Mathematics F1

Past Paper

This resource was created and owned by Pearson Edexcel

WFM01

Write your name here		
Surname	Other nar	mes
Pearson Edexcel International Advanced Level	Centre Number	Candidate Number
Further Pu Mathemated/Advance	tics F1	
Monday 23 June 2014 – Mo Time: 1 hour 30 minutes	orning	Paper Reference WFM01/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 4 9 6 5 A 0 1 3 2

Turn over ▶

■ Pas

mmer 2014 t Paper	www.mystudybro.com This resource was created and owned by Pearson Edexcel	Watnematics F
1. Find the value	e of $\sum_{r=1}^{200} (r+1)(r-1)$	Leave blank
	/	(4)

2

Question Number	Sche	me	Marks
1.	$(r+1)(r-1) = r^2 - 1$	Correct expansion. Allow $r^2 - r + r - 1$	B1
	$\sum_{r=1}^{200} r^2 = \frac{1}{6} 200(201)(401)$	Use of $\frac{1}{6}n(n+1)(2n+1)$ with $n = 200$	M1
	$\sum_{r=1}^{200} -1 = -200$	Cao (May be implied by their work)	B1
	$\sum_{r=1}^{200} (r^2 - 1) = 2686700 - 200 = 2686500$	2686500	A1
	Note use of $\sum_{r=1}^{200} -1 = -1$ gives a sum of 26	686699 and usually scores B1M1B0A0	
			Total 4

Mathematics F1

■ Past Paper

This resource was created and owned by Pearson Edexcel

WFM01

Leave	1
blank	

$$z^2 + pz + q = 0$$

where p and q are real constants,

(a) write down the other root of the equation.

(1)

(b) Find the value of p and the value of q.

(3)

Question Number	Sche	me	Marks
	Mark (a) and	(b) together	
2.(a)	-2 - 3i	cao	B1
			(1)
(T.)	Way	y 1	
(b)	p = -sum of roots = -(-2 + 3i - 2 - 3i)		
	or	A correct approach for either <i>p</i> or <i>q</i>	M1
	q = product of roots = (-2 + 3i)(-2 - 3i)		
	p = 4, q = 13	1 st A1: One value correct 2 nd A1: Both values correct Can be implied by a correct equation or expression e.g $z^2 + 4z + 13$	A1A1
		of expression e.g 2 +42+13	(3)
			Total 4
	(b) W	av 2	
	(3)	z - (-2 + 3i) and $z - (-2 - 3i)$ and	
	(z-(-2+3i))(z-(-2-3i))	attempt to expand (condone invisible brackets)	M1
	Equation is $z^2 + 4z + 13 (= 0)$	1 st A1: One value correct 2 nd A1: Both values correct Condone use of <i>x</i> instead of <i>z</i>	A1 A1
	$p = 4, \ q = 13$		
	(b) W $(-2+3i)^2 + p(-2+3i) + q = 0$		
	, , , , ,	$\Rightarrow (3p-12)1+q-2p-3=0$ Substitutes $-2+3i$ or $-2-3i$ into the	
	(3p-12)i+q-2p-5=0	Substitutes $-2 + 31$ or $-2 - 31$ into the given equation, compares real and	
	$\Rightarrow 3p - 12 = 0, q - 2p - 5$ $\Rightarrow p = \dots \text{ or } q = \dots$	imaginary parts and obtains a real value for p or a real value for q	M1
	p = 4, q = 13	1 st A1: One value correct 2 nd A1: Both values correct	A1A1
	(b) Way 4		
	$z^2 + pz + q = 0 \Rightarrow z = \frac{-p \pm \sqrt{p^2 - 4q}}{2}$		
	2		M1
	Correct method to	find a value for p	
	p=4		A1
	$p^2 - 4q = -36 \Rightarrow q = 13$	Correct value for q	A1
	(b) W	· ·	
	$(-2+3i)^2 + p(-2+3i) + q = 0$ an		
	$\Rightarrow 24i - 6pi =$ M1: Substitutes both roots into the g simultaneously to obtain a real	iven equation and attempts to solve	M1
	$p = 4, \ q = 13$	1 st A1: One value correct 2 nd A1: Both values correct	A1A1

Mathematics F1

This resource was created and owned by Pearson Edexcel

WFM01

blank

3.

