Past Paper

This resource was created and owned by Pearson Edexcel

WMA02

		ering your candidate information
Candidate surname		Other names
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Tuesday 15 Ja	nuary	2019
Morning (Time: 2 hours 30 minute:	s) Paper R	reference WMA02/01
Core Mathemati	ics C34	
Advanced		

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 125.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Leave blank

1. (a) Express $7 \sin 2\theta - 2 \cos 2\theta$ in the form $R \sin (2\theta - \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < 90^{\circ}$. Give the exact value of R and give the value of α to 2 decimal places.

(3)

(b) Hence solve, for $0 \leqslant \theta < 90^{\circ}$, the equation

$$7\sin 2\theta - 2\cos 2\theta = 4$$

giving your answers in degrees to one decimal place.

(4)

(c) Express $28\sin\theta\cos\theta + 8\sin^2\theta$ in the form $a\sin2\theta + b\cos2\theta + c$, where a, b and c are constants to be found.

(3)

(d) Use your answers to part (a) and part (c) to deduce the exact maximum value of $28\sin\theta\cos\theta + 8\sin^2\theta$

(2)

DO NOT WRITE IN THIS AREA

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
1(a)	$R = \sqrt{53}$	cao	B1
	$\tan \alpha = \frac{2}{7} \Rightarrow$ $\tan \alpha = \pm \frac{2}{7} \text{ or } \tan \alpha$ $\sin \alpha = \pm \frac{2}{\sqrt{53}} \text{ or } \sin \alpha = \pm \frac{7}{\sqrt{53}} \text{ or } \cot \alpha$ $\Rightarrow \alpha =$ Uses one of these equation	on $\alpha = \pm \frac{7}{2}$ or $\cos \alpha = \pm \frac{7}{\sqrt{53}}$ or $\cos \alpha = \pm \frac{2}{\sqrt{53}}$ 	M1
	$\alpha = 15.95^{\circ}$	Awrt 15.95° (Allow awrt 0.28 (rad))	A1
			(3)
(b)	$\sqrt{53}\sin(2\theta - 15.95^{\circ}) = 4 \Rightarrow \sin(2\theta - 15.95^{\circ})$	V 33	
	Attempts to use part (a)" $\sqrt{53}$ " sin(2 θ		M1
	$\sin(2\theta \pm "15.95^{\circ}")$ Allow the letter α		
	$2\theta - 15.95^{\circ} = 33.3287 \Rightarrow \theta = 24.6^{\circ}$		A1
	$2\theta - 15.95^{\circ} = 180^{\circ} - 3$		
	Correct attempt at a second E.g. $2\theta_2 \mp '15.95^{\circ} = 180^{\circ} - '33.3287^{\circ} = '33.3287^{\circ}$ (May be implied It is dependent upon having	$\theta_2 = \frac{180^{\circ} - '33.3287^{\circ} ' \pm '15.95^{\circ} '}{2}$ by their θ_2)	dM1
	Do not allow mixing of radians and degrees so if working in radians must be using π not 180		
	$\theta = 81.3^{\circ}$	Awrt 81.3° only	A1
	Ignore extra answers outside range but deduc	et the final A for extra answers in range.	(4)
(c)	$28\sin\theta\cos\theta = a\sin 2\theta \Rightarrow a = 14$	a = 14	B1 (4)
()	$8\sin^2\theta = b(\pm 1 \pm 2\sin^2\theta) + c \text{ or } 8\sin^2\theta = 4\sin^2\theta + 4\sin^2\theta = 4\sin^2\theta$	$3\sin^2\theta = 8\left(\frac{1}{2}(\pm 1 \pm \cos 2\theta)\right)$	MI
		,	M1
	Attempts to use $a\cos 2\theta$ identity e.g. $\cos 2\theta = \pm 1 \pm 2\sin^2\theta$ or $\sin^2\theta = \frac{1}{2}(\pm 1 \pm \cos 2\theta)$		
	at some point in their working and ap	oplies it to the given expression.	
	$b = -4$, $c = 4$ or $-4\cos 2\theta + 4$	Correct values or correct expression	A1
(d)	$(28\sin\theta\cos\theta + 8\sin^2\theta)_{\text{max}} = 2'\sqrt{53}' + 4'$	Maximum = $2 \times \text{their} \sqrt{53} + \text{their } c$ May be implied e.g. by their decimal answer.	(3) M1
	$2\sqrt{53} + 4$	Cao (must be exact not decimals)	A1
	Attempts to use calculus for the maximum	should reach $2R + c$ as above for M1.	
			(2)
			Total 12

This resource was created and owned by Pearson Edexcel

act : ap c.

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

2. Given that

$$\frac{3x^2 + 4x - 7}{(x+1)(x-3)} \equiv A + \frac{B}{x+1} + \frac{C}{x-3}$$

(a) find the values of the constants A, B and C.

(4)

(b) Hence, or otherwise, find the series expansion of

$$\frac{3x^2 + 4x - 7}{(x+1)(x-3)} \qquad |x| < 1$$

in ascending powers of x, up to and including the term in x^2

Give each coefficient as a simplified fraction.

(6)

Winter 2019

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
2	$\frac{3x^2 + 4x - 7}{(x+1)(x-3)} \equiv A$	$+\frac{B}{x+1} + \frac{C}{x-3}$	
(a)	A = 3	Must be clearly identified as the value of A. (May be implied by their partial fractions)	B1
	$3x^{2} + 4x - 7 = A(x+1)(x-3)$ And then expands and compares coefficient	s or substitutes values of x leading to a	
	value for E Or		
	$3x^2 + 4x - 7 \div (x+1)(x-3)$	$3) = 3 + \frac{10x + 2}{(x+1)(x-3)}$	M1
	$\Rightarrow 10x + 2 = B(x -$	-3)+ $C(x+1)$	
	And then expands and compares coefficient value for E		
	A correct method may be implied by correct seen	et values provided no incorrect work is	
	B = 2 or C = 8	One of B or C correct	A1
	B=2 and $C=8$	Both B and C correct	A1
			(4

Mathematics C34

Winter 2019 www.mystudybro.com
Past Paper (Mark Scheme) This resource was created and owned by Pearson Edexcel

(b) Way 1	If correct values for A, B and C are obtained by an incorrect method in part (a), allow a full recovery in (b)			
	$\frac{1}{x+1} = (1+x)^{-1} = (1-x+x^2)$ Attempts to expand $(1+x)^{-1}$. Look for $1+$ a correct simplified or unsimplified second or third term.			
	$\frac{1}{x-3} = -\left(3-x\right)^{-1} = -\frac{1}{3}\left(1-\frac{1}{3}x\right)^{-1}$	$\frac{1}{x-3} = -\frac{1}{3} \left(1 - \frac{1}{3}x \right)^{-1}$. Takes out a correct factor including the minus sign and a correct bracket.	B1	
	$\left(1 - \frac{1}{3}x\right)^{-1} = 1 + \frac{1}{3}x + \frac{1}{9}x^{2} \dots$	Attempts to expand $\left(1 \pm \frac{1}{3}x\right)^{-1}$. Look for $1 + a$ correct simplified or unsimplified second or third term.	M1	
	Note			
	$-(3-x)^{-1} \text{ can be expanded as } -\left(3^{-1}+(-1)3^{-2}(-x)+\frac{(-1)(-2)}{2!}3^{-3}(-x)^2+\ldots\right)$			
	Score B1 for -3^{-1} as the first term and M1 for correct attempt at the 2^{nd} or 3^{rd} term or			
	$\frac{1}{x-3}$ can be expanded as $(x-3)^{-1}$ =	$=3^{-1}\left(\frac{x}{3}-1\right)^{-1}\left(=3^{-1}\left(-1+\frac{x}{3}\right)^{-1}\right)$		
	$=3^{-1}\left(-1-\left(-1\right)^{-2}\left(\frac{x}{3}\right)+\frac{-1\left(-2\right)}{2}\left(-1\right)^{-3}\left(\frac{x}{3}\right)^{2}+\ldots\right)$			
	Score B1 for -3^{-1} as the first term and M1 f	For correct attempt at the 2 nd or 3 rd term		
	$\frac{3x^2 + 4x - 7}{(x+1)(x-3)} \approx (3+)2(1-x+x^2) - \frac{8}{3}\left(1 + \frac{1}{3}x + \frac{1}{9}x^2\right)$		M1	
	Combines using their expansions and at least their B and C (so allow if they forget/don't add their A)			
	$= \frac{7}{3} - \frac{26}{9}x + \frac{46}{27}x^2$	Any 2 correct terms	A1	
		All terms correct 26 19 for 46	A1	
	Allow $2\frac{1}{3}$ for $\frac{7}{3}$, $-2\frac{8}{9}$ for $-\frac{26}{9}$, $1\frac{19}{27}$ for $\frac{46}{27}$			
			(6) Total 10	

