WME01

Please check the examination det	tails below	before ente	ring your candidate information
Candidate surname			Other names
Pearson Edexcel International Advanced Level	Centre	e Number	Candidate Number
Wednesday 2	24 C)cto	ber 2018
Morning (Time: 1 hour 30 minut	es)	Paper R	eference WME01/01
Mechanics M1			
Mechanics M1 Advanced/Advanced S	Subsic	liary	
Mechanics M1 Advanced/Advanced S	Subsic	liary	

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided - there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take g = 9.8 m s⁻², and give your answer to either two significant figures or three significant figures.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets - use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

P54932A ©2018 Pearson Education Ltd. 1/1/1/1/

DO NOT WRITE IN THIS AREA

 (3) (b) Find the magnitude of the impulse exerted by <i>Q</i> on <i>P</i> in the collision, stating the units of your answer. (3)
(b) Find the magnitude of the impulse exerted by <i>Q</i> on <i>P</i> in the collision, stating the units of your answer. (3)
(3)

Oct 2018 IAL WME01 (M1) FINAL

Question Number	Scheme	Marks
1(a)	$0.8 \times 4 - 2 \times 2 = 2v - 0.8 \times 2.5$	M1A1
	$v = 0.6 \text{ m s}^{-1}$	A1 (3)
(b)	I = 0.8(4+2.5) = 5.2, Ns or kg m s ⁻¹	M1A1,B1 (3)
	OR : $I = 2(0.6 + 2) = 5.2$, Ns or kg m s ⁻¹	M1A1,B1
	Notes for qu 1	
1a	M1 for CLM, correct no. of terms, dim correct, condone extra g's throughout and sign errors, in one unknown, with correct pairings of mass and velocity. N.B. Apply <u>same</u> criteria to an equation that has been found by eliminating the impulse from two imp-mom equations.	
	First A1 for a correct equation (condone extra g's)	
	Second A1 for 0.6 (Must be positive)	
1b	M1 for Impulse – Momentum equation for either particle, correct no. of terms, with correct velocities, condone sign errors N.B. Mark the actual equation not the formula (some candidates use $I = m(v+u)$ when the direction has been reversed)	
	M0 if g included on momentum terms	
	A1 for 5.2 (Must be positive)	
	B1 for Ns or kg m s ⁻¹ N.B. M0A0B1 is possible	

DO NOT WRITE IN THIS AREA

Question Number	Scheme	Mark	s
	N.B. Consistent use of extra g's in two equations can score the A marks for the equations and could score full marks for part (a).N.B. If they assume that the rod is uniform, can only score marks for a vertical resolution.		
2(a)	$R(\uparrow): 0.5R_C + R_C = 60 + 12$ (N.B. $R_A = \frac{1}{2}R_C$)	M1A1	
	Possible moments equations: $M(A): 60x + (12 \times 5) = R_C \times 3$	M1A1	
	$M(B): (2 \times R_C) + \left(\frac{1}{2}R_C \times 5\right) = 60(5-x)$		
	M(C): $(\frac{1}{2}R_{C} \times 3) + (12 \times 2) = 60(3 - x)$		
	M(G): $12(5-x) + \frac{1}{2}R_C x = R_C(3-x)$		
	Eliminate R_C and solve for x (AG) x = 1.4 m	DM1 A1	(6)
(b)	(i) the weight of the parcel acts at B	B1	
	(ii) the plank remains straight	B1	(2)
	(or equivalent statements)		[8]
	Notes for au 2		
	N.B. If R and $\frac{1}{R}$ are reversed, max score is M1A1 (resolution)		
	2 M1A0 (moments)		
2a	First M1 for first equation, correct no. of terms, dim correct, condone sign errors and allow R and S at this stage and for moments equations allow a different length variable		
	First A1 for a correct resolution in one unknown or moments equation in two unknowns		
	Second M1 for second equation, correct no. of terms, dim correct, condone sign errors and allow R and S at this stage and for moments equations allow a different length variable		
	Second A1 for a correct resolution in one unknown or moments equation in		
	Third DM1, dependent on both previous M marks, for eliminating and		
	solving for AG Third A1 for 1.4 (m) oe		
	· · · (/		
2b (i)	First B1 e.g. mass is concentrated at BB0 if incorrect extras		
(ii)	Second B1 e.g. the plank doesn't buckle or bend B0 if incorrect extras		

