WMF01

Past Paper

This resource was created and owned by Pearson Edexcel

Surname		Other names	
Pearson Edexcel International Idvanced Level	Centre Number	Candi	date Number
		ry	
Mechanican Advanced/Advance Tuesday 20 January 2015 – Time: 1 hour 30 minutes	d Subsidia	Paper R	eference 1EO1/O 1

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take g = 9.8 m s⁻², and give your answer to either two significant figures or three significant figures.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.
- use this as a guide as to now much time to spend on each question

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 5 0 6 1 A 0 1 3 2

Turn over ▶

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

1. A railway truck A of mass m and a second railway truck B of mass 4m opposite directions on a smooth straight horizontal track when they c Immediately before the collision the speed of truck A is 3u and the speed of In the collision the trucks join together. Modelling the trucks as particles,	of truck <i>B</i> is 2 <i>u</i> .
(a) the speed of A immediately after the collision,	(3)
(b) the direction of motion of A immediately after the collision,	(3)
(0) 110 110 110 110 110 110 110 110 110 1	(1)
(c) the magnitude of the impulse exerted by A on B in the collision.	(3)

WME01

Jan 2015 (IAL) Post QPEC 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Ма	rks
1.(a)	8mu - 3mu = 5mv	M1 A	\ 1
	v = u	A1	(3)
(b)	Original direction of motion of <i>B</i> o.e.	B1	(1)
(c)	For <i>A</i> : $I = m(u3u)$ OR For <i>B</i> : $I = 4m(-u2u)$	M1 A	1
	=4mu $=4mu$	A	A1 (3)
			7
	<u>NOTES</u>		
	M1 for attempt at CLM equation, with correct no. of terms, dimensionally correct. Allow consistent extra g's and cancelled m's and sign errors. (M1 if they find the impulse on each particle and eliminate the impulse to give an equation – then use above criteria for their equation) First A1 for a correct equation. $(3mu - 8mu = 5mv \text{ or } -5mv \text{ oe})$ Second A1 for u (- u A0) N.B. Allow u 's to be dropped or omitted in the equation if u is inserted in answer at the end. (Full marks can be scored). However, if u is not inserted then M0. Question 1(b) B1 for (original) direction of B or opposite to original direction (of A) oe. (B0 for 'left' or direction changed). N.B. Must follow from $v = u$ or $-u$ obtained in (a). Question 1(c) M1 for attempt at impulse = difference in momenta, for either particle, (must be considering one particle) (M0 if g's are included or if m omitted or if mass doesn't match velocities used) A1 for $\pm m(-u - 3u)$ or $\pm 4m(-u - (-2u))$ A1 for $4mu$ cao ($-4mu$ is A0) Allow change of sign at end to obtain magnitude.		

Past Paper

This resource was created and owned by Pearson Edexcel

WME01

blank

2.

Figure 1

A block of mass 50 kg lies on a rough plane which is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{7}{24}$. The block is held at rest by a vertical rope, as shown in Figure 1, and is on the point of sliding down the plane. The block is modelled as a particle and the rope is modelled as a light inextensible string. Given that the friction force acting on the block has magnitude 65.8 N, find

(a) the tension in the rope,

(4)

(b) the coefficient of friction between the block and the plane.

(4)

2. (a)	$T\sin\alpha + 65.8 = 50g\sin\alpha$	M1 A1
	T = 255 N or 260 N	DM 1A1 (4)
		(+)
(b)	$65.8\cos\alpha = R\sin\alpha$	M1 A1
	$\mu = 65.8/R = \tan \alpha = 7/24, \ 0.29 \text{ or better}$	M1 A1
		(4)
		8
	MOTEC	
	NOTES Overtion 2(a)	
	Question 2(a) First M1 for resolving parallel to the plane (or an equation in <i>T</i> only) First A1 for a correct equation.	
	Second M1 dependent for producing a value for <i>T</i> . Second A1 for 255 (N) or 260 (N).	
	Question 2(b) First M1for any equation containing R.	
	First A1 for a correct equation. (If equation includes a <i>T</i> term, they must be using a correct value of <i>T</i> to score this mark)	
	Second M1 for (65.8/their <i>R</i>). Second A1 for 7/24, 0.29 or better.	
	Second 111 for 1/2 i, 0.29 of sector.	