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

2(b)	(b) Way 2 not requiri			
	$\frac{3x^2 + 4x - 7}{(x+1)(x-3)} = (3x^2 + 4x - 7)(x+1)^{-1}(x-3)^{-1}$			
	$(1+x)^{-1} = (1-x+x^2)$ Attempts to expand $(1+x)^{-1}$. Look for $1+a$ correct simplified or			
	$(1+x) = (1-x+x \dots)$	Look for 1 + a correct simplified or unsimplified second or third term.	M1	
	$\frac{1}{x-3} = -(3-x)^{-1} = -\frac{1}{3}\left(1 - \frac{1}{3}x\right)^{-1}$ $\frac{1}{x-3} = -\frac{1}{3}\left(1 - \frac{1}{3}x\right)^{-1} \text{ or } -3^{-1}\left(1 - \frac{1}{3}x\right)^{-1}$ Takes out a correct factor including the minus sign.			
	$\left(1 - \frac{1}{3}x\right)^{-1} = 1 + \frac{1}{3}x + \frac{1}{9}x^{2} \dots$	Attempts to expand $\left(1 \pm \frac{1}{3}x\right)^{-1}$. Look for $1 + a$ correct simplified or unsimplified second or third term.	M1	
	Note			
	$-(3-x)^{-1}$ can be expanded as $-(3^{-1}+(-$	$(-1)3^{-2}(-x)+\frac{(-1)(-2)}{2!}3^{-3}(-x)^2+$		
	Score B1 for -3^{-1} as the first term and M1 for correct attempt at the 2^{nd} or 3^{rd} term			
	or			
	$\frac{1}{x-3} \text{ can be expanded as } (x-3)^{-1} = 3^{-1} \left(\frac{x}{3} - 1\right)^{-1} \left(= 3^{-1} \left(-1 + \frac{x}{3}\right)^{-1}\right)$			
	$=3^{-1}\left(-1-\left(-1\right)^{-2}\left(\frac{x}{3}\right)+\frac{-1\left(-2\right)}{2}\left(-1\right)^{-3}\left(\frac{x}{3}\right)^{2}+\ldots\right)$			
	Score B1 for -3^{-1} as the first term and M1 for correct attempt at the 2^{nd} or 3^{rd} term $ \frac{3x^2 + 4x - 7}{(x+1)(x-3)} \approx \left(3x^2 + 4x - 7\right) \left(-\frac{1}{3}\right) \left(1 + \frac{1}{3}x + \frac{1}{9}x^2\right) \left(1 - x + x^2\right) = \dots $ Attempts to multiply out all 3 brackets $ = \frac{7}{3} - \frac{26}{9}x + \frac{46}{27}x^2 $ Any 2 correct terms All terms correct			

blank

Leave

DO NOT WRITE IN THIS AREA

3. The function f is defined by

$$f: x \mapsto 2x^2 + 3kx + k^2$$
 $x \in \mathbb{R}, -4k \leqslant x \leqslant 0$

where k is a positive constant.

(a) Find, in terms of k, the range of f.

(4)

The function g is defined by

$$g: x \mapsto 2k - 3x \qquad x \in \mathbb{R}$$

Given that gf(-2) = -12

(b) find the possible values of k.

(4)

DO NOT WRITE IN THIS AREA

www.mystudybro.comThis resource was created and owned by Pearson Edexcel **Mathematics C34**

Past Paper (Mark Scheme)

Question Number	Scheme	Notes	Marks
3(a)	$f\left(-\frac{3k}{4}\right) = \dots \text{ or } f\left(-4k\right) = \dots$	Attempts $f\left(-\frac{3k}{4}\right)$ or $f\left(-4k\right)$	M1
	Note:		
	Candidates who use completion of the square t	o obtain e.g. $a\left(x+\frac{3k}{4}\right)^2+b$ must then	
	identify the "b" as an "end point" if they	do not explicitly find $f\left(-\frac{3k}{4}\right)$	
	$y_{\min} = -\frac{k^2}{8}$ or $y > -\frac{k^2}{8}$ or $y \ge -\frac{k^2}{8}$ or $y_{\max} = 21k^2$ or $y < 21k^2$ or $y \le 21k^2$	One correct "end" of the range. May be implied by their final answer. Allow strict and non-strict inequality symbols or other indications that values are max or min.	A1
	$f\left(-\frac{3k}{4}\right) = \dots$ and $f\left(-4k\right) = \dots$	(-1)	M1
	Note:		
	Candidates who use completion of the square t	o obtain e.g. $a\left(x+\frac{3k}{4}\right)^2+b$ must then	
	identify the "b" as an "end point" if they	do not explicitly find $f\left(-\frac{3k}{4}\right)$	
	$-\frac{k^2}{8} \le f(x) \le 21k^2$ $\left[-\frac{k^2}{8}, 21k^2 \right]$ $f(x) \ge -\frac{k^2}{8} \text{ and } f(x) \le 21k^2$ $f(x) \ge -\frac{k^2}{8} \cap f(x) \le 21k^2$	Correct range. Allow alternative notation as shown and allow y or "range" for $f(x)$ but do not allow x for $f(x)$.	A1
(b)	(, , , 2 , , , , , ,)		(4)
(b)	$gf(-2) = 2k - 3(2(-2)^{2} + 3k(-2) + k^{2})$ or $gf(x) = 2k - 3(2x^{2} + 3kx + k^{2})$	Correct expression for $gf(-2)$ or $gf(x)$. Award this mark as soon as a correct expression is seen.	B1
	$2k-3(2(-2)^{2}+3k(-2)+k^{2})=-12$	Puts their $gf(-2) = \pm 12$ to obtain an equation in k only. Must be using $x = -2$.	M1
	$3k^2 - 20k + 12 = 0$	Solves a 3TQ – see general guidance. Dependent on the previous M.	dM1
	$\Rightarrow (3k-2)(k-6) = 0 \Rightarrow k = \frac{2}{3}, 6$	Correct values. Allow equivalent fractions for $\frac{2}{3}$ or 0.6 with a clear	A1
		dot over the 6.	(4)
			Total 8

■ Past Paper

This resource was created and owned by Pearson Edexcel

Leave blank

The curve C has equation

$$81y^3 + 64x^2y + 256x = 0$$

(a) Find $\frac{dy}{dx}$ in terms of x and y.

(5)

(b) Hence find the coordinates of the points on C where $\frac{dy}{dx} = 0$

(6)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Winter 2019

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
4	$81y^3 + 64x^2y + 2$		
(a)	$\frac{d(81y^3)}{dx} = 243y^2 \frac{dy}{dx}$	$\frac{d(81y^3)}{dx} = ky^2 \frac{dy}{dx}$ $\frac{d(64x^2y)}{dx} = \alpha xy + \beta x^2 \frac{dy}{dx}$ Correct differentiation. The "= 0"	M1
	$\frac{d(81y^3)}{dx} = 243y^2 \frac{dy}{dx}$ $\frac{d(64x^2y)}{dx} = 128xy + 64x^2 \frac{dy}{dx}$	$\frac{d(64x^2y)}{dx} = \alpha xy + \beta x^2 \frac{dy}{dx}$	M1
	$243y^{2} \frac{dy}{dx} + 128xy + 64x^{2} \frac{dy}{dx} + 256(=0)$	Correct differentiation. The "= 0" is not required but there should be no extra terms.	A1
	For the first 3 marks you can ignore any	y spurious " $\frac{dy}{dx}$ =" at the start.	
	$243y^{2} \frac{dy}{dx} + 64x^{2} \frac{dy}{dx} = -128xy - 256 \Rightarrow \frac{dy}{dx}$ $\Rightarrow \frac{dy}{dx} =$		
	Makes $\frac{dy}{dx}$ the subject allowing sign errors		M1
	This depends on there being exactly two	$\frac{dy}{dx}$ terms. One coming from the	
	differentiation of $81y^3$ and one coming from the differentiation of $64x^2y$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-128xy - 256}{243y^2 + 64x^2}$	Correct expression (oe)	A1
	Note that the final M1A1 in (a) car	n be recovered in part (b)	
			(5

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(b)	Note that full marks are available in (b) follow	ving an incorrect denominator in (a)	
	-128xy - 256 = 0	Sets their numerator = 0. Note that this may appear from putting $\frac{dy}{dx} = 0$ into their differentiation in part (a) before making $\frac{dy}{dx}$ the subject.	M1
	$81y^{3} + 64y\left(-\frac{2}{y}\right)^{2} + 256\left(-\frac{2}{y}\right) = 0$ or $81\left(-\frac{2}{x}\right)^{3} + 64x^{2}\left(-\frac{2}{x}\right) + 256x = 0$	Substitutes to obtain an equation in one variable. Dependent on the first M.	d M1
	$y^{4} = \frac{256}{81} \Rightarrow y = \dots$ or $x^{4} = \frac{81}{16} \Rightarrow x = \dots$	Solves an equation of the form $y^4 = p$ or $x^4 = q$ $(p, q > 0)$ Depends on the previous M.	d M1
	$y = \pm \frac{4}{3}$ or $x = \pm \frac{3}{2}$	2 Correct values for <i>x</i> or 2 correct values for <i>y</i> . Allow unsimplified for this mark.	A1
	$y = (\pm) "\frac{4}{3}" \Rightarrow x = \dots \text{ or } x = (\pm) "\frac{3}{2}" \Rightarrow y = \dots$	Attempts at least one value of the other variable having previously found and solved an equation in one variable.	M1
	Examples: $\left(\pm \frac{3}{2}, \mp \frac{4}{3}\right)$ or $x = \pm \frac{3}{2}, y = \mp \frac{4}{3}$ or $x = \frac{3}{2}, y = -\frac{4}{3}, \text{ and } x = -\frac{3}{2}, y = \frac{4}{3}$ or $\left(\frac{3}{2}, -\frac{4}{3}\right), \left(-\frac{3}{2}, \frac{4}{3}\right)$	Correct values which must now be simplified and paired correctly. Do not isw and mark their final answer.	A1
			(6) Total 11
			1014111

blank

■ Past Paper

5. The angle x and the angle y are such that

$$\tan x = m \text{ and } 4 \tan y = 8m + 5$$

where m is a constant.

Given that $16 \sec^2 x + 16 \sec^2 y = 537$

(a) find the two possible values of m.