Mathematics M1 WME01

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

DO NOT WRITE IN THIS AREA

Leave blank At time t = 0, a stone is thrown vertically upwards with speed 19.6 m s⁻¹ from a point A 3. which is *h* metres above horizontal ground. At time t = 3 s, another stone is released from rest from a point *B* which is also *h* metres above the same horizontal ground. Both stones hit the ground at time t = T seconds. The motion of each stone is modelled as that of a particle moving freely under gravity. Find (i) the value of T, (ii) the value of h. (7) 8

Question Number	Scheme	Marks
3	EITHER: $h = -19.6(t+3) + \frac{1}{2}g(t+3)^2$ and $h = \frac{1}{2}gt^2$ OR: $h = -19.6T + \frac{1}{2}gT^2$ and $h = \frac{1}{2}g(T-3)^2$	M1A1A1 M1A1A1
	$-19.6T + \frac{1}{2}gT^{2} = \frac{1}{2}g(T-3)^{2} \mathbf{OR} \qquad -19.6(t+3) + \frac{1}{2}g(t+3)^{2} = \frac{1}{2}gt^{2}$	M1
(i)	<i>T</i> = 4.5	A1
(ii)	$h = \frac{1}{2} \times 9.8 \times (T-3)^2 \text{oe}$	M1
	=11 or 11.0	A1 [7]
	Notes for qu 3	
	1	
3	First M1 for use of $s = ut + \frac{1}{2}at^2$ (or any other complete method) to produce an equation in <i>h</i> and <i>T</i> only or <i>h</i> and <i>t</i> only for stone 1 or 2, correct no. of terms but condone sign errors	
	First A1 for a correct equation for stone 1 (g does not need to be substituted but if it is , it must be 0.8)	
	Second A1 for a correct equation for stone 2 N.B. Both A marks can be earned if they use <i>s</i> (instead of <i>h</i> or <i>-h</i>) in one of the two equations and then use <i>s</i> consistently in the other equation. N.B. When <i>h</i> and <i>T</i> are used in any equation, they must be used correctly (including sign of <i>h</i>) to obtain A marks	
(i)	Second M1 for eliminating h	
(ii)	Third A1 for $I = 4.5$ Third M1 for using their T or t value in one of their equations to obtain an h value Fourth A1 for $h = 11$ or 11.0	
	routin A1 101 n - 11 01 11.0	

Mathematics M1

A particle P of mass mkg is attached to one end of a light inextensible string of length 2.5 m. The other end of the string is attached to a fixed point A on a vertical wall. The tension in the string is 16N. The particle is held in equilibrium by a force of magnitude F newtons, acting in the vertical plane which is perpendicular to the wall and contains the string. This force acts in a direction perpendicular to the string, as shown in Figure 2.

Given that the horizontal distance of P from the wall is 1.5 m, find

- (i) the value of F,
- (ii) the value of m.

(7)

DO NOT WRITE IN THIS ARE

Question Number	Scheme	Marks
	$\sin\theta = \frac{3}{5}$ or $\cos\theta = \frac{4}{5}$ or $\tan\theta = \frac{3}{4}$ or $(\text{may use the angle the string})$	Di
4.	use of a <u>trig function</u> of e.g. 37° or 53° anywhere. N.B. If they assume angles are 45° can score max B0M1A0A1M0A0A0	BI
	Any <i>two</i> of the following equations:	
	$R(\rightarrow)$: $F \cos \theta = 16 \sin \theta$ oe e.g. $F = 16 \tan \theta$ (from triangle of forces)	
	$\mathbf{R}(\nearrow): F = mg\sin\theta$	M1A1 (1 st equation)
	$R(\uparrow): mg = 16\cos\theta + F\sin\theta$	
	$R(\sim): 16 = mg\cos\theta$	M1A1
	$(mg)^2 = F^2 + 16^2$ (Pythagoras from triangle of forces)	(2 nd equation)
	N.B. In all of these equations, θ is what they <i>think</i> the angle that the string makes with the vertical is.	
	F = 12 (A0 if 12 obtained from rounding an inaccurate answer and A0	
(i)	N.B. If $F = 12$ is given as answer, without any evidence of rounding, give BOD and award A1	A1
(ii)	m = 2.04 or 2.0 (A0 for 2)	A1
		[7]
	Notes for qu 4	
	B1 for any correct trig ratio seen	
	First M1 for 1 st equation seen with usual rules	
	First A1 for a correct equation	
	Second A1 is now M1 for 2 nd equation seen with usual rules	
	Third A1 for 12	
	Fourth A1 for 2.04 or 2.0 (A0 for 2)	

