMEDIATE WORKING is M1M1A1					
	Note	$q \sec^2 q \rightarrow q \tan q + \ln(\cos q)$ WITH NO INTERMEDIATE WORKING is M1M1A1						
	Note	Writing a correct $uv - \partial v \frac{du}{dx}$ with $u = q$, $\frac{dv}{dq} = \tan q$, $\frac{du}{dq} = 1$ and $v = \text{their } g(q)$ and making one error in the direct application of this formula is 1 st M1 only.						
8. (c)	Alternativ	tive method for finding $\int \tan q \sec^2 q dq$						
	$\begin{cases} u = \tan \\ \frac{\mathrm{d}v}{\mathrm{d}q} = \sec \theta \end{cases}$	$q \implies \frac{\mathrm{d}u}{\mathrm{d}q} = \sec^2 q$ $c^2 q \implies v = \tan q$						
	à tan	$a q \sec^2 q dq = \tan^2 q - h \tan q \sec^2 q dq$						
	⊳ 2òtan	$q \sec^2 q dq = \tan^2 q$						
			$\tan\theta \sec^2\theta$ or $\rightarrow \pm C\tan^2q$	M1				
) tanqsec	$e^2 q \mathrm{d}q = \frac{1}{2} \tan^2 q$	$\tan q \sec^2 q \to \frac{1}{2} \tan^2 q$	A1				
	or $\begin{cases} u = \\ \frac{dv}{dq} \end{cases}$	$\sec q \qquad \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}q} = \sec q \tan q$ $= \sec q \tan q \Rightarrow v = \sec q$						
	⊳òtanG	$q \sec^2 q dq = \sec^2 q - \dot{q} \sec^2 q \tan q dq$						
	Þ 2ò≀tan	$q \sec^2 q dq = \sec^2 q$						
	\dot{a} top $a \sec^2 a da = \frac{1}{2} \sec^2 a$		$\tan \theta \sec^2 \theta \text{ or } \to \pm C \sec^2 q$	M1				
	0 tan q sec	$y u q = \frac{-\sec q}{2}$	$\tan q \sec^2 q \to \frac{1}{2} \sec^2 q$	A1				