(4)

Given that the angle x and the angle y are acute, find the exact value of

(b) $\sin x$

(2)

(c) coty

(2)

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
5	$\tan x = m$ and	$4\tan y = 8m + 5$	
(a)	Examples: $\sec^2 x = 1 + m^2$ or $\sec^2 y = 1 + \left(\frac{8m+5}{4}\right)^2$ or $16\sec^2 y = 16 + 16(8m+5)^2$	Attempts to express $\sec^2 x$ or $\sec^2 y$ in terms of m using a correct identity.	M1
	$16(\sec^2 x + \sec^2 y) = 16\left(1 + \frac{1}{2}\right)$ Uses their expressions in <i>m</i> and 537 to obtain which may be to	otain a quadratic equation in terms of m	M1
	$m^2 + m - 6 = 0 \Rightarrow m = 2, -3$	Solves their 3TQ as far as $m =$	M1
	$m + m - 0 = 0 \Rightarrow m = 2, -3$	Correct values	A1
			(4)
(b)	$\tan x = 2 \Rightarrow \sin x$ Correct method for the value of $\sin x$. Must work but m does not need to be exact. So Can be for using either	t be from an appropriate identity or exact e.g. $\sin(\tan^{-1} 2) = 0.8944$ scores M0	M1
	$=\frac{2}{\sqrt{5}}$	cao (oe) and no other values	A1
(c)	$\tan y = \frac{21}{4} \Rightarrow \cot y = \frac{4}{21}$	Correct method to obtain a value for cot y. So uses $4 \tan y = 8m + 5$ and their m to find a value for $\tan y$ and finds reciprocal. Can be for using either of their values of m. cao (oe) and no other values	M1 A1
<u>-</u>			(2)
		·	Total 8

blank

DO NOT WRITE IN THIS AREA

	· · · · · · · · · · · · · · · · · · ·
6.	Relative to a fixed origin O , the points A , B and C have coordinates $(2, 1, 9)$, $(5, 2, 7)$ and $(4, -3, 3)$ respectively.
	The line l passes through the points A and B .
	(a) Find a vector equation for the line <i>l</i> . (2)
	(b) Find, in degrees, the acute angle between the line l and the line AC . (3)
	The point D lies on the line l such that angle ACD is 90°
	(c) Find the coordinates of D. (4)
	(d) Find the exact area of triangle <i>ADC</i> , giving your answer as a fully simplified surd. (2)

Winter 2019

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
6(a)	$\pm \overrightarrow{AB} = \pm \begin{pmatrix} 5 \\ 2 \\ 7 \end{pmatrix} - \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} \end{pmatrix}$	Correct attempt at direction. May be implied by at least 2 correct components if no method seen.	M1
	$\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$ or $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + 9\mathbf{k} + \lambda (3\mathbf{i} + \mathbf{j} - 2\mathbf{k})$	Accept equivalents but it must be an equation and it must be "r =" or $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \dots$	A1
	Equivalent correct s $\mathbf{r} = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ -1 \\ 2 \end{pmatrix} \mathbf{r} = \begin{pmatrix} 5 \\ 2 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 2 \\ 7 \end{pmatrix}$	$\lambda \begin{pmatrix} -3 \\ -1 \\ 2 \end{pmatrix}, \mathbf{r} = \begin{pmatrix} 5 \\ 2 \\ 7 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$	
	Do not allow e.g. $\mathbf{r} = \begin{pmatrix} 2\mathbf{i} \\ \mathbf{j} \\ 9\mathbf{k} \end{pmatrix} + \lambda \begin{pmatrix} 3\mathbf{i} \\ \mathbf{j} \\ -2\mathbf{k} \end{pmatrix}$ unless	ess a correct form is seen earlier then isw	
			(2)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C34 WMA02

(b) Way 1	$\overrightarrow{AC} = \begin{pmatrix} 2 \\ -4 \\ -6 \end{pmatrix}$	Attempts $\pm \overrightarrow{AC}$. May be implied by at least 2 correct components if no method seen.	M1	
	$\pm \overrightarrow{AB}.\pm \overrightarrow{AC} = AB AC \cos\theta =$	$\Rightarrow 6 - 4 + 12 = \sqrt{14}\sqrt{56}\cos\theta$		
	$\Rightarrow \cos \theta \Rightarrow \frac{1}{\sqrt{14}}$	V 30	dM1	
	Attempt the scalar product of $\pm AB$ or their $\pm \overline{AC}$ and process	± , , ,		
	$\theta = 60^{\circ}$	Cao (Must be degrees not radians)	A1	
				(3)
	(b) Way 2 (cosine rul	le on triangle <i>ABC</i>)		
	$AB = \sqrt{14}, \ AC = 2\sqrt{14}, \ BC = \sqrt{42}$	Attempts the lengths of all 3 sides	M1	
	$42 = 14 + 56 - 2\sqrt{14}\sqrt{56}\cos\theta$ $\Rightarrow \cos\theta = \frac{28}{2\sqrt{14}\sqrt{56}} \Rightarrow \theta = \dots$	Attempt cosine rule and proceeds to $\theta = \dots$	dM1	
	$\theta = 60^{\circ}$	Cao (Must be degrees not radians)	A1	
		,		(3)
	(b) Way 3 using	vector product		
	$\overrightarrow{AC} = \begin{pmatrix} 2 \\ -4 \\ -6 \end{pmatrix}$	Attempts $\pm \overrightarrow{AC}$	M1	
	$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -4 & -6 \\ 3 & 1 & -2 \end{vmatrix} = \begin{pmatrix} 14 \\ -14 \\ 14 \end{pmatrix} \Rightarrow$ Attempt the vector product of $+\overrightarrow{AB}$ or the	$\sin \theta = \frac{\sqrt{14^2 + 14^2 + 14^2}}{\sqrt{2^2 + 4^2 + 6^2} \sqrt{3^2 + 1^2 + 2^2}}$	M1	
	Attempt the vector product of $\pm AB$ of the	ii direction vector from part (a) and then		
	$\pm \overrightarrow{AC}$ and proce			
	$\theta = 60^{\circ}$	Cao (Must be degrees not radians)	A1	(0)
				(3)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(c) Way 1	$\begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix}$	Attempts \overrightarrow{CD} by finding: (a general point on \overrightarrow{AB}) – \overrightarrow{OC} or (their part (a)) – \overrightarrow{OC}	M1
	$\begin{pmatrix} 2 \\ -4 \\ -6 \end{pmatrix} \bullet \begin{cases} \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} -4 \\ -4 \end{pmatrix} - \begin{pmatrix}$		M1
	Attempts $\overrightarrow{AC} \cdot \overrightarrow{CD} = 0$ and solves for λ . I AC and a correct attempt at CD or what identified	they think is CD as long as it is clearly	
	$\lambda = "4" \Rightarrow OD = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + "4" \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$	Uses their value of λ to find D. Dependent on both previous M's	ddM1
	(14, 5, 1) or $14\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 14 \\ 5 \\ 1 \end{pmatrix}$	Correct coordinates or vector and no other points or vectors.	A1
		2	(4)
	$\begin{array}{c c} (c) \text{ W} \\ \hline - 2\sqrt{14} & - \end{array}$	ıy 2:	
	$AC = 2\sqrt{14} \Rightarrow AD = \frac{2\sqrt{14}}{\cos 60^{\circ}} \left(= 4\sqrt{14}\right)$	Correct attempt at the length of AD	M1
	$AB = \sqrt{14} \Rightarrow AD = 4AB$ or $(3\lambda)^2 + \lambda^2 + (2\lambda)^2 = (4\sqrt{14})^2 \Rightarrow \lambda = \dots$	Uses ratio of AB to AD to find a value for " λ " or uses the length of AD and applies Pythagoras to " λ "×their direction of l to find a value for " λ "	M1
	$\lambda = "4" \Rightarrow OD = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + "4" \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$	Uses their value of " λ " to find D . Dependent on both previous M's	dd M1
	D(14, 5, 1) or $14i + 5j + k$ etc.	Correct coordinates or vector and no other points or vectors	A1
	(c) W:	ay 3	
	$\begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix}$	Attempts \overrightarrow{CD} by finding: (a general point on \overrightarrow{AB}) – \overrightarrow{OC} or (their part (a)) – \overrightarrow{OC}	M1
	$(3\lambda - 2)^2 + (\lambda + 4)^2 + (6)^2$	$-2\lambda)^2 = \left(AC\tan 60\right)^2$	
	$\lambda^2 - 2\lambda - 8 =$ Attempts $(CD)^2 = (AC)^2$		M1
	$\lambda = "4" \Rightarrow OD = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + "4" \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$	Uses their value of λ to find D. Dependent on both previous M's	ddM1
	(14, 5, 1) or $14\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ or $\begin{pmatrix} 14 \\ 5 \\ 1 \end{pmatrix}$	Correct coordinates or vector and no other points or vectors.	A1

Mathematics C34 WMA02

A1

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(c) Way 4		
$ \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + \lambda \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \\ 3 \end{pmatrix} $	Attempts \overrightarrow{CD} by finding: (a general point on \overrightarrow{AB}) – \overrightarrow{OC} or (their part (a)) – \overrightarrow{OC}	M1
28 <i>λ</i> −112	$\frac{(\lambda)^2 + AC^2 = (3\lambda)^2 + \lambda^2 + (2\lambda)^2}{(2\lambda)^2 + (2\lambda)^2}$ $= 0 \Rightarrow \lambda = \dots$ $\frac{(\lambda)^2 + AD^2}{(2\lambda)^2 + (2\lambda)^2}$ and solves for λ	M1
$\lambda = "4" \Rightarrow OD = \begin{pmatrix} 2 \\ 1 \\ 9 \end{pmatrix} + "4" \begin{pmatrix} 3 \\ 1 \\ -2 \end{pmatrix}$	Uses their value of λ to find D. Dependent on both previous M's	dd M1

(14, 5, 1) or $14\mathbf{i} + 5\mathbf{j} + \mathbf{k}$ or

Correct coordinates or vector and no

other points or vectors.

(d)	Area ADC = $\frac{1}{2}AC \times CD = \frac{1}{2}\sqrt{56}\sqrt{168}$	Correct triangle area method	M1	
	$=28\sqrt{3}$	cao	A1	
				(2)
	Alternative	es for (d)		
	$\frac{1}{2}AC \times AD \sin 60^{\circ} = \frac{1}{2}\sqrt{56}\sqrt{224}\frac{\sqrt{3}}{2},$	$\frac{1}{2}AD \times DC\sin 30^{\circ} = \frac{1}{2}\sqrt{168}\sqrt{224}\frac{1}{2}$		
	$\frac{1}{2}AC \times AC \tan 60^{\circ}$	$=\frac{1}{2}\sqrt{56}\sqrt{56}\sqrt{3}$		
			Tota	l 11

1

blank

Past Paper

Leave

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

7.

Figure 1

Figure 1 shows a sketch of part of the curve with equation

$$y = \frac{x+7}{\sqrt{2x-3}} \qquad x > \frac{3}{2}$$

The region R, shown shaded in Figure 1, is bounded by the curve, the line with equation x = 4, the x-axis and the line with equation x = 6

(a) Use the trapezium rule with 4 strips of equal width to find an estimate for the area of R, giving your answer to 2 decimal places.