■ Past Paper

$$\mathbf{A} = \begin{pmatrix} 4 & -2 \\ a & -3 \end{pmatrix}$$

where a is a real constant and $a \neq 6$

(a) Find A^{-1} in terms of a.

(3)

Given that $\mathbf{A} + 2\mathbf{A}^{-1} = \mathbf{I}$, where \mathbf{I} is the 2 × 2 identity matrix,

(b) find the value of *a*.

(3)

Question Number	Sche	eme	Marks
3.(a)	$\det \mathbf{A} = 4 \times -3 - a \times -2 \left(= 2a - 12\right)$	Any correct form (possibly unsimplified) of the determinant	B1
	$adj\mathbf{A} = \begin{pmatrix} -3 & 2 \\ -a & 4 \end{pmatrix}$	Correct attempt at swapping elements in the major diagonal and changing signs in the minor diagonal. Three or four of the numbers in the matrix should be correct e.g. allow one slip	M1
	$\mathbf{A}^{-1} = \frac{1}{2a - 12} \begin{pmatrix} -3 & 2\\ -a & 4 \end{pmatrix}$	Correct inverse	A1
			(3)
(b)	$\begin{pmatrix} 4 & -2 \\ a & -3 \end{pmatrix} + \frac{2}{2a-12} \begin{pmatrix} -3 & 2 \\ -a & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	Correct statement for A , "their" inverse and use of the correct identity matrix	M1
	$\Rightarrow \left(\begin{array}{cc} 4 - \frac{6}{2a - 12} & -2 \\ a - \frac{2a}{2a - 12} & -3 \end{array}\right)$		
	So e.g. $4 - \frac{6}{2a - 12} = 1 \Rightarrow a = \dots$	Adds their A and 2 x their A^{-1} and compares corresponding elements to form an equation in a and attempts to solve as far as $a = \dots$ or adds an element of their A and the corresponding element of 2 x their A^{-1} to form an equation in a and attempts to solve as far as $a = \dots$	M1
	a = 7 only	Cao (from a correct equation i.e. their A ⁻¹ might be incorrect) If they solve a second equation and get a different value for a, this mark can be withheld.	A1
			(3) Total 6
			Total o
	(b) Way 2 (does no	ot use the inverse)	
	$\mathbf{A} + 2\mathbf{A}^{-1} = \mathbf{I} \Rightarrow \mathbf{A}^2 + 2\mathbf{I} = \mathbf{A}$ $\begin{pmatrix} 16 - 2a & -2 \\ a & 9 - 2a \end{pmatrix} + 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -2 \\ a & -3 \end{pmatrix}$	Correct statement for $A^2 + 2I = A$ using A, "their" A^2 and use of the correct identity matrix	M1
	$\Rightarrow \begin{pmatrix} 16 - 2a + 2 \\ a & 9 \end{pmatrix}$		
	So $16 - 2a + 2 = 4$ or $11 - 2a = -3$	Adds their A^2 and $2I$, compares elements, forms an equation in a and attempts to solve as far as $a =$	M1
	a = 7	cao	A1

This resource was created and owned by Pearson Edexcel

WFM01

Leave

blank

4.

■ Past Paper

$$f(x) = x^{\frac{3}{2}} - 3x^{\frac{1}{2}} - 3, \quad x > 0$$

Given that α is the only real root of the equation f(x) = 0,

(a) show that $4 < \alpha < 5$

(2)

(b) Taking 4.5 as a first approximation to α , apply the Newton-Raphson procedure once to f(x) to find a second approximation to α , giving your answer to 3 decimal places.

(5)

(c) Use linear interpolation once on the interval [4, 5] to find another approximation to α , giving your answer to 3 decimal places.

