This resource	was created and	owned by Pearson Edexcel	

Nrite your name here Surname	Other names
Pearson Edexcel International Advanced Level Centre Number Candidate Num	Centre Number Candidate Number
Mechanic	с N/1
	d Subsidiary

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take g = 9.8 m s⁻², and give your answer to either two significant figures or three significant figures.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets – use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

PEARSON

1.	Two small smooth balls <i>A</i> and <i>B</i> have mass 0.6 kg and 0.9 kg respectively. moving in a straight line towards each other in opposite directions on a smooth h floor and collide directly. Immediately before the collision the speed of <i>A</i> is v t the speed of <i>B</i> is 2 m s ⁻¹ . The speed of <i>A</i> is 2 m s ⁻¹ immediately after the collisi is brought to rest by the collision. Find	horizontal m s ^{-1} and
	(a) the value of v ,	(3)
	(b) the magnitude of the impulse exerted on A by B in the collision.	(2)

Question Number	Scheme	Marks	Notes
1. (a)	$0.9 \times 2 - 0.6v = 0 + 0.6 \times 2$	M1	Equation with all the terms – condone "0" missing. Terms must be of the form mv , but condone sign
		A1	errors. Condone g present as a common factor. Correct unsimplified equation
	<i>v</i> = 1	A1 (3)	
(b)	$I = 0.6(v+2) = 1.8$ N s or $I = 0.9 \times 2 = 1.8$ N s	M1	Change in momentum of A or of B . Condone sign slips and negative answer. No g .
		A1	1.8 only (or exact equivalent) From correct work only.
		(2)	
	Watch out for fortuitous answers in (b); $v = 5$ from (a) used in (b) will score at most M1A0 in (b)	[5]	

WME01 Leave blank A ball is thrown vertically upwards with speed 20 m s⁻¹ from a point A, which is h metres 2. above the ground. The ball moves freely under gravity until it hits the ground 5 s later. (a) Find the value of *h*. (3) A second ball is thrown vertically downwards with speed $w \text{ m s}^{-1}$ from A and moves freely under gravity until it hits the ground. The first ball hits the ground with speed $V \text{ m s}^{-1}$ and the second ball hits the ground with speed $\frac{3}{4} V \text{ m s}^{-1}$. (b) Find the value of w. (5)

Question Number	Scheme	Marks	Notes
2 (a)	$h = -20 \times 5 + \frac{1}{2} \times 9.8 \times 25$	M1 A1	Use of $s = ut + \frac{1}{2}at^2$ to find <i>h</i> . Must quote the correct formula and be using 20 & 5, but condone slips in substitution. Accept complete alternative solutions working via the maximum height. (max ht 20.4, time to top 2.04) Accept complete alternative methods using other <i>suvat</i> equations. Correctly substituted equation(s) Condone use of a
	<i>h</i> = 22.5	A1 (3)	premature approximation. Final answer. Accept 22.5 or 23. Maximum 3sf. -22.5 is A0.
	NB Do not ignore subsequent working if they reach 22.5 and then move on to do further work.		
(b)	$V^2 = 20^2 + 2 \times 9.8 \times 22.5$ OR $V = -20 + (5 \times 9.8)$	M1	First ball - use of <i>suvat</i> to find V or V^2 Follow their h.
	$(V^2 = 841) = 29$	A1	Correct only (condone -29)
	$\left(\frac{3}{4}V\right)^2 = w^2 + 2 \times 9.8 \times 22.5$	M1	Second ball - <i>suvat</i> equation in V (or their V) to find w. Must be using the $\frac{3}{4}$.
	$\left(\frac{3}{4}V\right)^2 = w^2 + 2 \times 9.8 \times 22.5$ $w^2 = \frac{9}{16} \times 841 - 2 \times 9.8 \times 22.5$	A1ft	Correctly substituted equation with their V and their h .
	w = 5.66	A1	or 5.7. Answer correct to 2 s.f. or to 3 s.f.
		(5)	
		[8]	