(4)

(b) Using the substitution u = 2x - 3, or otherwise, use calculus to find the exact area of R, giving your answer in the form $a + b\sqrt{5}$, where a and b are constants to be found.

(7)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics C34 WMA02

Question	Scheme	Notes	Marks
Number 7(a)	Seneme		TVIWING
7(a)	Strip width = 0.5	Correct value stated or used within the formula.	B1
	$\frac{11\sqrt{5}}{5} + \frac{13}{3} + 2\left(\frac{23\sqrt{6}}{12} + \frac{1}{12}\right)$	$\left(\frac{2\sqrt{7}}{7} + \frac{25\sqrt{2}}{8}\right)$	
	or (4.91+4.33+2(4.69+	+4.53+4.41))	M1
	Correct structure for their y values (if their v Must have y values starting at x	values need checking, look for 2sf)	
	Area $\approx \frac{1}{2} \times \frac{1}{2} \left(\frac{11\sqrt{5}}{5} + \frac{13}{3} + 2 \left(\frac{23\sqrt{6}}{12} + \frac{12\sqrt{7}}{7} + \frac{25\sqrt{2}}{8} \right) \right)$		
	or Area $\approx \frac{1}{2} \times \frac{1}{2} (4.91 + 4.33 + 2)$	4.69+4.53+4.41))	A1
	Correct numerical expression for the area (al implied by their ar	· · · · · · · · · · · · · · · · · · ·	
	9.14	9.14 only	A1
			(4)
(b)	$u = 2x - 3 \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}x} = 2$	Correct derivative. Accept any correct equivalents e.g. $du = 2dx$	B1
	$\int \frac{x+7}{\sqrt{2x-3}} \mathrm{d}x = \int \frac{\frac{u+3}{2}+7}{\sqrt{u}} \frac{1}{2} \mathrm{d}u$	M1: Fully substitutes. <u>Just</u> replacing "dx" with "du" with no evidence of where the "du" has come from is M0 but allow slips e.g. omission of "+7"	M1A1
		A1: Fully correct expression.	
	$\frac{1}{4} \left(\frac{2}{3} u^{\frac{3}{2}} + 34 u^{\frac{1}{2}} \right) (+c)$	Fully correct integration in any form (+ c not required)	A1
	Note: Integration by	-	
	$\frac{1}{4} \int (u+17)u^{-\frac{1}{2}} du = \frac{1}{4} \left(2u^{\frac{1}{2}}\right) (u+17) - \frac{1}{4} \int$	$2u^{-\frac{1}{2}} du = \frac{1}{2}u^{\frac{3}{2}} + \frac{17}{2}u^{\frac{1}{2}} - \frac{1}{3}u^{\frac{3}{2}}(+c)$	
	x = 4, u = 5 $x = 6, u = 9$	Correct <i>u</i> limits seen anywhere.	B1
	If they return to x then this B1 is for replacing u with $2x-3$		
	$\frac{1}{4} \left[\frac{2}{3} u^{\frac{3}{2}} + 34 u^{\frac{1}{2}} \right]_{5}^{9} = \frac{1}{4} \left\{ \left(\frac{2}{3} (9)^{\frac{3}{2}} + 34 (9)^{\frac{1}{2}} \right) - \left(\frac{2}{3} (5)^{\frac{3}{2}} + 34 (5)^{\frac{1}{2}} \right) \right\}$		
	Substitutes their (changed) <i>u</i> limits into a changed function and subtracts either way round or substitutes <i>x</i> limits if they undo the substitution and subtracts either way round		M1
	$=30-\frac{28}{3}\sqrt{5}$	cao	A1
			(7)
			Total 11

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

	Note that 7(b) is hence or otherwise so other scheme will follow the same structu		
7(b)	$u^2 = 2x - 3 \Rightarrow 2u \frac{du}{dx} = 2$	Correct derivative. Accept correct equivalents e.g. $2u = 2 \frac{dx}{du}$,	B1
	$\frac{u - 2x}{dx} = \frac{3}{2} = \frac{2u}{dx}$	dx = u du	DI
	$\int \frac{x+7}{\sqrt{2x-3}} \mathrm{d}x = \int \frac{\frac{u^2+3}{2}+7}{u} u \mathrm{d}u$	M1: Fully substitutes. Allow slips e.g. omission of " + 7"	M1A1
		A1: Fully correct expression.	
	$\frac{u^3}{6} + \frac{17}{2}u(+c)$	Fully correct integration in any form (+ c not required)	A1
	$x = 4, u = \sqrt{5} x = 6, u = 3$	Correct <i>u</i> limits seen anywhere.	B1
	If they return to x then this B1 is for replacing u with $\sqrt{2x-3}$		
	$\left[\frac{1}{6}u^3 + \frac{17}{2}u\right]_{\sqrt{5}}^3 = \left\{\left(\frac{27}{6} + \frac{17}{2}(3)\right)\right\}$	$-\left(\frac{1}{6}\left(\sqrt{5}\right)^3 + \frac{17}{2}\left(\sqrt{5}\right)\right)\right\}$	
	Substitutes their (changed) u limits into a charge round or substitutes x limits if they undo the round		M1
	$=30-\frac{28}{3}\sqrt{5}$	cao	A1
			(7)

	Note that 7(b) can also be	e done by parts:	
7(b)	$\int \frac{x+7}{\sqrt{2x-3}} dx = \int (x+7)(2x-3)^{-\frac{1}{2}} dx$	Uses $\frac{x+7}{\sqrt{2x-3}}$ as $(x+7)(2x-3)^{-\frac{1}{2}}$ and makes some progress with attempting to integrate even if it is incorrect.	B1
	$\int (x+7)(2x-3)^{-\frac{1}{2}} dx = (x+7)(2x+7$	he correct direction	M1A1
	$\int (2x-3)^{\frac{1}{2}} dx = \frac{1}{3} (2x-3)^{\frac{3}{2}}$	$\int (2x-3)^{\frac{1}{2}} dx = k(2x-3)^{\frac{3}{2}}$	M1
	J (210 3) (210 3)	$\int (2x-3)^{\frac{1}{2}} dx = \frac{1}{3} (2x-3)^{\frac{3}{2}}$	A1
	$\left[(x+7)(2x-3)^{\frac{1}{2}} - \frac{1}{3}(2x-3)^{\frac{3}{2}} \right]_{4}^{6} = \left\{ \left(11(9) \right)^{\frac{3}{2}} \right\}_{4}^{6} = \left\{ \left$		M1
	$=30-\frac{28}{3}\sqrt{5}$	cao	A1
			(7)

Past Paper

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

A curve has parametric equations

$$x = t^2 - t, \qquad y = \frac{4t}{1 - t} \qquad t \neq 1$$

(a) Find $\frac{dy}{dx}$ in terms of t, giving your answer as a simplified fraction.

(4)

(b) Find an equation for the tangent to the curve at the point P where t = -1, giving your answer in the form ax + by + c = 0 where a, b and c are integers.

(4)

The tangent to the curve at P cuts the curve at the point Q.

(c) Use algebra to find the coordinates of Q.

(5)

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
8(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2t - 1$	Correct derivative	B1
	Quotient rule $\frac{dy}{dt} = \frac{(1-t)x}{(1-t)x}$	$(4-4t\times(-1))$ $(1-t)^2$	
	Obtains $\frac{dy}{dt} = \frac{\alpha(1-t) \pm \beta t}{(1-t)^2}$,	$\alpha > 0, \ \beta > 0$	
	or product rule $\frac{\mathrm{d}y}{\mathrm{d}t} = 4t (1-t)^{-2} + 4(1-t)^{-2}$		M1
	Obtains $\frac{dy}{dt} = p(1-t)^{-1} \pm qt(1-t)$		
	NB: May see $\frac{4t}{1-t} = -4 + \frac{4}{1-t} \Rightarrow \frac{6}{60}$	$\frac{\mathrm{d}y}{\mathrm{d}t} = -4\left(1 - t\right)^{-2} \times -1$	
	Allow M1 for $\frac{4t}{1-t} = A + \frac{B}{1-t} \Rightarrow \frac{dy}{dt} = k(1-t)^{-2}$ $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx} = \frac{(1-t)\times 4 - 4t \times (-1)}{(1-t)^2} \times \frac{1}{2t-1}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{(1-t)\times 4 - 4t\times(-1)}{(1-t)^2} \times \frac{1}{2t-1}$		
	Correct application of the chain rule using their derivatives. This is an independent method mark.		M1
	Their $\frac{dy}{dt}$ divided by their $\frac{dx}{dt}$ or their $\frac{dy}{dt}$ multiplied by their $\frac{dt}{dx}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4}{\left(2t-1\right)\left(1-t\right)^2}$		
	Allow e.g. $\frac{4}{(2t-1)(1-2t+t^2)}$, $\frac{4}{2t^3-5t^2+4t^2}$	$\frac{1}{t-1}$ but not $\frac{1}{(2t-1)} \times \frac{4}{(1-t)^2}$	A1
	But isw once a correct an	nswer is seen	(4)
(b)	$t = -1 \rightarrow (2, -2) \text{ or } x = 2, y = -2$	Correct coordinates for P	B1 (4)
	$t = -1 \Rightarrow \frac{dy}{dx} = \frac{4}{(2(-1)-1)(1-(-1))^2} \left(= -\frac{1}{3} \right)$	Attempts gradient. May be implied by their value for the gradient.	M1
	$y+2=-\frac{1}{3}(x-2)$	Correct straight line method for the tangent not the normal . If using $y = mx + c$ must reach as far as finding a value for c .	M1
	x + 3y + 4 = 0	Any integer multiple.	A1
			(4)