(3)

Question Number	Sche	me	Marks
4.(a)	f(4) = and $f(5) =$	Attempt to evaluate both f(4) and f(5) NB f(5) = $2\sqrt{5} - 3$ but this must be evaluated to score the A1	M1
	f(4) = -1, $f(5) = 1.472Sign change (and f(x) is continuous) therefore a root \alpha exists between x = 4 and x = 5$	Both values correct $f(4) = -1$, and $f(5) = 1.472$ (awrt 1.5), sign change (or equivalent) and conclusion E.g. $f(4) = -1 < 0$ and $f(5) = 1.472 > 0$ so $4 < \alpha < 5$ scores M1A1	A1
			(2)
(b)	$f'(x) = \frac{3}{2} x^{\frac{1}{2}} - \frac{3}{2} x^{-\frac{1}{2}}$	M1: $x^n \to x^{n-1}$ A1: Either $\frac{3}{2}x^{\frac{1}{2}}$ or $-\frac{3}{2}x^{-\frac{1}{2}}$ A1: Correct derivative	M1A1A1
	$x_1 = 4.5 - \frac{f(4.5)}{f'(4.5)} = 4.5 - \frac{0.1819805153}{2.474873734}$	Correct attempt at Newton-Raphson Can be implied by a correct answer or their working provided a correct derivative is seen or implied.	M1
	= 4.426	Cao (Ignore any subsequent applications)	A1
	Correct derivative followed by corre	ect answer scores full marks in (b)	
	Correct answer with <u>no</u> worl	king scores no marks in (b)	
			(5)
(c)	$\frac{5-\alpha}{1.472} = \frac{\alpha-4}{1}$ or $\frac{\alpha-4}{1} = \frac{5-4}{1.472+1}$	A correct statement for α or 5 - α or α - 4	M1
	$\alpha(1.472+1) = 5 + 4 \times 1.472$ so $\alpha =$	Attempt to make "α" the subject (allow poor manipulation). Dependent on the previous M1.	d M1
	$\alpha = 4.405$	cao	A1
	There are no marks fe	or interval bisection	
			(3)
			Total 10

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WFM01

	Given that $z_1 = -3 - 4i$ and $z_2 = 4 - 3i$	
	(a) show, on an Argand diagram, the point P representing z_1 and the point Q representing	$\log z_2$
		(2)
	(b) Given that O is the origin, show that OP is perpendicular to OQ.	
	(b) Given that O is the origin, show that O is perpendicular to OQ.	(2)
	(c) Show the point R on your diagram, where R represents $z_1 + z_2$	(1)
	(I) Post of Copper	` '
	(d) Prove that <i>OPRQ</i> is a square.	(2)
		(-)
-		

Question				
5. (a)	M1: One point in third quadrant and one in the fourth quadrant. Can be vectors, points or even lines. A1: The points representing the complex numbers plotted correctly. The points must be indicated by a scale (could be ticks on axes) or labelled with coordinates or as	M1A1		
-	$or z_1$ complex numbers.	(2)		
(b)	M1 requires a correct strategy e.g.			
<u>-</u>	1. Gradient OP = $\frac{4}{3}$, Gradient OQ = $\frac{-3}{4}$ $\frac{4}{3} \times -\frac{3}{4} = \dots$			
-	2. Angles with Im axis are $\tan^{-1} \frac{3}{4}$ and $\tan^{-1} \frac{4}{3}$. $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{4}{3} =$			
	3. Angles with Re axis are $\tan^{-1} \frac{4}{3}$ and $\tan^{-1} \frac{3}{4}$. $180 - \left(\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{4}{3} = \right)$			
-	4. $OP^2 = 3^2 + 4^2$, $OQ^2 = 3^2 + 4^2$, $PQ^2 = 1^2 + 7^2 OP^2 + OQ^2 = \dots$			
	5. $\overrightarrow{OP} = \begin{pmatrix} -3 \\ -4 \end{pmatrix}$, $\overrightarrow{OQ} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \Rightarrow \overrightarrow{OP} \cdot \overrightarrow{OQ} = \dots$			
-	$\frac{4}{3} \times -\frac{3}{4} = -1$ so right angle or 53.1 + 26.9 = 90 (accept 53 + 27) or radians or			
	$\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{4}{3} = \frac{\pi}{2}$			
	$OP^2 + OQ^2 = PQ^2 = 50$ so right angle or $\overrightarrow{OP} \cdot \overrightarrow{OQ} = 0$ so right angle			
	Correct work with no slips and conclusion			
(c)	New point as shown. It must be the point $1-7$ i and it must be correctly plotted. The point must be indicated by a scale (could be ticks on axes) or labelled with coordinates or as a complex number. May be on its own axes.	B1		
-				
(d)	Writes down another fact about OPQR other than OP being perpendicular to OQ: e.g. OP = OQ, OP is parallel to QR, QR = PR, QR is perpendicular to PR	B1		
	Sufficient justification that OPQR is a square and conclusion If their explanation could relate to something other than a square score B0	B1		
		(2) Total 7		