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

3. [In this	is question \mathbf{i} and \mathbf{j} are unit vectors directed due east and due north respectively.]
A part throug	ticle P is moving with constant velocity $(-6\mathbf{i} + 2\mathbf{j}) \mathrm{m s^{-1}}$. At time $t = 0$, P passes the point with position vector $(21\mathbf{i} + 5\mathbf{j}) \mathrm{m}$, relative to a fixed origin O .
	ind the direction of motion of P , giving your answer as a bearing to the nearest egree.
-	(3)
(b) W	Write down the position vector of P at time t seconds. (1)
(c) Fi	and the time at which P is north-west of O .
	(3)

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

3.(a)		3.51 . 4.1
	$\tan \alpha = 1/3 \Rightarrow \alpha = 18.4^{\circ}$	M1 A1
(b)	Bearing is 288° (nearest degree)	A1
	$\mathbf{r} = (21\mathbf{i} + 5\mathbf{j}) + t(-6\mathbf{i} + 2\mathbf{j})$	B1
(c)	21 - 6t = -(5 + 2t)	M1 A1
	t = 6.5	A1
	<u>NOTES</u>	
	Question 3(a) $\frac{\pm 2}{2}$	
	First M1 for $\arctan(\frac{\pm 2}{\pm 6})$ First A1 for a correct value from their expression, usually 18.4° or 71.6°	
	Second A1 for 288 (nearest degree)	
	$\frac{\text{Question 3(b)}}{\text{B1 for } (21\mathbf{i}+5\mathbf{j})+t(-6\mathbf{i}+2\mathbf{j})}$	
	Question 3(c) M1 for equating the negative of their i -component to their j -component	
	oe Allow equating the components for the M mark.	
	First A1 for a correct equation. Second A1 for $t = 6.5$	
		1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01

Leave

35 m s^{-1} . Given that the stones hit the	stone is dropped from rest from P . Half a substitution vertically downwards from Q with speed ground at the same time, find the value of h .
()	

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

4. $h = \frac{1}{2}gt^2$ $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ $\frac{1}{2}gt^2 = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ $t = 1$ $h = 4.9$ $\frac{NOTES}{4}$ $\frac{1}{2}gt^2 = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t + \frac{1}{2})^2$ $\frac{1}{2}gt^2 = 0$ 1				
$h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ $\frac{1}{2}gt^2 = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ $t = 1$ $M1 \text{ A1}$ $h = 4.9$ $\frac{\text{NOTES}}{\text{NOTES}}$ $\frac{\text{Ouestion 4}}{\text{B1 for } h = \frac{1}{2}gt^2} \qquad \text{or} \qquad h = \frac{1}{2}g(t + \frac{1}{2})^2$ First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ or $h = 7.35t + \frac{1}{2}gt^2$ M0 if different t used in the two terms and M0 if two terms have opposite signs. First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}t$) Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1	4.	$h = \frac{1}{2} gt^2$	B1	
$t = 1$ $t = 1$ $h = 4.9$ MI A1 $h = 4.9$ MOTES $\frac{\text{NOTES}}{\text{Ouestion 4}}$ B1 for $h = \frac{1}{2}gt^2$ or $h = \frac{1}{2}g(t + \frac{1}{2})^2$ First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ or $h = 7.35t + \frac{1}{2}gt^2$ M0 if different t used in the two terms and M0 if two terms have opposite signs. First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}t$) Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1		$h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$	M1 A1	
$t = 1$ $t = 1$ $h = 4.9$ MI A1 $h = \frac{1}{2}g(t - \frac{1}{2})^2$ First M1 for $h = \frac{1}{2}gt^2$ or $h = \frac{1}{2}g(t + \frac{1}{2})^2$ M0 if different t used in the two terms and M0 if two terms have opposite signs. First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}t$) Third A1 for $t = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1				
NOTES NOTES Ouestion 4 B1 for $h = \frac{1}{2}gt^2$ or $h = \frac{1}{2}g(t + \frac{1}{2})^2$ First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ or $h = 7.35t + \frac{1}{2}gt^2$ M0 if different t used in the two terms and M0 if two terms have opposite signs. First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}t$) Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1		$\frac{1}{2}gt^2 = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$	DM 1	
NOTES NOTES Question 4 B1 for $h = \frac{1}{2}gt^2$ or $h = \frac{1}{2}g(t + \frac{1}{2})^2$ First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ or $h = 7.35t + \frac{1}{2}gt^2$ M0 if different t used in the two terms and M0 if two terms have opposite signs. First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}t$) Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1		t = 1	M1 A1	
Question 4 B1 for $h = \frac{1}{2}gt^2$ or $h = \frac{1}{2}g(t + \frac{1}{2})^2$ First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ or $h = 7.35t + \frac{1}{2}gt^2$ M0 if different t used in the two terms and M0 if two terms have opposite signs. First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}$) Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1		h = 4.9	A1	7
Question 4 B1 for $h = \frac{1}{2}gt^2$ or $h = \frac{1}{2}g(t + \frac{1}{2})^2$ First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ or $h = 7.35t + \frac{1}{2}gt^2$ M0 if different t used in the two terms and M0 if two terms have opposite signs. First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}$) Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1				
First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ or $h = 7.35t + \frac{1}{2}gt^2$ M0 if different t used in the two terms and M0 if two terms have opposite signs. First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}$) Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1		<u>NOTES</u>		
First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ or $h = 7.35t + \frac{1}{2}gt^2$ M0 if different t used in the two terms and M0 if two terms have opposite signs. First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}$) Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1		Question 4		
First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ or $h = 7.35t + \frac{1}{2}gt^2$ M0 if different t used in the two terms and M0 if two terms have opposite signs. First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}$) Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1		B1 for $h = \frac{1}{2}gt^2$ or $h = \frac{1}{2}g(t + \frac{1}{2})^2$		
M0 if different t used in the two terms and M0 if two terms have opposite signs. First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}$) Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1		First M1 for $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ or $h = 7.35t + \frac{1}{2}gt^2$		
First A1 for appropriate t value used Second M1, dependent, for equating their two expressions for h , but must have different t 's in the two expressions Third M1, independent, for solving for their t (must have used two expressions etc.) Second A1 for $t = 1$ (or $t = \frac{1}{2}$) Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1		M0 if different t used in the two terms and M0 if two terms have opposite		
Third A1 for $h = 4.9$ N.B. See alternative below where t is eliminated: $h = \frac{1}{2}gt^2$ B1 $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^2$ M1A1		First A1 for appropriate <i>t</i> value used Second M1, dependent, for equating their two expressions for <i>h</i> , but must have different <i>t</i> 's in the two expressions Third M1, independent, for solving for their <i>t</i> (must have used two expressions etc.)		
$h = \frac{1}{2}gt^{2}$ $h = 7.35(t - \frac{1}{2}) + \frac{1}{2}g(t - \frac{1}{2})^{2}$ M1A1		Third A1 for $h = 4.9$		
$h = 7.35(\sqrt{\frac{2h}{a}} - \frac{1}{2}) + \frac{1}{2}g(\sqrt{\frac{2h}{a}} - \frac{1}{2})^2$ DM 1				
, ,		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
$h = 7.35\sqrt{\frac{2h}{g}} - 3.675 + 4.9(\frac{2h}{g} - \sqrt{\frac{2h}{g}} + 0.25)$ A1				
h = 4.9 M1 A1		h = 4.9 M1 A1		
			1	

(10)

■ Past Paper

This resource was created and owned by Pearson Edexcel

WME01

Leave blank

5.

Figure 2

A particle P of mass 2 kg is pushed up a line of greatest slope of a rough plane by a horizontal force of magnitude X newtons, as shown in Figure 2. The force acts in the vertical plane which contains P and a line of greatest slope of the plane. The plane is

inclined to the horizontal at an angle α , where $\tan \alpha = \frac{3}{4}$

The coefficient of friction between P and the plane is 0.5

Given that the acceleration of P is 1.45 m s ⁻² , find the value of X.	

Past Paper (Mark Scheme)

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

Mathematics M1

5.	$R = X \sin \alpha + 2g \cos \alpha$	M1 A2
	$X \cos \alpha - F - 2g \sin \alpha = 2 \times 1.45$	M1 A2
	F = 0.5R	B1
	r = 0.3K	
	Eliminating R : solving for X	DM 1; DM 1
	X = 45	A1 10
	<u>NOTES</u>	
	Question 5 First M1 for resolving perp to the plane First A2 for a correct equation; -1 each error. Second M1 for resolving parallel to the plane. Second A2 for a correct equation; -1 each error. (Allow F at this stage) B1 for $F = \frac{1}{2}R$ Third M1 dependent on previous two M's for eliminating R . Fourth M1 dependent on previous M for solving for X Third A1 for $X = 45$.	

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01 Leave

6. A uniform rod AC , of weight W and length $3l$, rests horizontally on two supports, one at and one at B , where $AB = 2l$. A particle of weight $2W$ is placed on the rod at a distance from A . The rod remains horizontal and in equilibrium.			
	(a) Find the greatest possible value of x .		
	(5)		
	The magnitude of the reaction of the support at A is R . Due to a weakness in the support at A , the greatest possible value of R is $2W$,		
	(b) find the least possible value of x.		
	(5)		

		1
6. (a)	x is greatest when rod is about to tip about B i.e. $R_A = 0$ (can be implied)	B1
	$M(B), \ 2W(x-2l) = W_{\frac{1}{2}}l$	M1 A1
	x = 2.25l	DM 1 A1 (5)
(b)	Use of $R_A = 2W$ in an equation	M1
		1121
	$M(B)$, $2W(2l-x)+W_{\frac{1}{2}}l=2W.2l$	M1 A1 A1
	x = 0.25l	A1 (5)
		10
	NOTES	
	Question 6(a) B1 for x greatest when $R_A = 0$ (usually implied in moments equation) or correct use of $R_A \ge 0$. First M1 for an equation in x and l ONLY (usually moments about B but could come from two equations). Allow if there is W (uncancelled) in each term. (M0 if R_A term included unless it subsequently becomes zero) First A1 for a correct equation −again allow even if W has not been cancelled. Second M1, dependent on previous M, for solving for x in terms of l . Second A1 for $x = 2.25l$. N.B. If ' l ' omitted consistently and then inserted at end award full marks. If not inserted then can score max B1M1A0M1A0 Question 6(b) Scheme change First M1 for use of $R_A = 2W$ in any equation (vertical resolution or moments) or for correct use of $R_A \le 2W$. Second M1 for an equation in x and l ONLY (usually moments about B	
	but could come from two equations). Allow if there is W (uncancelled) in each term. A2 for the equation, again allow even if W has not been cancelled, -1 each error. Third A1 for $x = 0.25l$. N.B. If ' l ' omitted consistently and then inserted at end award full marks. If not inserted then can score max M1M1A0A0A0.	

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WME01 Leave

7. A train travels along a straight horizontal track between two stations A and B. The trainstants from rest at A and moves with constant acceleration until it reaches its maxim speed of 108 km h ⁻¹ . The train then travels at this speed before it moves with considerel coming to rest at B. The journey from A to B takes 8 minutes.			
	(a) Change $108 \text{ km h}^{-1} \text{ into m s}^{-1}$.		
	(2)		
	(b) Sketch a speed-time graph for the motion of the train between the two stations A and B.		
	(2)		
	Given that the distance between the two stations is 12 km and that the time spent decelerating is three times the time spent accelerating,		
	(c) find the acceleration, in m s ⁻² , of the train.		
	(6)		

This resource was created and owned by Pearson Edexcel

WMF01

■ Past Paper

This resource was created and owned by Pearson Edexcel

WME01

blank

8.

A particle A of mass 3m is held at rest on a rough horizontal table. The particle is attached to one end of a light inextensible string. The string passes over a small smooth pulley P which is fixed at the edge of the table. The other end of the string is attached to a particle B of mass 2m, which hangs freely, vertically below P. The system is released from rest, with the string taut, when A is 1.3 m from P and B is 1 m above the horizontal floor, as shown in Figure 3.

Given that B hits the floor 2 s after release and does not rebound,

(a) find the acceleration of A during the first two seconds,

(b) find the coefficient of friction between A and the table,

(8)

(2)

(c) determine whether A reaches the pulley.

(6)

WMF01

Past Paper (Mark Scheme)

This resource was created and owned by Pearson Edexcel

8 (a)	For B: $1 = \frac{1}{2}a.2^2$ \Rightarrow $a = \frac{1}{2} \text{ m s}^{-2}$	M1 A1 (2)
(b)	$R = 3mg$; $F = \mu R$	B1;B1
	$T - F = 3m \times 0.5$	M1 A1ft
	$2mg - T = 2m \times 0.5$	M1 A1 ft
	Solving for μ	DM 1
	$\mu = 0.58$ or 0.582	A1 (8)
(c)	$v = \frac{1}{2} \times 2 = 1$	B1 ft
	$-\mu \ 3mg = 3ma$	M1
	$0=1^2-2\mu gs$	M1
	s = 0.0877(.0.09 or better)	A1
	s < 0.3 correct conclusion,	DM 1A1 cso (6)
		16

NOTES

Question 8(a)

First M1 for a complete method to find a. M0 if s =1.3 is used First A1 for a =0.5

Question 8(b)

First B1 for R = 3mg

Second B1 for $F = \mu R$ seen (could be on diagram)

First M1 for resolving horizontally for A (this M mark can be scored if they just use m for mass but M0 if no mass used)

First A1ft on their a, for correct equation. (allow F)

Second M1 for resolving vertically for *B* (this M mark can be scored if they just use *m* for mass but M0 if no mass used)

Second A1ft on their *a*, for correct equation.

(Allow M2A2 for 'whole system' equation but M0 if not using 5*m*)

Third M1 dependent on both previous M marks for solving for μ

N.B. If *m* omitted consistently throughout (b), can score max

B0B1M1A0M1A0M1A0

Question 8(c)

B1 **ft** for (their $a \times 2$) oe to find v

First M1 for resolving horizontally for A with T = 0

Second M1 for a complete method (must have found a new 'a') to find distance moved by A.

First A1 for 0.09 or better (0.087719..)

Third M1, dependent on first and second M marks, for comparison with 0.3 or 1.3 (Must explicitly refer to either 0.3 or 1.3 or an appropriate equivalent)

Second A1 **cso** for does not reach pulley.