Past Paper (Mark Scheme)

www.mystudybro.com
This resource was created and owned by Pearson Edexcel

Mathematics C34

(c) Way 1	$t^2 - t + 3\left(\frac{4t}{1-t}\right) + 4 = 0$	Substitutes to obtain an equation in <i>t</i> only.	M1
	$t^3 - 2t^2 - 7t - 4 = 0$	Correct cubic	A1
	$(t+1)(t^2-3t-4)=0$ or	$\left(t+1\right)^2\left(t-4\right)=0$	
	Attempt to factorise using $(t \pm 1)$ or $(t \pm 1)^2$ as a factor.		
	Look for $(t\pm 1)(at^2+)$ or $(t\pm 1)^2(at+)$ or m	ay use long division so look for the	
	corresponding expressions for the quoti	ent e.g. $at^2 + \dots$ or $at + \dots$	M1
	This mark is dependent on having obtained a cub	ic equation that has a constant term	
		-	
	This mark is not for just solving their cubic e.g. where a correct cubic equation and the root $t = 4$ is		
	t=4	Correct value of <i>t</i>	A1
	$(12, -\frac{16}{2})$		
	$\left(12,-\frac{1}{3}\right)$	Correct coordinates	A1
			(5)
			Total 13
(c) Way 2	$y = \frac{4t}{1-t} \Rightarrow t = \frac{y}{4+y} \Rightarrow x = \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y}$	Finds <i>x</i> in terms of <i>y</i> by eliminating <i>t</i> and substitutes to obtain an equation in <i>y</i> only.	
	$\Rightarrow \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y} + 3y + 4 = 0$	When eliminating t using y, the algebra must be correct so allow sign errors only for making t the subject from y.	M1
		When eliminating t using y, the algebra must be correct so allow sign errors only for making t the	M1
	$\Rightarrow \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y} + 3y + 4 = 0$	When eliminating t using y, the algebra must be correct so allow sign errors only for making t the subject from y. Correct cubic	
	$\Rightarrow \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y} + 3y + 4 = 0$ $3y^3 + 28y^2 + 76y + 64 = 0$	When eliminating t using y , the algebra must be correct so allow sign errors only for making t the subject from y . Correct cubic $(y+2)^2(3y+16) = 0$	
	$\Rightarrow \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y} + 3y + 4 = 0$ $3y^3 + 28y^2 + 76y + 64 = 0$ $(y+2)(3y^2 + 22y + 32) = 0 \text{ or}$	When eliminating t using y , the algebra must be correct so allow sign errors only for making t the subject from y . Correct cubic $(y+2)^2(3y+16) = 0$ or $(y \pm 2)^2$ as a factor.	
	$\Rightarrow \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y} + 3y + 4 = 0$ $3y^3 + 28y^2 + 76y + 64 = 0$ $(y+2)(3y^2 + 22y + 32) = 0 \text{ or}$ Attempt to factorise using $(y \pm 2)$	When eliminating t using y , the algebra must be correct so allow sign errors only for making t the subject from y . Correct cubic $(y+2)^2(3y+16)=0$ or $(y\pm 2)^2$ as a factor. $y+$) or may use long division so	
	$\Rightarrow \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y} + 3y + 4 = 0$ $3y^3 + 28y^2 + 76y + 64 = 0$ $(y+2)(3y^2 + 22y + 32) = 0 \text{ or}$ Attempt to factorise using $(y \pm 2)$. Look for $(y \pm "-2")(ay^2 +)$ or $(y \pm "-2")^2$ (as look for the corresponding expressions for the	When eliminating t using y , the algebra must be correct so allow sign errors only for making t the subject from y . Correct cubic $(y+2)^2(3y+16)=0$ or $(y\pm 2)^2$ as a factor. $y+$) or may use long division so equotient e.g. ay^2+ or $ay+$	A1
	$\Rightarrow \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y} + 3y + 4 = 0$ $3y^3 + 28y^2 + 76y + 64 = 0$ $(y+2)(3y^2 + 22y + 32) = 0 \text{ or}$ Attempt to factorise using $(y \pm 2)$ or $(y \pm 2)$ look for the corresponding expressions for the order on having obtained a cub	When eliminating t using y , the algebra must be correct so allow sign errors only for making t the subject from y . Correct cubic $(y+2)^2(3y+16)=0$ or $(y\pm 2)^2$ as a factor. $y+$) or may use long division so equotient e.g. ay^2+ or $ay+$ Sic equation that has a constant term	A1
	$\Rightarrow \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y} + 3y + 4 = 0$ $3y^3 + 28y^2 + 76y + 64 = 0$ $(y+2)(3y^2 + 22y + 32) = 0 \text{ or}$ Attempt to factorise using $(y \pm 2)$ or $(y \pm \text{"}-2\text{"})(ay^2 +)$ or $(y \pm \text{"}-2\text{"})^2$ (as look for the corresponding expressions for the This mark is dependent on having obtained a cub. This mark is not for just solving their cubic e.g. usi	When eliminating t using y , the algebra must be correct so allow sign errors only for making t the subject from y . Correct cubic $(y+2)^2(3y+16)=0$ or $(y\pm 2)^2$ as a factor. $y+$) or may use long division so a quotient e.g. ay^2+ or $ay+$ Sic equation that has a constant term In a calculator. However, if they	A1
	$\Rightarrow \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y} + 3y + 4 = 0$ $3y^3 + 28y^2 + 76y + 64 = 0$ $(y+2)(3y^2 + 22y + 32) = 0 \text{ or}$ Attempt to factorise using $(y \pm 2)$ or $(y \pm -2)(ay^2 +)$ or $(y \pm -2)(ay^2 +)$ or $(y \pm -2)(ay^2 +)$ look for the corresponding expressions for the This mark is dependent on having obtained a cub thave a correct cubic equation and the root $y = -16/3$	When eliminating t using y , the algebra must be correct so allow sign errors only for making t the subject from y . Correct cubic $(y+2)^2(3y+16)=0$ or $(y\pm 2)^2$ as a factor. $y+$) or may use long division so a quotient e.g. ay^2+ or $ay+$ Sic equation that has a constant term In a calculator. However, if they	A1
	$\Rightarrow \left(\frac{y}{4+y}\right)^2 - \frac{y}{4+y} + 3y + 4 = 0$ $3y^3 + 28y^2 + 76y + 64 = 0$ $(y+2)(3y^2 + 22y + 32) = 0 \text{ or}$ Attempt to factorise using $(y \pm 2)$ or $(y \pm \text{"}-2\text{"})(ay^2 +)$ or $(y \pm \text{"}-2\text{"})^2$ (as look for the corresponding expressions for the This mark is dependent on having obtained a cub. This mark is not for just solving their cubic e.g. usi	When eliminating t using y , the algebra must be correct so allow sign errors only for making t the subject from y . Correct cubic $(y+2)^2(3y+16)=0$ or $(y\pm 2)^2$ as a factor. $y+$) or may use long division so a quotient e.g. ay^2+ or $ay+$ oic equation that has a constant term ng a calculator. However, if they is seen, this method can be implied.	A1 M1

blank

Past Paper

This resource was created and owned by Pearson Edexcel

9.

(a) Find $\int x \sin 2x \, dx$

(3)

(b) Find $(x + \sin 2x)^2 dx$

(4)

Figure 2

Figure 2 shows a sketch of part of the curve C with equation $y = x + \sin 2x$.

The region R, shown shaded in Figure 2, is bounded by C, the x-axis and the line with equation $x = \frac{\pi}{2}$

The region R is rotated through 2π radians about the x-axis to form a solid of revolution.

(c) Find the exact value for the volume of this solid, giving your answer as a single, simplified fraction.

(3)

DO NOT WRITE IN THIS AREA

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
9(a)	$\int x \sin 2x dx = -x \cdot \frac{1}{2} \cos 2x + \frac{1}{2} \int \cos 2x (dx)$	$\int x \sin 2x dx = \pm px \cdot \cos 2x \pm q \int \cos 2x (dx)$	M1
	$\int x \sin 2x dx = \frac{1}{4} \sin 2x - \frac{1}{2} x \cos 2x (+c)$	Correct expression (dx not required) Correct integration in any form – does not need to be simplified but is cso so e.g. any double sign errors should be penalised here. Condone poor notation e.g. cos2x.x rather than xcos2x. The constant of integration is not required.	A1 cso
<i>a</i> .			(3)
(b)	$(x + \sin 2x)^2 = x^2 + 2x \sin 2x + \sin^2 2x$	Correct (possibly unsimplified) expansion. Condone poor notation so allow e.g. $2\sin 2x \cdot x$ for $2x\sin 2x$ and $\sin 2x^2$ for $\sin^2 2x$	B1
	$\int \sin^2 2x \mathrm{d}x = \frac{1}{2} \int (1 - \cos 4x) \mathrm{d}x$	Uses $\cos 4x = \pm 1 \pm 2\sin^2 2x$	M1
	$\int \sin^2 2x dx = \frac{1}{2} x - \frac{1}{8} \sin 4x (+c)$	Correct integration	A1
	$\int (x + \sin 2x)^2 dx = \frac{x^3}{3} + \frac{1}{2} \sin 2x$	$x - x\cos 2x + \frac{1}{2}x - \frac{1}{8}\sin 4x(+c)$	
	Allow in any correct possibly unsimplified (a) so all	ow for:	A1ft
	$\int (x + \sin 2x)^2 dx = \frac{x^3}{3} + 2 \times \text{the}$	2 0	
	The constant of integration not required.		
	In part (b) allow mixed variables for the first 3 marks but for the final mark the expression must be in terms of x only.		
	expression must be	in terms of x only.	(4)
(c)		States or implies that the volume	(+)
	$(\text{Volume} =) \pi \int (x + \sin 2x)^2 dx$	required is $\pi \int (x + \sin 2x)^2$	M1
	J	Note that the π is required but may appear later in their working.	
	$= \left(\pi\right) \left(\frac{\pi^3}{24} + 0 + \frac{\pi}{2} + \frac{\pi}{4} - 0 - (0)\right)$		
	Applies at least the limit $\frac{\pi}{2}$ to an expression of the form:		M1
	$\alpha x^3 + \beta x + (at least$	one trig function).	
	The substitution of $x = 0$ does not need to be seen.		
	Must be exact work an	Cso. Allow any equivalent exact single	
	$= \frac{\pi^4 + 18\pi^2}{24} \text{ or } \frac{\pi^2 \left(\pi^2 + 18\right)}{24}$	fraction but come from correct integration. Note that incorrect coefficients of sin will fortuitously give the correct answer.	A1 cso
	Note: Condone mixing x with θ		
			(3)
			Total 10

Diagram not

drawn to scale

DO NOT WRITE IN THIS AREA

10.