Paper	2018 Th	www.mystudybro.c	com by Pearson Edexcel	
5.				
		A 816m	В	
		810111		
		Figure 3		
		8		
	wo posts, A and B apart, as shown in Fi with A. The car and accelerates from rest car then moves at a co- acceleration for 12 s^{-1} . Which the car at B, and	igure 3. A car and a van are at rest igure 3. A car and a van are at rest the van start to move at the same t with constant acceleration until i onstant speed of 24 m s^{-1} . The van until it reaches a speed of $V \text{ m s}^{-1}$. hen the car has been moving at 24 d each vehicle has then travelled a	in the formation of th	and level The car s^{-1} . The constant constant aws level
(a) Sketch, on the sa A to B.	ame diagram, a speed-time graph f	or the motion of each veh	icle from
				(3)
(b) Find the time for	r which the car is accelerating.		
				(3)
	c) Find the value of	of V.		
·	-)			(3)

DO NOT WRITE IN THIS AREA

Question Number	Scheme	Marks
	(c) Dist travelled by the van $=\frac{1}{2} \times 12V + (18+T) \times V = 816$ M1A1ft	
	V = 25.5 A1	
	Notes for qu 5	
5 a	First B1 for shape of graph	
	Second B1 for shape of graph, crossing first graph	
	Third B1 for V, 12, 24, T and T+30 placed correctly on e.g. with delineators. Allow their T and (their $T + 20$) where they find T in (h) first	
	defineators. Allow their T and (their $T + 30$) where they find T in (b) first.	
	M1 for equation in T or $t (= T + 30)$ only, using 816 distance travelled by	
5b	CAR, with correct structure i.e. a trapezium or (triangle + rectangle)	
	First A1 for a correct equation	
	Second A1 for 8 (s)	
	M1 for equation in V only, using 816 distance travelled by VAN, with	
5c	<i>correct structure</i> 1.e. a trapezium or (triangle + rectangle) N.P. M0 if they assume the TOTAL time is 20 (or 42) when setting up the	
	N.B. Wo if they assume the TOTAL time is 50 (of 42) when setting up the equation	
	First A1 ft on their <i>T</i> value , for a correct equation	
	Second A1 for $V = 25.5$	

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

DO NOT WRITE IN THIS AREA

[In this question the unit vectors **i** and **j** are horizontal vectors due east and due north respectively and position vectors are given relative to a fixed origin.]

6. The point A on a horizontal playground has position vector $(3\mathbf{i} - 2\mathbf{j})\mathbf{m}$. At time t = 0, a girl kicks a ball from A. The ball moves horizontally along the playground with constant velocity $(4\mathbf{i} + 5\mathbf{j})\mathbf{m}\mathbf{s}^{-1}$.

Modelling the ball as a particle, find

(a) the speed of the ball,

(b) the position vector of the ball at time *t* seconds.

The point *B* on the playground has position vector $(\mathbf{i} + 6\mathbf{j})\mathbf{m}$. At time t = T seconds, the ball is due east of *B*.

(c) Find the value of T.

(2)

(2)

(2)

A boy is running due east with constant speed $v m s^{-1}$. At the instant when the girl kicks the ball from *A*, the boy is at *B*.

Given that the boy intercepts the ball,

(d) find the value of v.