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WFM01

	(a)	Find the exact value of $\alpha^3 + \beta^3$	
			(3)
	(b)	Find a quadratic equation which has roots $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$, giving your answer in the	e
		form $ax^2 + bx + c = 0$, where a, b and c are integers.	(=)
			(5)
_			

Question Number	Scheme		
6.(a)	$\alpha + \beta = -\frac{5}{3}$ and $\alpha\beta = -\frac{1}{3}$	Both correct statements	B1
	$\alpha^3 + \beta^3 = (\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta) = \dots$	Use of a correct identity for $\alpha^3 + \beta^3$ (may be implied by their work)	M1
	$\alpha^3 + \beta^3 = \left(-\frac{5}{3}\right)^3 + \left(-\frac{5}{3}\right) = -\frac{170}{27}$	Correct value (allow exact equivalent – even the correct recurring decimal - 6.296296)	A1
 	-	e method – generally there are no marks	
	<u> </u>	e roots explicitly	
	$\alpha = \frac{-5 + \sqrt{37}}{6}, \ \beta = \frac{-5 - \sqrt{37}}{6} \Rightarrow \alpha^3 + \beta^3 = \left(\frac{-5 + \sqrt{37}}{6}\right)^3 + \left(\frac{-5 - \sqrt{37}}{6}\right)^3 = -\frac{170}{27}$		
		ore 3/3 in (a)	
	B1: Both correct roots M1:	Cube and add A1: Correct value	(3)
(b)	$\frac{\alpha^{2}}{\beta} + \frac{\beta^{2}}{\alpha} = \frac{\alpha^{3} + \beta^{3}}{\alpha\beta} = \frac{-\frac{170}{27}}{-\frac{1}{3}} = \frac{170}{9}$	M1: Uses the identity $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{\alpha^3 + \beta^3}{\alpha\beta}$ A1: Correct sum (or equivalent)	M1 A1
-	$\frac{\alpha^2}{\beta} \times \frac{\beta^2}{\alpha} = \alpha\beta = -\frac{1}{3}$	Correct product	B1
	$x^2 - \frac{170}{9}x - \frac{1}{3}$	Uses $x^2 - (their sum) x + (their product)$ (= 0 not needed here)	M1
	$9x^2 - 170 \ x - 3 = 0$	This equation or any integer multiple including = 0. Follow through their sum and product.	A1ft
			(5)
	(I.) Alternation		Total 8
-	$\alpha = \frac{-5 + \sqrt{37}}{2}$	using explicit roots $ \frac{1}{2}, \beta = \frac{-5 - \sqrt{37}}{6} $	
-	3 05 11 5	6	
_	$\frac{\alpha^2}{\beta} = \frac{85 - 14\sqrt{3}\gamma}{9}$	$\frac{6}{\sqrt{2}}, \frac{\beta^2}{\alpha} = \frac{85 + 14\sqrt{37}}{9}$	
	$\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{170}{9}$	M1: Adds their $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$	M1A1
	2	A1: Correct sum	
	$\frac{\alpha^2}{\beta} \times \frac{\beta^2}{\alpha} = \alpha\beta = -\frac{1}{3}$	Correct product	B1
	$x^2 - \frac{170}{9}x - \frac{1}{3}$	Uses $x^2 - (their sum) x + (their product)$ (= 0 not needed here)	M1
	$9x^2 - 170 \ x - 3 = 0$	This equation or any integer multiple including = 0. Follow through their sum and product.	A1ft

Mathematics F1

This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

7.

Past Paper

$$\mathbf{P} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

(a) Describe fully the single geometrical transformation U represented by the matrix \mathbf{P} .

(3)

The transformation V, represented by the 2×2 matrix \mathbf{Q} , is a reflection in the x-axis.

(b) Write down the matrix \mathbf{Q} .

(1)

Given that V followed by U is the transformation T, which is represented by the matrix \mathbf{R} ,

(c) find the matrix \mathbf{R} .

(2)

(d) Show that there is a real number k for which the transformation T maps the point (1, k) onto itself. Give the exact value of k in its simplest form.

(5)

Question Number	Scheme			
7. (a)	Rotation, 30 degrees (anticlockwise), about O Allow $\frac{\pi}{6}$ (radians) for 30 degrees. Anticlockwise may be omitted but do not allow -30 degrees or 30 degrees clockwise B1: Rotation B1: 30 degrees B1: About O			
(b)	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	Correct matrix	B1 (3)	
(c)	$\mathbf{R} = \mathbf{PQ} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	Multiplies P by their Q This statement is sufficient in correct order	M1	
	$= \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix}$	Correct matrix	A1	
(d)	$\begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2} \end{pmatrix} \begin{pmatrix} 1 \\ k \end{pmatrix} = \begin{pmatrix} 1 \\ k \end{pmatrix}$	$\mathbf{R} \begin{pmatrix} 1 \\ k \end{pmatrix} = \begin{pmatrix} 1 \\ k \end{pmatrix}$ A correct statement but allow poor notation provided there is an indication that the candidate understands that the point $(1, k)$ is mapped onto itself. This Method mark could be implied by a correct equation or correct follow through equation below.	M1	
	$\frac{\sqrt{3}}{2} + \frac{k}{2} = 1$ or $\frac{1}{2} - \frac{k\sqrt{3}}{2} = k$	One correct equation (not a matrix equation)	A1	
	$\frac{\sqrt{3}}{2} + \frac{k}{2} = 1 \text{ or } \frac{1}{2} - \frac{k\sqrt{3}}{2} = k \Rightarrow k = \dots$	Attempts to solve their equation for k . Dependent on the first M.	d M1	
	$k = 2 - \sqrt{3}$	cao	A1	
	$k = 2 - \sqrt{3}$ Solves both $\frac{\sqrt{3}}{2} + \frac{k}{2} = 1$ and $\frac{1}{2} - \frac{k\sqrt{3}}{2} = k$ or checks other component	Solves both equations explicitly to obtain the same correct value for k or clearly verifies that $k = 2 - \sqrt{3}$ is valid for the other equation	B1	

Mathematics F1

■ Past Paper

www.mystudybro.comThis resource was created and owned by Pearson Edexcel

WFM01

		Lea blar
8.	The hyperbola H has cartesian equation $xy = 16$	Diai
	The parabola P has parametric equations $x = 8t^2$, $y = 16t$.	
	(a) Find, using algebra, the coordinates of the point A where H meets P .	
		(3)
	Another point $B(8, 2)$ lies on the hyperbola H .	
	(b) Find the equation of the normal to H at the point $(8, 2)$, giving your answer in the for	rm
	y = mx + c, where m and c are constants.	(E)
		(5)
	(c) Find the coordinates of the points where this normal at B meets the parabola P .	
		(6)
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_

Question	Scheme		
8.(a)	$8t^{2} \times 16t = 16$ $\mathbf{or} \left(\frac{16}{x}\right)^{2} = 32x$ $\mathbf{or} y^{2} = 32 \times \left(\frac{16}{y}\right)$	Attempts to obtains an equation in one variable x , y or t	M1
	$t = \frac{1}{2}$ or $x = 2$ or $y = 8$	A correct value for t, x or y	A1
	(2, 8)	Correct coordinates following correct work with no other points	B1
(3.)			(3)
(b)	$\left(y = \frac{16}{x} \Rightarrow\right) \frac{dy}{dx} = -16x^{-2}$ $\mathbf{or} \left(y + x \frac{dy}{dx} = 0 \Rightarrow\right) \frac{dy}{dx} = -\frac{y}{x}$ $\mathbf{or} \left(\dot{x} = 4, \ \dot{y} = -\frac{4}{t^2} \ \Rightarrow\right) \frac{dy}{dx} = -\frac{1}{t^2}$	Correct derivative in terms of x , y and x , or t	B1
	at $(8, 2)$ $\frac{dy}{dx} = -\frac{16}{(8)^2} = -\frac{1}{4}$	Uses $x = 8$, $x = 8$ and $y = 2$, or $t = 2$	M1
	gradient of normal is 4	Correct normal gradient	A1
	y-2 = 4(x-8) or $y = 4x + c$ and uses $x = 8$ and $y = 2$ to find c	Correct straight line method using the point $(8, 2)$ and a numerical gradient from their $\frac{dy}{dx}$ which is not the tangent gradient.	M1
	y = 4x - 30	Correct equation	A1
(c)	$16t = 32t^{2} - 30 \text{ or } y = \frac{y^{2}}{8} - 30$ $\text{or } \frac{16\sqrt{x}}{\sqrt{8}} = 4x - 30$	Uses their straight line from part (b) and the parabola to obtain an equation in one variable $(x, y \text{ or } t)$	(5) M1
	$(4t+3)(4t-5) = 0 \Rightarrow t =$ $(y-20)(y+12) = 0 \Rightarrow y =$ $(2x-25)(2x-9) = 0 \Rightarrow x =$	Attempts to solve three term quadratic (see general guidance) to obtain $t =$ or $y =$ or $x =$ Dependent on the previous M	d M1
	Note if they solve the tangent with the plas roots $x = 543.53$ and 0.47 (See attempt to solve their 3TQ)	parabola this gives $x^2 - 544x + 256 = 0$ which ring these values would imply a correct	
	$t = -\frac{3}{4}$ and $\frac{5}{4}$ or $y = 20$ and -12 or $x = \frac{25}{2}$ and $\frac{9}{2}$	Correct values for t or y or x	A1
	$t = -\frac{3}{4} \Rightarrow (x, y) = \text{or } t = \frac{5}{4} \Rightarrow (x, y) =$ $y = 20 \Rightarrow x = \text{ or } y = -12 \Rightarrow x =$ $x = \frac{25}{2} \Rightarrow y = \text{ or } x = \frac{9}{2} \Rightarrow y =$	Uses their values of t to find at least one point or uses their values of y to find at least one x or uses their values of x to find at least one y. Not dependent on previous method marks.	M1
	$(\frac{25}{2},20)$, $(\frac{9}{2},-12)$	A1: One correct pair of coordinates A1: Both pairs correct	A1 A1
			(6) Total 14
	<u> </u>	1	10tai 14

Mathematics F1

■ Past Paper This resource was created and owned by Pearson Edexcel

WFM01

Leave blank

9. (i) Prove by induction that, for $n \in \mathbb{Z}^+$

$$\sum_{r=1}^{n} r(r+1)(r+2) = \frac{n(n+1)(n+2)(n+3)}{4}$$

(5)

(ii) Prove by induction that,

 $4^n + 6n + 8$ is divisible by 18

for all positive integers n.

(6)

Question	Scheme			Marks		
9.(i)	$\sum_{r=1}^{n} r(r+1)(r+2) = 6 \text{ and } \frac{n(n+1)(n+2)(n+3)}{4} = \frac{1 \times 2 \times 3 \times 4}{4} = 6$ Minimum: lhs = rhs = 6			B1		
	Assume result true for $n = k$ so $\sum_{r=1}^{k} r(r+1)(r+2) = \frac{k(k+1)(k+2)(k+3)}{4}$					
	Minimum Assun k+1 k(k+1)(k+2)					
	$\sum_{r=1}^{k+1} r(r+1)(r+2) = \frac{k(k+1)(k+2)}{4}$ Adds the (k+1) th term			M1		
	$= \frac{1}{4}(k+1)(k+2)(k+3)(k+4)$	Ach Not fror	A1			
	If the result is <u>true for</u> $n = k$, then it is <u>true for</u>	$\underbrace{\text{or}}_{n=k}$	x+1. As the result has been shown	A1cso		
	to be <u>true for</u> $n = 1$, then the	ne resul	t is true for all n.	ATCSO		
(44)				(5)		
(ii)	$f(1) = 4^1 + 6 \times 1 + 8 = 18$		f(1) = 18 is the minimum	B1		
	$f(k+1)-f(k) = 4^{k+1} + 6(k+1) + 8 - (4^k + 6k)$	+8)	M1: Attempts $f(k + 1) - f(k)$	M1		
	$= 3 \times 4^{k} + 6 = 3(4^{k} + 6k + 8) - 18k - 18$ $A1: 3(4^{k} + 6k + 8) \text{ or } 3f(k)$ $A1: -18 - 18k \text{ or } -18(k + 1)$					
	$f(k+1) = 3(4^k + 6k + 8) - 18(k+1) + f(k)$)	Makes $f(k + 1)$ the subject	dM1		
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k+1$</u> . As the result has been shown			A1cso		
	to be <u>true for</u> $n = 1$, then the result is <u>true for all</u> n .					
				(6)		
(44)			<u> </u>	Total 11		
(ii) ALT 1	$f(1) = 4^1 + 6 \times 1 + 8 = 18$		_	B1		
71127 1	$f(k+1) - 4f(k) = 4^{k+1} + 6(k+1) + 8 - 4(4^{k} + 1)$			M1		
	=-18k-18	A1: –		A1A1		
	f(k+1) = 4f(k) - 18(k+1)		s f(k+1) the subject	dM1		
	If the result is <u>true for</u> $n = k$, then it is <u>true for</u>			A1cso		
	to be <u>true for</u> $n = 1$, then the result is <u>true for all n</u> .			ATCSO		
(ii)	$f(1) = 4^1 + 6 \times 1 + 8 = 18$			B1		
ALT 2	$f(k+1) = 4^{k+1} + 6(k+1) + 8$		M1: Attempts $f(k+1)$	M1		
	= 4(4 + 6k + 8) - 18k - 18 A1: -18-18k or -18(k)		A1: $4(4^k + 6k + 8)$ or $4f(k)$ A1: $-18-18k$ or $-18(k+1)$	A1A1		
				dM1		
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k+1$</u> . As the result has been shown to be <u>true for $n = 1$</u> , then the result is <u>true for all n</u> .			A1cso		

	See general case bel	ow for $f(k)$	-mf(k)	
	f(k) - k	mf(k)		
(ii)	$f(1) = 4^1 + 6 \times 1 + 8 = 18$		B1	
	$f(k+1) - mf(k) = 4^{k+1} + 6(k+1) + 8 - m(4^k + 6k + 8)$ M1: Attempts $f(k+1) - mf(k)$		M1	
	$= (4-m)(4^{k}+6k+8)-18k-18$ $= (4-m)(4^{k}+6k+8)\operatorname{or}(4-m)f(k)$		A1A1	
			-18k or -18(k+1)	711711
			dM1	
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k+1$</u> . As the result has been shown to be <u>true for $n = 1$</u> , then the result is <u>true for all n</u> .			A 1
				A1cso