This resource was created and owned by Pearson Edexcel

Leave blank

Figure 3

Figure 3 shows a container in the shape of an inverted right circular cone which contains some water.

The cone has an internal radius of 3 m and a vertical height of 5 m as shown in Figure 3.

At time t seconds, the height of the water is h metres, the volume of the water is $V \text{m}^3$ and water is leaking from a hole in the bottom of the container at a constant rate of 0.02 m³ s⁻¹

[The volume of a cone of radius r and height h is $\frac{1}{3}\pi r^2 h$.]

(a) Show that, while the water is leaking,

$$h^2 \frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{k\pi}$$

where k is a constant to be found.

(5)

Given that the container is initially full of water,

(b) express h in terms of t.

(3)

(c) Find the time taken for the container to empty, giving your answer to the nearest minute.

(2)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel Past Paper (Mark Scheme)

Mathematics C34 WMA02

Question Number	Scheme	Notes	Marks
10(a)	E.g. $\frac{r}{h} = \frac{3}{5}, \frac{3}{r} = \frac{5}{h}, 5r = 3h, r = \frac{3}{5}h, h = \frac{5}{3}r$	Any correct equation connecting r and h	B1
	E.g. $\frac{r}{h} = \frac{3}{5}, \frac{3}{r} = \frac{5}{h}, 5r = 3h, r = \frac{3}{5}h, h = \frac{5}{3}r$ $V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{3}{5}h\right)^2 h$ $\left(V = \frac{9}{75}\pi h^3\right)$	Obtains $V = kh^3$ or equivalent using their equation connecting h and r . $V = \frac{1}{3}\pi \left(\frac{3}{5}h\right)^2 h \text{ is sufficient.}$	M1
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{27}{75}\pi h^2$	Attempts $\frac{dV}{dh}$. Allow for $\frac{dV}{dh} = \alpha h^2$. Dependent on the first M.	dM1
	$\frac{\mathrm{d}V}{\mathrm{d}h} = \frac{\mathrm{d}V}{\mathrm{d}t} \times \frac{\mathrm{d}t}{\mathrm{d}h} \Rightarrow \frac{27}{75}\pi h^2 = -0.02 \frac{\mathrm{d}t}{\mathrm{d}h}$	Uses e.g. $\frac{dV}{dh} = \frac{dV}{dt} \times \frac{dt}{dh}$ or $\frac{dV}{dt} = \frac{dV}{dh} \times \frac{dh}{dt}$ with their $\frac{dV}{dh}$ and $\frac{dV}{dt} = \pm 0.02$ May be implied by their work.	M1
	$h^2 \frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{18\pi} *$	Correct equation or states $k = 18$	A1 cso
			(5)
(a) Way 2	Avoids the nee	ed to find $\frac{dV}{dh}$	
	$\frac{r}{h} = \frac{3}{5}, \frac{3}{r} = \frac{5}{h}, 5r = 3h, r = \frac{3}{5}h, h = \frac{5}{3}r$	Any correct equation connecting r and h	B1
	$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi \left(\frac{3}{5}h\right)^2 h$ $\left(V = \frac{9}{75}\pi h^3\right)$	Obtains $V = kh^3$ (or equivalent) using their equation connecting h and r .	M1
	$V = \frac{9}{75}\pi h^3 \Rightarrow \frac{dV}{dt}$	$\frac{d^2}{dt} = 3 \times \frac{9}{75} \pi h^2 \frac{dh}{dt}$	
	$h^{3} = \frac{75V}{9\pi} \Rightarrow 3h^{2} \frac{dh}{dt} = \frac{75V}{9\pi} \frac{dV}{dt}$		dM1
	The M1 is for differentiating both sides with respect to t to obtain $\alpha \frac{dV}{dt} = \beta h^2 \frac{dh}{dt}$		
	$-0.02 = 3 \times \frac{9}{75} \pi h^2 \frac{dh}{dt}$ $3h^2 \frac{dh}{dt} = \frac{75V}{9\pi} \times -0.02$ $h^2 \frac{dh}{dt} = -\frac{1}{18\pi} *$	Replaces $\frac{dV}{dt}$ with ± 0.02	M1
	$h^2 \frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{18\pi} *$	Correct equation or states $k = 18$	A1
			(5)

Winter 2019	www.mystudybro.com	Mathematics C34
D (D (M O	This was a was a sand and a sand divide Danner Educati	\A/\ A A A A

	This resource was created and	1	WMA02
(b) Way 1	$\frac{h^3}{3} = -\frac{1}{18\pi}t(+c)$	$ph^3 = qt(+c)$. Note that "+ c" is not	M1
Way 1	$3 \qquad 18\pi$	required for this mark.	
	$t = 0, h = 5 \Rightarrow c = \frac{125}{3}$	Uses $h = 5$ and $t = 0$ to find c . There	N 4 1
	$t = 0, h = 3 \Rightarrow c = \frac{1}{3}$	must be a constant of integration for this mark.	M1
	Note that both M marks are available i		
	obtained a value	•	
	$h = \sqrt[3]{125 - \frac{t}{6\pi}}$	Correct equation (oe)	A1
	, ,,		(3)
(b)		d <i>V</i>	(6)
Way 2	dV	Uses $\frac{dV}{dt} = \pm 0.02$ to obtain	
	$\frac{\mathrm{d}V}{\mathrm{d}t} = -0.02 \Rightarrow V = -0.02t + c$ $15\pi = c \Rightarrow V = 15\pi - 0.02t$	$V = \pm 0.02t + c$ and then uses $r = 3$ and h	M1
	$\begin{array}{c c} & \alpha l \\ & 15\pi - c \longrightarrow V - 15\pi - 0.02t \end{array}$	= 5 when $t = 0$ to find c .	1411
	$13h - C \rightarrow V - 13h 0.02i$	This may be implied by sight of $V = 15\pi$, 0.02t (but must be $V = 15\pi$)	
	9 .	$V = 15\pi - 0.02t$ (but must be $V =$)	
	$\frac{9}{75}\pi h^3 = 15\pi - 0.02t$	Replaces V with V in terms of h and	
	, t	rearranges to find h	M1
	$h^3 = 125 - \frac{\iota}{6\pi} \Rightarrow h = \dots$		
	$h^{3} = 125 - \frac{t}{6\pi} \Rightarrow h = \dots$ $h = \sqrt[3]{125 - \frac{t}{6\pi}}$		
	$h = \sqrt[3]{125 - \frac{\iota}{6\pi}}$	Correct equation (oe)	A1
	γ 0/1		(3)
(c)	t 0 125 t 0		` , ,
Way 1	$h = 0 \Rightarrow 125 - \frac{\iota}{6\pi} = 0 \Rightarrow t = \dots$	Puts $h = 0$ and solves for t	M1
	$t = 750\pi$ seconds		
	39 (minutes)	Cao. Must be positive. Allow awrt 39	A1
		(minutes) and isw.	(2)
(c)	$\lceil 13 \rceil^0 \qquad \lceil 1 \rceil^T$	125 1	(-)
Way 2	$\left \frac{h^3}{3} \right _{0}^{0} = \left[-\frac{1}{18\pi} t \right]_{0}^{T} \Rightarrow 0$	$-\frac{125}{2} = -\frac{1}{10}T \Rightarrow T = \dots$	
	Uses the limits 0 and 5 with their ph^3 and (or t). The limits can be either way round		M1
	(or <i>t</i>). The limits can be either way round	and the substitution of 0 does not need to	
	be seen. A minimum could be $\frac{125}{3}$ =	$\frac{1}{18\pi} t \Rightarrow t = \dots$ (as in the main scheme)	
	39 (minutes)	Cao. Must be positive. Allow awrt 39	A1
	37 (minutes)	(minutes) and isw.	
	1		(2)
(c) Way 3	$\frac{1}{3}\pi(3)^2 \times 5 \div 0.02 = \dots$	Calculates the volume of the cone and	
,, ay 5	or e.g. solves	divides by 0.02	M1
	$15\pi - 0.02t = 0$		
	39 (minutes)	Cao. Must be positive. Allow awrt 39	A1
	37 (minutes)	(minutes) and isw.	
			(2)
			Total 10

Leave blank

11. (a) Given that $0 \le f(x) \le \pi$, sketch the graph of y = f(x) where

$$f(x) = \arccos(x - 1), \quad 0 \le x \le 2$$

(2)

The equation arccos(x - 1) - tan x = 0 has a single root α .

(b) Show that $0.9 < \alpha < 1.1$

(2)

The iteration formula

$$x_{n+1} = \arctan(\arccos(x_n - 1))$$

can be used to find an approximation for α .

(c) Taking $x_0 = 1.1$ find, to 3 decimal places, the values of x_1 and x_2

(2)

Mathematics C34

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
11(a)	<i>y</i>	Correct shape anywhere. Ignore any extra "cycles" or other parts of graphs. The curve should become steeper at each end.	M1
	x	Correct shape in the correct position with no "extra cycles" or other parts of graphs. Ignore any labels on axes, correct or otherwise.	A1
	See next page for e	xample marking	
			(2)
(b)	f(0.9) = 0.4108, f(1.1) = -0.4941	Substitutes both $x = 0.9$ and $x = 1.1$ and obtains at least one answer correct to 1sf or truncated so allow 0.4 and -0.4 or -0.5 .	M1
	Change of sign there Both values correct (to one sig fig or tru Allow equivalent statements e.g. positive, r may be withheld if there are any contradic between f(0.9)	incated), change of sign + conclusion negative therefore root etc. but this mark ctory statements e.g. therefore root lies	A1
			(2)
(c)	$\arctan\left(\arccos\left(1.1-1\right)\right)$	Attempt the given formula with $x = 1.1$ Score for $\arctan(\arccos(1.1-1))$ This may be implied by awrt 0.97 (using radians) or awrt 89 (using degrees) for x_1	M1
	$(x_1 =) 0.974, (x_2 =) 1.011$	$(x_1 =)$ awrt 0.974, $(x_2 =)$ awrt 1.011 . Ignore any subsequent iterations and ignore labelling if answers are clearly the second and third terms.	A1
			(2) Total 6

www.mystudybro.com

Mathematics C34

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

WMA02

Example marking of Q11 part (a)

These sketches score both marks:

These sketches score M1A0:

These sketches score M0A0:

blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

Leave

ast i apei

12. Given that k is a positive constant,

(a) sketch the graph with equation

$$y = 2|x| - k$$

Show on your sketch the coordinates of each point at which the graph crosses the *x*-axis and the *y*-axis.

(2)

(b) Find, in terms of k, the values of x for which

$$2|x| - k = \frac{1}{2}x + \frac{1}{4}k$$

(3)

RITE IN THIS AREA

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Question Number	Scheme	Notes	Marks
12(a)	$-\frac{k}{2}$	$\frac{k}{2}$	
	V Shape with the vertex anywhere on the <i>y</i> -a symmetrical about the <i>y</i> -axis. Ignore	11	B1
	There must be a sketch	for this mark.	
	Intercepts (must be <u>crossing</u>) at $\left(-\frac{k}{2},0\right)$, $\left(\frac{k}{2},0\right)$ and $\left(0,-k\right)$ and no others.		
	Allow if the coordinates are the wrong way round provided the positioning is correct. The zeros are not needed as long as the expressions are correct (as above). Allow if the correct coordinates are seen away from the sketch but they must be the right way round in this case and must correspond with the sketch. If there is any ambiguity, the sketch has precedence.		B1
			(2)
(b)	$2x - k = \frac{1}{2}x + \frac{k}{4} \Rightarrow x = \dots \text{ or } -2$ Attempt to solve either equation to	<i>2</i> 1	M1
	Attempt to solve either equation t	One correct value for x . Allow	
	$x = \frac{5k}{6} \text{or} x = -\frac{k}{2}$	equivalent fractions e.g. $\frac{10k}{12}$, $-\frac{2k}{4}$ etc.	A1
	$x = \frac{5k}{6} \text{and} x = -\frac{k}{2}$	Both x values correct for. Allow equivalent fractions e.g. $\frac{10k}{12}$, $-\frac{2k}{4}$ etc.	A1
	Note that the $x = -\frac{k}{2}$ must clearly be from work in (b) and not from work in (a)		
	when attempting the sketch unless it is c	icarry stated as an answer to (D).	(3)
			1 (3)

WMA02

Total 5

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(b) Alternative by	squaring:	
$2 x - k = \frac{1}{2}x + \frac{k}{4} \Rightarrow 2 x = \frac{1}{2}x + \frac{5k}{4}$ $\Rightarrow 60x^2 - 20kx - 25k$ Adds k to both sides, squares and solves	$x^2 = 0 \Rightarrow x = \dots$	M1
$x = \frac{5k}{6} \text{or} x = -\frac{k}{2}$	One correct value for x. Allow equivalent fractions e.g. $\frac{10k}{12}$, $-\frac{2k}{4}$ etc.	A1
$x = \frac{5k}{6} \text{and} x = -\frac{k}{2}$	Both x values correct for. Allow equivalent fractions e.g. $\frac{10k}{12}$, $-\frac{2k}{4}$ etc.	A1
		(3)

	(b) Special case	
	$2x - k = \frac{1}{2}x + \frac{k}{4} \Rightarrow 4x^2 - 4kx + k^2 = \frac{1}{4}x^2 + \frac{k}{4}x + \frac{1}{16}k^2$	M1
	$\Rightarrow 60x^2 - 68kx + 15k^2 = 0 \Rightarrow x = \dots$ Squares both sides to obtain 3 terms each time and solves the resulting 3TQ solves for x $x = \frac{5k}{6}$ Correct value for x. Allow equivalent fractions e.g. $\frac{10k}{12}$	
	If this is all they do, 2 marks will be the maximum	

Past Paper

13. A scientist is studying a population of insects. The number of insects, N, in the population, t days after the start of the study is modelled by the equation

Leave blank

DO NOT WRITE IN THIS AREA

 $N = \frac{240}{1 + ke^{-\frac{t}{16}}}$

where k is a constant.

Given that there were 50 insects at the start of the study,

(a) find the value of k

(2)

(b) use the model to find the value of t when N = 100

(3)

(c) Show that

$$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{1}{p}N - \frac{1}{q}N^2$$

where p and q are integers to be found.

(5)

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

Question Number	Scheme Notes		Marks
13	$N = \frac{240}{1 + ke^{-1}}$		
(a)	$\frac{240}{1+ke^{(0)}} = 50 \Longrightarrow k = \dots$	Substitutes $t = 0$ and $N = 50$ and solves for k	M1
	$k = 3.8 \left(= \frac{19}{5} \right)$	cao	A1
			(2)
(b)	$100 = \frac{240}{1 + 3.8e^{-\frac{t}{16}}} \Longrightarrow 380e^{-\frac{t}{16}} = 140$	Puts $N = 100$ and solves as far as $pe^{-\frac{t}{16}} = q \text{ using correct processing}$ (allow sign/copying/arithmetic slips)	M1
	$e^{-\frac{t}{16}} = \frac{7}{19} \Rightarrow -\frac{t}{16} = \ln\left(\frac{7}{19}\right)$	Takes ln's correctly to reach $\pm \frac{t}{16} = \ln(\alpha), \alpha > 0$ Dependent on the previous M	d M1
	$t = 16\ln\left(\frac{19}{7}\right) \text{ or } -16\ln\left(\frac{7}{19}\right) \text{ or}$ $8\ln\left(\frac{361}{49}\right) \text{ or } 4\ln\left(\frac{130321}{2401}\right) \text{ etc}$	Cao (accept equivalents) or awrt 16	A1
-			(3)
	(b) For mis-read $N = \frac{1}{1+1}$	$\frac{240}{-ke^{+\frac{t}{16}}} $ (Max 2/3)	
	$100 = \frac{240}{1 + 3.8e^{\frac{t}{16}}} \Longrightarrow 380e^{\frac{t}{16}} = 140$	Puts $N = 100$ and solves as far as $pe^{\frac{t}{16}} = q \text{ using correct processing}$ (allow sign/copying/arithmetic slips)	M1
	$e^{\frac{t}{16}} = \frac{7}{19} \Rightarrow \frac{t}{16} = \ln\left(\frac{7}{19}\right)$	Takes ln's correctly to reach $\pm \frac{t}{16} = \ln(\alpha), \alpha > 0$ Dependent on the previous M	d M1
	$t = 16 \ln \left(\frac{7}{19} \right) \text{ etc.}$		A0

Part (c) General Guidance for Marking:

M1 is for their attempt at differentiating

A1 is for correct differentiation (in terms of k or follow through their k)

M1 is for e^{--} or ke^{--} or $1+ke^{--}$ in terms of N

M1 is for obtaining $\frac{dN}{dt}$ in terms of N

A1 fully correct

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WMA02

Note that a value of k is not necessary to do part (c)

(c) Way 1	$N = 240 \left(1 + k e^{-\frac{t}{16}} \right)^{-1}$	$\frac{\mathrm{d}N}{\mathrm{d}t} = A\mathrm{e}^{-\frac{t}{16}} \left(1 + B\mathrm{e}^{-\frac{t}{16}} \right)^{-2}$	M1
	$\Rightarrow \frac{dN}{dt} = -240 \left(1 + 3.8 e^{-\frac{t}{16}} \right)^{-2} \times -\frac{3.8}{16} e^{-\frac{t}{16}}$	Correct derivative. Follow through their k or the letter k	A1ft
	May see quotient rule : $\frac{dN}{dt}$ = But this must satisfy the conditions a		
	$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{A\mathrm{e}}{\left(1 + B\mathrm{e}^{-1}\right)}$	•	
	May see product rule : $\frac{dN}{dt} = 0$	10	
	But this must satisfy the conditions above i.e. they need to obtain $\frac{dN}{dt} = Ae^{-\frac{t}{16}} \left(1 + Be^{-\frac{t}{16}}\right)^{-2}$		
	If an incorrect rule is quo		
	$N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Rightarrow 1 + ke^{-\frac{t}{16}} = \frac{240}{N}$	Attempt to find $e^{-\frac{t}{16}}$ or $ke^{-\frac{t}{16}}$ or $1 + ke^{-\frac{t}{16}}$ in terms of N	M1
	Note that this mark may be scored by e.g. repl		
	$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{57\left(\frac{240 - N}{3.8N}\right)}{\left(\frac{240}{N}\right)^2}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
	$\frac{dN}{dt} = \frac{1}{16}N - \frac{1}{3840}N^2$	Cao (Allow $p = 16$, $q = 3840$)	A1
			(5)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

(c) Way 1 mis-read $N = \frac{240}{1 + ke^{+\frac{t}{16}}}$ (Max 4/5)		
$N = 240 \left(1 + k e^{\frac{t}{16}} \right)^{-1}$	$\frac{\mathrm{d}N}{\mathrm{d}t} = A\mathrm{e}^{\frac{t}{16}} \left(1 + B\mathrm{e}^{\frac{t}{16}} \right)^{-2}$	M1
$\Rightarrow \frac{dN}{dt} = -240 \left(1 + 3.8 e^{\frac{t}{16}} \right)^{-2} \times \frac{3.8}{16} e^{\frac{t}{16}}$	Correct derivative. Follow through their k or the letter k	A1ft
May see quotient rule: $\frac{dN}{dt} = \frac{(0) - 240 \times \frac{k}{16} e^{\frac{t}{16}}}{\left(1 + ke^{\frac{t}{16}}\right)^2}$		
But this must satisfy the conditions above i.e. they need to obtain		
$dN = Ae^{\frac{t}{16}}$		
$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{A\mathrm{e}^{\frac{t}{16}}}{\left(1 + B\mathrm{e}^{\frac{t}{16}}\right)^2}$		
May see product rule : $\frac{dN}{dt} = 0 - \frac{240ke^{\frac{t}{16}}}{16} \left(1 + ke^{\frac{t}{16}}\right)^{-2}$		
But this must satisfy the conditions above i.e. they need to obtain		
$\frac{\mathrm{d}N}{\mathrm{d}t} = A \mathrm{e}^{\frac{t}{16}} \left(1 + B \mathrm{e}^{\frac{t}{16}} \right)^{-2}$		
If an incorrect formula is quoted this scores M0		
$N = \frac{240}{1 + ke^{\frac{t}{16}}} \Longrightarrow 1 + ke^{\frac{t}{16}} = \frac{240}{N}$	Attempt to find $e^{\frac{t}{16}}$ or $ke^{\frac{t}{16}}$ or $1 + ke^{\frac{t}{16}}$ in terms of N	M1
Note that this mark may be scored by e.g. replacing $1 + ke^{\frac{t}{16}}$ by $\frac{240}{N}$ in their solution		
$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{-57\left(\frac{240 - N}{3.8N}\right)}{\left(\frac{240}{N}\right)^2}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
$\frac{dN}{dt} = -\frac{1}{16}N + \frac{1}{3840}N^2$		A0

Past Paper (Mark Scheme)

	(a) Way	3	
	(c) Way 2 $\left(N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Rightarrow ke^{-\frac{t}{16}} = \frac{240}{N} - 1\right)$		
	$\Rightarrow -\frac{k}{16} e^{-\frac{t}{16}} \frac{dt}{dN} = -\frac{240}{N^2}$ Or	Differentiates to obtain $Ae^{-\frac{t}{16}} \frac{dt}{dN} = \frac{B}{N^2} \text{ or } Ae^{-\frac{t}{16}} = \frac{B}{N^2} \frac{dN}{dt}$	M1
	$\Rightarrow -\frac{k}{16} e^{-\frac{t}{16}} = -\frac{240}{N^2} \frac{dN}{dt}$	Correct differentiation. Follow through their k or the letter k	A1ft
	$\Rightarrow -\frac{k}{16} e^{-\frac{t}{16}} = -\frac{240}{N^2} \frac{dN}{dt}$ $N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Rightarrow ke^{-\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{-\frac{t}{16}}$ or $ke^{-\frac{t}{16}}$ or $1 + ke^{-\frac{t}{16}}$ in terms of N .	M1
	Note that this mark may be scored by e.g. replacing $1 + ke^{-\frac{t}{16}}$ by $\frac{240}{N}$ in their solution		
	$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{\frac{1}{16} \left(\frac{240}{N} - 1\right)}{\frac{240}{N^2}}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
	$\frac{\mathrm{d}t}{\mathrm{d}t} = \frac{240}{N^2}$ $\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{1}{16}N - \frac{1}{3840}N^2$	Cao (Allow $p = 16$, $q = 3840$)	A1
			(5)
	(c) Way 2 mis-read $N = \frac{240}{1 + ke^{\frac{t}{16}}}$ (Max 4/5) $\left(N = \frac{240}{1 + ke^{\frac{t}{16}}} \Rightarrow ke^{\frac{t}{16}} = \frac{240}{N} - 1\right)$		
	$\Rightarrow \frac{1}{16} e^{\frac{1}{16}} \frac{dN}{dN} = -\frac{1}{N^2}$	Differentiates to obtain $Ae^{\frac{t}{16}} \frac{dt}{dN} = \frac{B}{N^2} \text{ or } Ae^{\frac{t}{16}} = \frac{B}{N^2} \frac{dN}{dt}$	M1
	$\Rightarrow \frac{k}{16} e^{\frac{t}{16}} = -\frac{240}{N^2} \frac{dN}{dt}$	Correct differentiation. Follow through their k or the letter k	A1ft
	$\Rightarrow \frac{k}{16} e^{\frac{t}{16}} = -\frac{240}{N^2} \frac{dN}{dt}$ $N = \frac{240}{1 + ke^{\frac{t}{16}}} \Rightarrow ke^{\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{\frac{t}{16}}$ or $ke^{\frac{t}{16}}$ or $1 + ke^{\frac{t}{16}}$ in terms of N .	M1
	Note that this mark may be scored by e.g. replacing $1 + ke^{\frac{t}{16}}$ by $\frac{240}{N}$ in their solution		
	$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{\frac{1}{16} \left(1 - \frac{240}{N} \right)}{\frac{240}{N^2}}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
	$\frac{dN}{dt} = -\frac{1}{16}N + \frac{1}{3840}N^2$		A0

(c) Way	3	
$\left(N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Rightarrow ke^{-\frac{t}{16}} = \frac{240}{N} - 1\right)$		
$\Rightarrow -\frac{t}{16} = \ln \frac{1}{k} \left(\frac{240}{N} - 1 \right)$ $\Rightarrow t = -16 \ln \frac{1}{k} - 16 \ln \left(\frac{240}{N} - 1 \right)$	Makes <i>t</i> the subject, takes ln's and differentiates using the chain rule.	M1
$\Rightarrow \frac{dt}{dN} = -16 \left(\frac{N}{240 - N} \right) \left(-\frac{240}{N^2} \right)$	Correct differentiation. Follow through their k or the letter k	A1ft
$N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Rightarrow ke^{-\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{-\frac{t}{16}}$ or $ke^{-\frac{t}{16}}$ or $1 + ke^{-\frac{t}{16}}$ in terms of N .	M1
Note that this mark may be scored by e.g. repl	acing $1 + ke^{-\frac{t}{16}}$ by $\frac{240}{N}$ in their solution	
$= \frac{3840}{N(240 - N)}$ $\Rightarrow \frac{dN}{dt} = \frac{N(240 - N)}{3840}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
$\frac{dN}{dt} = \frac{1}{16}N - \frac{1}{3840}N^2$	Cao (Allow $p = 16$, $q = 3840$)	A1
(c) Way 3 mis-read $N = \frac{240}{1 + ke^{+\frac{t}{16}}}$ (Max 4/5)		
$N = \frac{240}{1 + ke^{\frac{t}{16}}} \Rightarrow ke^{\frac{t}{16}}$	$rac{1}{6} = rac{240}{N} - 1$	
$\frac{t}{16} = \ln \frac{1}{k} \left(\frac{240}{N} - 1 \right)$	Makes <i>t</i> the subject, takes ln's and differentiates using the chain rule.	M1
$\Rightarrow t = 16 \ln \frac{1}{k} + 16 \ln \left(\frac{240}{N} - 1 \right)$ $\Rightarrow \frac{dt}{dN} = 16 \left(\frac{N}{240 - N} \right) \left(-\frac{240}{N^2} \right)$	Correct differentiation. Follow through their k or the letter k	Alft
$N = \frac{240}{1 + ke^{\frac{t}{16}}} \Rightarrow ke^{\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{\frac{t}{16}}$ or $ke^{\frac{t}{16}}$ or $1 + ke^{\frac{t}{16}}$ in terms of N .	M1
Note that this mark may be scored by e.g. replacing $1 + ke^{\frac{t}{16}}$ by $\frac{240}{N}$ in their solution		
$=\frac{3840}{N(N-240)}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1

Mathematics C34 WMA02

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

 ,	,	
$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N(N - 240)}{3840}$		
$\frac{dN}{dt} = -\frac{1}{16}N + \frac{1}{3840}N^2$		A0

	(c) Way 4		
	$\left(1 + ke^{-\frac{t}{16}}\right)N = 240$ $\Rightarrow N \times -\frac{k}{16}e^{-\frac{t}{16}} + \left(1 + ke^{-\frac{t}{16}}\right)\frac{dN}{dt} = 0$	Multiplies by $\left(1 + ke^{-\frac{t}{16}}\right)$ and differentiates with respect to t or N using the product rule	M1
	or $\left(1 + ke^{-\frac{t}{16}}\right) + N \times -\frac{k}{16}e^{-\frac{t}{16}}\frac{dt}{dN} = 0$	Correct differentiation. Follow through their k or the letter k	A1ft
	$N = \frac{240}{1 + ke^{-\frac{t}{16}}} \Rightarrow ke^{-\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{-\frac{t}{16}}$ or $ke^{-\frac{t}{16}}$ or $1 + ke^{-\frac{t}{16}}$ in terms of N .	M1
	Note that this mark may be scored by e.g. repla	acing $1 + ke^{-\frac{t}{16}}$ by $\frac{240}{N}$ in their solution	
	$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N(240 - N)}{3840}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
	$\frac{dN}{dt} = \frac{1}{16}N - \frac{1}{3840}N^2$	Cao (Allow $p = 16$, $q = 3840$)	A1
	(c) Way 4 mis-read $N = \frac{240}{1 + ke^{+\frac{t}{16}}}$ (Max 4/5)		
	$\left(1 + ke^{\frac{t}{16}}\right)N = 240$	Multiplies by $\left(1 + ke^{\frac{t}{16}}\right)$ and	
	$\Rightarrow N \times \frac{k}{16} e^{\frac{t}{16}} + \left(1 + k e^{\frac{t}{16}}\right) \frac{dN}{dt} = 0$	differentiates with respect to t or N using the product rule	M1
	or $ (1+ke^{\frac{t}{16}}) + N \times \frac{k}{16}e^{\frac{t}{16}} \frac{dt}{dN} = 0 $	Correct differentiation. Follow through their k or the letter k	A1ft
	$N = \frac{240}{1 + ke^{\frac{t}{16}}} \Rightarrow ke^{\frac{t}{16}} = \frac{240}{N} - 1$	Attempt to find $e^{\frac{t}{16}}$ or $ke^{\frac{t}{16}}$ or $1 + ke^{\frac{t}{16}}$ in terms of N .	M1
	Note that this mark may be scored by e.g. replacing $1 + ke^{\frac{t}{16}}$ by $\frac{240}{N}$ in their solution		
	$\Rightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N(N - 240)}{3840}$	Obtains $\frac{dN}{dt}$ in terms of N only (may include k 's)	M1
	$\frac{dN}{dt} = -\frac{1}{16}N + \frac{1}{3840}N^2$		A0

There may be other methods not covered in the MS but the marking should follow the same pattern.