(5)

Question Number	Scheme	Scheme Marks	
6(a)			
	Speed = $\sqrt{4^2 + 5^2} = \sqrt{41}$ or 6.4031m s ⁻¹ (Accept 6.4 or better)	M1A1	(2)
			(=)
(b)	$(\mathbf{r} =)(3\mathbf{i} - 2\mathbf{j}) + t(4\mathbf{i} + 5\mathbf{j}).$	M1A1	(2)
(0)	$i \operatorname{comp} = 6$		
(()	J comp = 0		
	5T - 2 = 6	M1	
	0		
	$T = \frac{8}{5} (=1.6)$	A1	(2)
	5		
(d)	$t = 1.6 \implies (\mathbf{r} =)(3 + (4 \times 1.6))\mathbf{i} (+6\mathbf{j})$	M1A1 ft	
	boy travels $9.4 - 1 = 8.4 \text{ m}$ (allow $8.4i$)	A1	
	$\mathbf{Q} \mathbf{A} = \mathbf{Q} \mathbf{A}$	DM1	
	$\frac{6.4}{1.6}$ or $\frac{6.41}{1.6}$	DNII	
	v = 5.25	A1	(5)
			[11]
	Notes for qu 6		
	• •		
<u>6a</u>	M1 for attempt to find magnitude of velocity		
	Al 6.4 or better		
6b	M1 for attempt at py with correct structure i.e. $\mathbf{r}_0 + t\mathbf{v}$		
	A1 for a correct expression seen (ie use isw)		
6c	M1 for equating j cpt of their r to 6 (Must be of form: $a+bT = 6$ oe)		
	A1 for 1.6 oe		
6d	First M1 for substituting their answer for (c), their 1, into 1 cpt of their answer for (b) of		
	First A1 ft , with or without i		
	Second A1 for 8.4 or 8.4 i cao		
	Second DM1, dependent on first M1, for dividing their distance or vector		
	(ci) by their T (> 0) value to find the value of v. $(9.4/T \text{ oe is DM0})$		
	Third A1 for 5.25 cao		

Autumn 2018

Past Paper

Leave blank

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS ARE

DO NOT WRITE IN THIS ARE

7. A truck of mass 1600kg is towing a car of mass 960kg along a straight horizontal road. The truck and the car are joined by a light rigid tow bar. The tow bar is horizontal and is parallel to the direction of motion. The truck and the car experience constant resistances to motion of magnitude 640N and R newtons respectively. The truck's engine produces a constant driving force of magnitude 2100 N. The magnitude of the acceleration of the truck and the car is $0.4 \,\mathrm{m \, s^{-2}}$. (a) Show that R = 436(3) (b) Find the tension in the tow bar. (3) The two vehicles come to a hill inclined at an angle α to the horizontal where $\sin \alpha = \frac{1}{15}$. The truck and the car move down a line of greatest slope of the hill with the tow bar parallel to the direction of motion. The truck's engine produces a constant driving force of magnitude 2100 N. The magnitudes of the resistances to motion on the truck and the car are 640 N and 436 N respectively. (c) Find the magnitude of the acceleration of the truck and the car as they move down the hill. (4) 24 - 3 2 A

Question Number	Scheme	Marks	
7(a)	$2560 \times 0.4 = 2100 - 640 - R$	M1A1	
	R = 436 * GIVEN ANSWER	A1 *	(3)
(b)	Truck: $1600 \times 0.4 = 2100 - 640 - T$ OR car: $960 \times 0.4 = T - 436$	M1A1	
	T = 820 N	A1	(3)
(c)	$2560a' = 2100 - 640 - 436 + 1600g \sin \alpha + 960g \sin \alpha$	M1A1A1	
	$a' = 1.05$ or 1.1 m s^{-2}	A1	(4)
		111	[10]
	Notes for qu 7		
	Use the <i>mass</i> which is being used, in $F = ma$, to decide which part of the system an equation applies to		
7a	M1 for an equation of motion, dim correct with correct no.of terms, condone sign errors, <i>in R only</i>		
	First A1 for a correct equation		
	Second A1 for $R = 436$ GIVEN ANSWER		
	N.B. They may do (b) first, using the Truck equation to find $T = 820$, and then use Car equation here to show that $R = 436$		
7b	M1 for an equation of motion, dim correct with correct no.of terms, condone sign errors, for either truck or car, in <i>T</i> only. (Equation could appear in (a) but must be being used in (b))		
	First A1 for a correct equation		
	Second A1 for $T = 820$ (N)		
7c	M1 for an equation of motion <i>in a' only</i> , dim correct with correct no.of terms, condone sign errors and missing g's,		
	First and second A1 for a correct equation, -1 each error (Omission of g is one error) If both weight cpts are negative, treat as one error.		
	Third A1 for 1.05 or 1.1 (m s ^{-2})		
	N.B. Note that $T = 820$ again but if they just assume that $T = 820$, M0		