This resource was created and owned by Pearson Edexcel WME01 Leave blank 3. A particle P of mass 1.5 kg is placed at a point A on a rough plane which is inclined at 30° to the horizontal. The coefficient of friction between P and the plane is 0.6 (a) Show that *P* rests in equilibrium at *A*. (5) A horizontal force of magnitude X newtons is now applied to P, as shown in Figure 1. The force acts in a vertical plane containing a line of greatest slope of the inclined plane. XN 30° Figure 1 The particle is on the point of moving up the plane. (b) Find (i) the magnitude of the normal reaction of the plane on *P*, (ii) the value of X. (7) 6 3 0 6 8 A 0 6

Question Number	Scheme	Marks	Notes
3 (a)	$R (\perp \text{ plane}) K = 1.5g \cos 30$ $R (\square \text{ plane}) F = 1.5g \cos 60$	M1 A1 A1 M1	For resolution of forces parallel or perpendicular to the plane. Weight must be resolved. Condone sin/cos confusion. Correct equation for <i>N</i> (12.7) Correct equation for <i>F</i> (7.35). Condone μR Use of $F_{\text{max}} = \mu N$ and compare with <i>F</i> ,
	$\frac{F}{N} = \frac{\cos 60}{\cos 30} = 0.577 < 0.6$ \therefore equilibrium	A1 (5)	or find the value of their $\frac{F}{N}$ and compare with μ Reach given conclusion correctly. They must make some comment, however brief.
	ALT for first 3 marks:		
	Resolve vertically $N \cos 30 + F \cos 60 = 1.5g$	M1A1	
	Resolve horizontally $N\cos 60 = F\cos 30$	A1	
	ALT for last 2 marks:		
	$F_{\rm max} = 0.6 \times 12.73 = 7.63 > 7.35$	M1	
	\therefore <i>P</i> is at rest	A1	
	Candidates who think that the diagram applies to (a) will score nothing in (a) but if they carry their results forward in to (b) then their work can score the marks available in (b).		If the candidate has given the equation of motion for the particle moving down the plane then A1 for $1.5g \sin 30 - \mu R = \pm 1.5a$ To score more they need to comment correctly on their answer: a = -0.19 impossible M1 Conclude that the particle cannot be moving. A1

Question Number	Scheme	Marks	Notes
(b)	N $FX 30^{\circ} 1.5g$		
	$R(\perp \text{ plane}) N = 1.5g\cos 30 + X\cos 60$	M1	Requires all 3 terms. Condone sin/cos confusion and sign errors. Requires all 3 terms.
	$R(\Box \text{ plane}) X \cos 30 = 1.5g \cos 60 + F$	M1	Condone sin/cos confusion and sign errors.
	$N = 1.5g\cos 30 + \frac{\cos 60}{\cos 30} (1.5g\cos 60 + 0.6N)$	A1 DM1	Both equations correct unsimplified. Use $F = 0.6N$ to form an equation in N or in X. Dependent on the two previous M marks
	$N\left(1 - \frac{\cos 60}{\cos 30} \times 0.6\right) = 1.5g\cos 30 + \frac{\cos 60}{\cos 30} \times 1.5g\cos 60$		OR: $0.6(X \cos 60 + 1.5g \cos 30) + 1.5g \sin 30 = X \cos 30$
	(i) $N = 26$ or 26.0 (N)	A1	First value found correctly. $(N \text{ or } X)$
	(ii) $X = (N - 1.5g\cos 30) \div \cos 60$	DM1	Substitute their N (or X) to find X (or N) Dependent on the previous M mark.
	X = 26 or 26.5	A1 (7) [12]	Second value found correctly.
Alt:	$N\cos 30 - F\cos 60 = 1.5g$, $N\cos 30 - 0.6N\cos 60 = 1.5g$	M1,	Resolve vertically. Condone sin/cos confusion. Must have all terms.
		DM1 A1	Use $F = 0.6N$ Correct unsimplified equation
	$N = \frac{1.5g}{\cos 30 - 0.6\cos 60} = 26 \text{ or } 26.0$	A1	
	$X = F\cos 30 + N\cos 60, = N(0.6\cos 30 + \cos 60)$	M1,	Resolve horizontally. Follow their N. Must have all terms. Condone sin/cos confusion.
	X = 26 or 26.5	DM1 A1	Substitute for <i>F</i> and <i>N</i>

JĀT III ĀLADĀ IIIII ĀRIJA ĀRIJAI LAUKU LAUKU LĀRIJA IRAU LAUKU LĀRIJA IRAU LAUKU LAUKU LAUKU LAUKU LAUKU LAUKU L 068A0

		Pas
s of	-	Past Paper (Mark Scheme)
and		
ct		This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks	Notes
4 (a)	(i) $M(D) 3R_c + 1 \times 3g = 2 \times 4g + 5 \times 2g$	M1	e.g.Take moments about D – requires all 4 terms of the correct form, but condone sign errors. 1x need not be seen
		A1	Correct unsimplified equation
	$R_c = 5g$ or 49 N	A1	
	(ii) $R(\uparrow) R_C + R_D = 4g + 2g + 3g$	M1	e.g.Resolve vertically to form an equation in R_C and R_D , requires all 5 terms
		A1	Correct unsimplified equation
	$R_D = 4g$ or 39 or 39.2N	A1 (6)	
Alt	$M(A) \ 3 \times 4g + 6 \times 3g = 2R_{C} + 5R_{D} (= 30g)$	M1A1	Two equations – M1A1 for each
	$\mathbf{M}(B) \ 3 \times 4g + 6 \times 2g = R_D + 4R_C \left(= 24g\right)$	M1A1	
	$\mathbf{M}(C) \ 3R_D + 2 \times 2g = 1 \times 4g + 4 \times 3g$		
	M(centre) $3g \times 3 + R_c = 2R_D + 2g \times 3$		
	$R_c = 5g$ or $49 \mathrm{N}$, $R_D = 4g$ or 39 or $39.2 \mathrm{N}$	A1,A1	Solve simultaneously for R_C and R_D
(b)	$M(D) \ 3R_{c} + xg = 8g + 10g (3R_{c} = (18 - x)g)$	M1	First equation in x and R (or R_C and R_D) – correct terms required but condone sign slips.
	$\mathbf{R}\left(\uparrow\right)R_{C}+R_{D}=4g+2g+xg$	M1	A second equation, correct terms required but
	Alternatives: $M(B) 4R_c + R_D = 12g + 12g$		condone sign slips.
	$\mathbf{M}(A): 2R_c + 5R_D = 6xg + 3 \times 4g$		
	$\mathbf{M}(C): 2 \times 2g + 3R_D = 4xg + 1 \times 4g$		
	2(18-x)g = 3(6+x)g	DM1	Use $R_c = R_D$ and solve for x. (as far as $x =$) Dependent on the two previous M marks.
	<i>x</i> = 3.6	A1 (4) [10]	

WME01 Leave blank 5. [In this question **i** and **j** are horizontal unit vectors due east and due north respectively. *Position vectors are given relative to a fixed origin O.*] A boy *B* is running in a field with constant velocity (3i - 2j) m s⁻¹. At time t = 0, *B* is at the point with position vector 10j m. Find (a) the speed of B, (2) (b) the direction in which B is running, giving your answer as a bearing. (3) At time t = 0, a girl G is at the point with position vector $(4\mathbf{i} - 2\mathbf{j})$ m. The girl is running with constant velocity $\left(\frac{5}{3}\mathbf{i} + 2\mathbf{j}\right)$ m s⁻¹ and meets *B* at the point *P*. (c) Find (i) the value of *t* when they meet, (ii) the position vector of *P*. (6) 14 P 4 3 0 6 8 A 0 1 4 2 8

Past Paper (Mark Scheme)
This resource was created and owned by Pearson Edexcel

Question Number	Scheme	Marks	Notes
5 (a)	Speed = $\sqrt{3^2 + (-2)^2}$ or $\sqrt{3^2 + 2^2} = \sqrt{13} \text{ m s}^{-1}$	M1 A1(2)	Use Pythagoras Accept 3.6 or better
(b)	θ	A1(2)	Ignore their diagram if it does not support their working
	$\tan \theta = \frac{2}{3}, \theta = 33.7 \text{OR} \tan \theta = \frac{3}{2}, \theta = 56.3$	M1	Find a relevant angle
	OR find another useful angle	A1	Their angle correct (seen or implied)
	Bearing = 124	A1 (3)	Correct bearing. Accept 124° or awrt 124/124° Accept N 124 E or S 56 E
(c)	$\mathbf{r}_{B} = 10\mathbf{j} + t\left(3\mathbf{i} - 2\mathbf{j}\right)$ $\mathbf{r}_{G} = 4\mathbf{i} - 2\mathbf{j} + t\left(\frac{5}{3}\mathbf{i} + 2\mathbf{j}\right)$	M1 A1	Find the position vector of B or G at time t Correct for B
	$\mathbf{r}_G = 4\mathbf{i} - 2\mathbf{j} + t\left(\frac{5}{3}\mathbf{i} + 2\mathbf{j}\right)$	A1	Correct for <i>G</i>
	$3t = 4 + \frac{5}{3}t$ OR $10 - 2t = -2 + 2t$	DM1	Compare coefficients of i or of j to form an equation in <i>t</i> .
	(i) $t = 3 \text{ s}$ (ii) $\mathbf{r} = 10\mathbf{j} + 3(3\mathbf{i} - 2\mathbf{j}) = (9\mathbf{i} + 4\mathbf{j}) \text{ m}$	A1	Correct unambiguous conclusion.
	OR $\mathbf{r} = 4\mathbf{i} - 2\mathbf{j} + 3\left(\frac{5}{3}\mathbf{i} + 2\mathbf{j}\right) = (9\mathbf{i} + 4\mathbf{j})\mathbf{m}$	A1 (6)	Final answer. Accept with no units. Do not ignore subsequent working.
		[11]	

6.	A car starts from rest at a point A and moves along a straight horizontal road. The	car
	moves with constant acceleration 1.5 m s ⁻² for the first 8 s. The car then moves we constant acceleration 0.8 m s ⁻² for the next 20 s. It then moves with constant speed T seconds before slowing down with constant deceleration 2.8 m s ⁻² until it stops a point B .	ith for
	(a) Find the speed of the car 28 s after leaving A.	
		(3)
	(b) Sketch, in the space provided, a speed-time graph to illustrate the motion of the as it travels from <i>A</i> to <i>B</i> .	
		(2)
	(c) Find the distance travelled by the car during the first $28 \text{ s of its journey from } A$.	(4)
	The distance from A to B is 2 km.	
	(d) Find the value of <i>T</i> .	
		(4)

	SE
Notes	t Pape
v = u + at or equivalent for $t = 8their 12$	ast Paper (Mark Scheme)
,28; 12,28 indicated. Follow their 12, 28	This resource was created and owned by Pearson
et method for distance for the triangle (0-8) or pezium (8-28) 7 their 12 7 their 12, 28 et answer only (cao)	and owned by Pearsc
rea of right hand triangle or an expression in he trapezium (rectangle + triangle).	on Edexce
their 28	<u>e</u>
an equation in T for their 16, 448 and 140	
ten (50, 10957) A count 50	

Question Number	Scheme	Marks	Notes
6(a)	$v_1 = 8 \times 1.5 (= 12)$	M1	Use of $v = u + at$ or equivalent for $t = 8$
	$v_2 = 12 + 0.8 \times 20$	M 1	Follow their 12
	$v_2 = 28 \text{ m s}^{-1}$	A1 (3)	
(b)	^v ↑		
		B1 B1ft	shape nos: 8,28; 12,28 indicated. Follow their 12, 2
(c)	1	(2) M1	Correct method for distance for the triangle (0-
(0)	first 8 s: dist = $\frac{1}{2} \times 8 \times 12$ (= 48)	A1ft	the trapezium (8-28) Follow their 12
	next 20 s: dist = $\frac{1}{2} \times (12 + 28) \times 20 \ (= 400)$	A1ft	Follow their 12, 28
	Total dist = 448 m^2	A1 (4)	Correct answer only (cao)
(d)	$0 = 28^2 - 2 \times 2.8s$	M 1	Find area of right hand triangle or an expression T for the trapezium (rectangle + triangle).
	$s = \frac{28^2}{2 \times 2.8} (= 140)$	A1ft	Follow their 28
	448 + 140 + 28T = 2000	DM1	Form an equation in T for their 16, 448 and 140
	$T = \frac{2000 - 448 - 140}{28} = 50.4$	A1 (4)	Or better (50.42857) Accept 50.
		[13]	

WME01

Leave blank

Question Number	Scheme	Marks	Notes
7	$\begin{array}{c} \overline{} \\ \overline{} } \\ \overline{} } \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \phantom{a$		
(a)	3g - T = 3a	M1	Eqn of motion for <i>Q</i> : must have the correct terms but condone sign errors
		A1	Correct equation
	$T - 2g\cos 60 = 2a$ ($T - g = 2a$)	M1	Eqn of motion for <i>P</i> : must have the correct terms but condone sign errors. Weight must be resolved.
		A1	Correct equation
	Allow M1A1 for $3g - 2g \cos 60 = 5a$ in place of either of these two equations		
	$2g = 5a \qquad a = \frac{2g}{5} \qquad *$	DM1	Use an exact method to solve for <i>a</i> (i.e. not the equation solver on their calculator). Dependent on the first 2 M marks or the M for the combined equation.
		A1	Given answer derived correctly from exact working.
	$T = 2x^{2g} + a = \frac{9g}{2}$	M1	Use given acceleration to solve for <i>T</i> .
	$I = 2 \times \frac{1}{5} + g = \frac{1}{5}$	A1 (8)	accept 18 or 17.6
(b)	$T = 2 \times \frac{2g}{5} + g = \frac{9g}{5}$ $v^{2} = 2 \times \frac{2g}{5} \times 0.6 = \frac{2.4g}{5}$ $v = \frac{2}{5}\sqrt{3g} \text{ oe involving } g$	M1	Use the given acceleration to find the speed
	$v = \frac{2}{5}\sqrt{3g}$ oe involving g	A1 (2)	Accept 2.2 or 2.17

Question Number	Scheme	Marks	Notes
(c)	String slack: accel of P (up plane) = $-g \cos 60 = -\frac{1}{2}g$	B1	
	$0 = \frac{2.4g}{5} - gs$	M1	Use of $v^2 = u^2 + 2as$ or equivalent for their acceleration $\neq \frac{2g}{5}$
	$s = \frac{2.4g}{5} \times \frac{1}{g} = \frac{2.4}{5} = 0.48$	A1	
	Total dist = 1.08 m	A1ft (4)	0.6 + their 0.48
(d)	$0 = \frac{2}{5}\sqrt{3g} - \frac{g}{2}t \qquad (0 = 2.17 - 4.9t)$	M1	Use of $v = u + at$ or equivalent with their
	$t = \frac{4\sqrt{3g}}{5g} = 0.4426$		acceleration $\neq \frac{2g}{5}$ to find <i>t</i> .
	= 0.44 or 0.443	A1 (2)	only
		[16]	