aper	This resource was created and owned by Pearson Edexcel	WM	E01
		Le	ave ank
8.			
	5N P		
	Figure 4		
A rough plane on the plane by in a vertical pla on the point of	is inclined at 30° to the horizontal. A particle <i>P</i> of mass 0.5 kg is helly a horizontal force of magnitude 5 N, as shown in Figure 4. The for ane containing a line of greatest slope of the inclined plane. The part for moving up the plane.	d at rest orce acts orticle is	
(a) Find the n	nagnitude of the normal reaction of the plane on P .		
		(4)	
(b) Find the c	o efficient of friction between P and the plane.	(5)	
		(3)	
The force of m	nagnitude 5 N is now removed and <i>P</i> accelerates from rest down the	e plane.	
(c) Find the s	peed of P after it has travelled 3 m down the plane.		
		(8)	
28			

Question Number	Scheme	Marks	
8 (a)	$R(\perp \text{ plane}): R = 0.5g\cos 30^{\circ} + 5\sin 30^{\circ}$	M1A1A1	
	R = 6.743 = 6.7 or 6.74 N	A1	(4)
(b)	R(plane): $F = 5\cos 30^\circ - 0.5g\sin 30^\circ$ (=1.880)	M1A1A1	
	$\mu = \frac{F}{R} = \frac{1.880}{6.743}$, = 0.27880 = 0.28 or 0.279	M1A1	(5)
(c)	NL2: $0.5g\sin 30^\circ - F' = 0.5a$	M1A1	
	R(\perp plane): $R' = 0.5g \cos 30^{\circ} (= 4.2435)$	M1A1	
	Use of $F' = \mu R' = 0.2787 \times R' (= 1.18345)$ and solve for <i>a</i>	DM 1	
	$a = 2.53 \text{ m s}^{-2}$	A1	
	$v^2 = 2as = 2 \times 2.533 \times 3$	M1	
	$v = 3.9$ or 3.90 ms^{-1}	A1	(8) [17]
	Notes for qu 8		
<u>8a</u>	MI for resolution perp to the plane, with usual rules		
	First and second A1 for a correct equation, -1 each error		
	Third AT for 0.7 of 0.74 (iv) must be positive		
8b	First M1 for resolution parallel to the plane, with usual rules		
	First and second A1 for a correct equation, -1 each error		
	Second M1 for use of $\mu = \frac{F}{R}$		
	Third A1 for 0.28 or 0.279		
	SC: If 5N force is not removed, can score max:		
8c	MIA0MIA0DMIA0M0A0 with usual rules applying for M marks		
	Example assuming that SN force still acting.		
	Thist will for equation of motion paramet to plane, with usual fules		
	First A1 for a correct equation (F') does not need to be substituted and		
	allow if they use the value of F from part (b))		
	Second M1 for resolution perp to the plane, with usual rules		
	Second A1 for a correct equation		
	Third DM1, dependent on both previous M marks, for use of $F' = \mu R'$ and		

Question Number	Scheme	Marks
	solving for <i>a</i>	
	Third A1 for $a = 2.53$ or better, if they get v wrong, but if they get $v = 3.9$	
	then allow $a = 2.5$ or 2.54	
	Fourth M1 (independent but must have used an equation of motion to find	
	<u>a</u>) for complete method to find v using their a	
	M0 if particle is decelerating i.e if their <i>a</i> is negative down the plane.	
	Fourth A1 for $v = 3.9$ or 3.90 ms^{-1}	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom